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Abstract

A model example is given of how properties of the hadronic light-cone wave function are
revealed in a particular high energy process.

1. Introduction

The purpose of my talk is to give a pedagogical derivation of the light-cone wave function
and demonstrate its use in a particular high energy process. Explicitly I will derive the meson
wave function in scalar quark QCD. I will then apply it to recent work I have been doing with
David Soper on diffractive hard scattering.

The Lagrangian for scalar quark QCD coupled to a meson field is,

L = (Dµq)
†(Dµq)−m2q†q − 1

4
Ga

µνG
µν
a − 1

2ξ
(∂µA

µ
a)(∂νA

ν
a)

+ Faddeev-Popov terms− g4

4
(q†q)2. (1)

HereAµ
a(x) as an SU(3) gauge field as in normal QCD. There is also a color triplet quark

field qi(x) with quark mass m, but we takeqi(x) to be a scalar field instead of a Dirac field.
Since the theory includes a scalar quark field, a 4-quark coupling is necessary, but we have set
the renormalized coupling constantg4 to a negligible small value. This theory has the same
behavior as spinor QCD for collinear and soft gluon emission from quarks. Its chief advantage
is that it allows a perturbative model for a quark-antiquark bound state. We introduce a scalar,
color singlet meson fieldφ(x) and couple it to the quarks using

Lφ = G φ(x) q†i (x)qi(x). (2)

We work to lowest nontrivial order in theφq†q couplingG, letting theφq†q vertex play the role
that is played by the (amputated) Bethe-Salpeter wave function of a meson in spinor QCD. We
denote the mass of the meson byM and takeM to be smaller than2m, so that the meson cannot
decay into a quark and an antiquark.
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2. Light-Cone Wave Function

For a meson moving in the minus direction, the light-cone wave functionψ(x,k)ij is the
amplitude to find that the meson with momentumP µ = (M2/(2P−), P−,0) consists of a quark
and an antiquark of colorsi and anti-j respectively, with the quark having minus-momentum
k− = xP− and transverse momentumk. The wave function is measured by operators defined
on the null-planey− = 0. The precise definition, following the formalism of [1,2,3] is,

ψ(x,k)ij = 2x(1− x)P−
∫
d4y eik·y δ(y−) 〈0|qi(y) q†j(0)|P 〉 . (3)

Here we have chosen the normalization

(2π)−3
∫ 1

0

dx

2x(1− x)

∫
dk

∑
ij

|ψ(x,k)ij|2 = P2 , (4)

whereP2 is the probability, which is of orderG2, that the meson state consists of a(q, q†) pair.
In terms of the covariantφ q q† Green function amputated on theφ-leg, the definition (??) can
be written as

ψ(x,k)ij = 2x(1− x)P−
∫ dk+

2π
G(kα, P β)ij . (5)

At lowest order inαs andG one has,

G(kα, P β)ij = iG δij
i

k2 −m2 + iε

i

(P − k)2 −m2 + iε
. (6)

By integrating according to Eq. (??), we find

ψ(x,k)ij =
Gx(1− x)

k2 +m2 − x(1− x)M2
δij . (7)

Notice that|ψ|2 ∝ 1/k4 for largek2. This good behavior in the ultraviolet, which arises from
the fact thatG has dimensions of mass, is the essential reason for the usefulness of this model.

The wave function can be used to calculate, to order zero inαs, the probability for finding a
quark in a mesoni.e. the parton distribution function:

fq/φ(x) = (2π)−3 1

2x(1− x)

∫
dk

∑
ij

|ψ(x,k)ij|2

=
3G2

16π2

x(1− x)

m2 − x(1− x)M2
. (8)

As a more realistic example, one can derive the light-cone wavefunction for quarks in a
photon. For transverse polarization, we find

ψ(x,k) = − eQ
2P−

U [x ε · γ kT · γ − (1− x) kT · γ ε · γ] γ−V

k2 + x(1− x)Q2
, (9)
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wherekµ
T = (0, 0,k). This is quite similar to the scalar wave function, Eq. (??). The chief

difference is the factor ofk in the numerator, which leads to a logarithmic divergence in the
normalization integral forψ. (The spinorsU andV depend onk, but this dependence is elimi-
nated when the spinors stand next to aγ−.) For longitudinal polarization, we obtain

ψ(x,k) =
eQ
P− x(1− x)Q

Uγ−V

k2 + x(1− x)Q2
. (10)

Again,Uγ−V is independent ofk. This wave function is small compared to that for transverse
polarization whenQ2 � k2 but becomes comparable whenQ2 ∼ k2.

3. Diffractive Hard Scattering

In 1985 Ingelmann and Schlein4 predicted that events of the type

A+B → A+ jets +X, (11)

where hadronA is diffractively scattered, should occur with a small but not tiny probability.
Here by “diffractively scattered,” we mean thatA emerges with a fraction(1 − z) > 0.9 of its
original longitudinal momentum and with a small transverse momentum|P′

A| ≤ 1 GeV. The
transverse momentum transfer can also be characterized using the invariant momentum transfer
t from the hadron:t = (PA − P ′

A)2 = −(P′ 2
A + z2M2

A)/(1− z) ≈ −P′ 2
A .

The picture for such diffractive hard scattering proposed by Ingelman and Schlein is that
hadronA exchanges a pomeron with the rest of the system, where “pomeron” means whatever
is exchanged in elastic scattering at larges, smallt. Thus the cross section is proportional to the
pomeron coupling to hadronA as measured in elastic scattering. The pomeron carries transverse
momentum−P′

A and a fractionz of the hadron’s longitudinal momentum. Here we do not need
to know what a pomeron is, only that its momentum is carried by quarks and gluons. One of
these collides with a parton from hadronB to produce the jets. Let the parton that participates
in the hard scattering carry a fractionx of the longitudinal momentum of the incoming hadron
A, and thus a fractionx/z of the longitudinal momentum transferred by the pomeron. Then the
cross section in this model is proportional to a functionfa/P (x/z, t;µ), wherefa/P (ξ, t;µ) dξ
is interpreted as the probability to find a parton of kinda in a pomeron, where the parton carries
a fractionξ of the pomeron’s longitudinal momentum.

The reaction (??) anticipated by Ingelman and Schlein has been seen at the CERN collider
by the UA8 experiment5. However, the experiment suggests a feature not anticipated in [4,6,7].
It was expected that the functionsfa/P (x/z) would have support only forx < z. That is, some
of the momentum fractionx transferred from hadronA would be lost, appearing in lowPT

particles rather than in the jets. Instead, the experiment suggests that a fraction of the events are
lossless in the sense thatx = z. It is as if the formula for the cross section contained a term
proportional toδ(1− x/z). A similar such distributional form was predicted in [8].

287



We will consider the cross section for lossless jet production in diffractive hard scattering.
The details of the calculation are given in [9]. Our purpose here is to examine the role played
by the light-cone meson wavefunction. The cross section is,[

dσdiff(A+B → A+ jets +X)

dET dXA dXB dz dt

]
0

∼ δ (1−XA/z)
∫
dr

|ψ(XB, r)|2

2XB(1−XB)

×
2∑

j,k=1

8∑
a,b=1

Tr
{[
Gj

a(−r; t, z)−Gj
a(0; t, z)

]†
Hjk

ab (ŝ, ET )

×
[
Gk

b (−r; t, z)−Gk
b (0; t, z)

]}
. (12)

Despite its rather complicated structure, the interpretation of Eq. (??) is straightforward. In
the model, mesonB consists of a quark and an antiquark. With probability∝ |ψ(XB, r)|2, they
are separated by a transverse distancer. In order to restore the color of hadronA, we must
absorb a gluon on either the antiquark (at position−r) or the quark (at position0). Since the
quark and antiquark have opposite color charges, the absorption amplitude is proportional to
the differenceGj

a(−r; t, z) − Gj
a(0; t, z). HereGj

a(b; t, z) is the amplitude to absorb a color
field quantum at transverse positionb when the “active” gluon is annihilated at the origin of
space-time and hadronA is diffractively scattered. ThusG describes the color field associated
with the pomeron when one gluon from the pomeron has been annihilated at the origin.

Here we meet an interesting experimental possibility. Theb dependence ofGj
a(b; t, z)

reflects the transverse structure of the pomeron. It has significant structure on some distance
scaleRP characteristic of the pomeron. In the present model,1/RP is of order of the quark mass
m. ThusGj

a(−r; t, z)−Gj
a(0; t, z) is small when|r| � RP. On the other hand,|ψ(XB, r)|2 is

small when|r| � RB, whereRB is a characteristic size of hadronB. This size is also of order
1/m in the model. However, suppose that we generalize the model so thatRB can be separately
adjusted. Then whenRB ∼ RP, there will be a substantial contribution to the cross section
proportional toδ (1−XA/z). But whenRB � RP, this contribution will vanish.

So far, we have worked only with a simple model. But the model suggests a plausible
conjecture. First, there can be a sizable contribution to diffractive jet production proportional to
δ (1−XA/z), arising from using one gluon from the pomeron to make the jets and absorbing
on the partons of hadronB the rest of the color field needed to make hadronA back into a color
singlet. Second, when the sizeRB of hadronB is small compared to the transverse sizeRP

associated with the color field in pomeron exchange, then hadronB should act as a color singlet
and this contribution should disappear.

In order to test this conjecture, and probe the transverse structure of the pomeron, one needs
to use hadrons of adjustable size. At HERA, one manufactures bremsstrahlung photons from
the electron beam. The virtualityQ = [−P µ

BPBµ]1/2 of the photon is measured by the deflection
of the electron, and can be anything from nearly zero to many GeV. The photon can collide
with a proton (hadronA) to make jets withET � Q. The cross section for this process
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can be (roughly) divided into two parts. In one part, the photon acts as a parton and scatters
directly with a parton from hadronA to make the jets. In the other part, the photon acts as a
hadron, made of constituent partons. ForQ ≈ 0, this hadron is essentially aρ-meson, with a
sizeRB ≈ 1 fm. ForQ � 1 fm−1, the “hadron” consists of a quark-antiquark pair, with wave
functions given in Eq. (??) for transverse polarization and Eq. (??) for longitudinal polarization.
These wave functions are characterized by a sizeRB ≈ [XB(1 − XB)Q2]−1/2. SinceQ2 and
XB are measurable, this size is adjustable.

We must emphasize that the proposal given above is a conjecture based on a simple model,
not a proven consequence of QCD. It should be a challenge to investigate the structure of diffrac-
tive hard scattering further and to discover what features of the model survive a higher order
analysis.
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