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Abstract

A scheme is developed which shows how one would, given a light-front Hamiltonian
for QCD, extract the QQ potential, i.e. the quantity which corresponds to the poten-
tial between two infinitely heavy quarks in a rest frame, from a light-front calculation.
The resulting potential will in general depend on the direction along which the infinitely
heavy sources are separated and thus provides a direct probe of violations of rotational
invariance in a physical observable. Furthermore, easy comparison to data from cc and
bb spectroscopy and to lattice data is possible. The scheme may thus be very helpful in
constructing a light-front Hamiltonian through an iterative procedure.

1. Introduction

The central quantity to be discussed in these lectures is:

V (~R) ≡ potential energy of an ∞-heavy QQ-pair at separation ~R in its rest frame.

There are several reasons to study this observable in the light-front (LF) framework

• The LF formalism lacks manifest rotational invariance. Therefore, if one starts with
a wrong LF Hamiltonian for QCD, the result V (~R) depends on the orientation of ~R

with respect to the 3-axis. 1 A measurement of V (~R) thus provides a direct probe
of rotational invariance in a physical observable.

• Calculating V (~R) on the LF allows one to test both short (asymptotic freedom) and
long distance (confinement) aspects of the theory within the same set of calculations

by simply changing |~R|, and thus provides a stringent test for perturbative as well
as nonperturbative aspects of the interactions.

• And most importantly, V (~R) in QCD is very well known over a large range of
distances from the spectroscopy of heavy QQ mesons as well as from nonperturbative
Euclidean lattice calculations (at least in the absence of dynamical quarks — but it
is easy to make the same approximation in a LF framework).

1We use the notation A± = A∓ = (A0 ±A3)/
√

2, ~A⊥ = (A1, A2).
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Fig.1: World lines for two charges with lon-
gitudinal separation ∆x3 in the rest frame.

Before we embark on deriving the effective
LF Hamiltonian for two infinitely heavy
sources, it is instructive to understand
physically what it means to have two fixed
sources at rest from the LF point-of-view.
As should be clear from Fig.1, fixed charges
in a rest frame correspond to charges that
move with constant velocity on the LF
[v+ = v− = 1/

√
2 in the example in Fig.1].

Furthermore, if the longitudinal separation
is ∆x3 in the rest frame, the charges have
fixed separation ∆x− =

√
2∆x3 in the

longitudinal LF direction [in the more general case, where the charges are moving with
constant four velocity vµ, where ~v⊥ = 0 in the rest frame, one obtains ∆x− = ∆x3/v+].

The transverse separation is the same on the LF as it is in a rest frame descrip-
tion. Therefore, in order to understand the physics of fixed charges with separation
~R = (R1, R2, R3) in a LF description, we must first understand how to describe a “dumb-
bell,” with ends separated by (∆x1, ∆x2, ∆x−) = (R1, R2, R3/v+), that moves with con-
stant velocity v+.

2. One Heavy Quark on the LF

A pair of fixed sources can also be interpreted (and treated) as one extended source
moving with constant velocity vµ (for simplicity, we will keep ~v⊥ = ~0). This is reminiscent
of heavy quarks and thus, as a warmup exercise, it is very instructive to consider one
(pointlike) heavy quark on the LF first (see also Refs.[1,2]).

For simplicity, we will first take the heavy quark limit for the canonical Hamiltonian,
which can be written in the form

P−
B =

M2
b + ~k2

b⊥
2p+

b

+ P−
HL + P−

LL, (1)

where B represents the hadron, b is the heavy quark, P−
HL contains the interactions be-

tween heavy (b) and light degrees of freedom and P−
LL contains all terms involving light

degrees of freedom only. The heavy quark limit is obtained by making an expansion in
inverse powers of the b-quark mass. For this purpose we write

p+
b = P+

B − p+
L = MBv+ − p+

L , (2)

where p+
L is defined to be the sum of the longitudinal (LF-) momenta of all light degrees

of freedom. For the (total) LF-energy we write on the l.h.s. of Eq.(1)

P−
B = MBv− =

MB

2v+
=

Mb + δE

2v+
, (3)
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where δE ≡ MB −Mb is the “binding energy” of the hadron. After inserting Eqs.(2) and
(3) into Eq.(1) and expanding one obtains

Mb + δE

2v+
=

M2
b + ~k2

b⊥
2(MBv+ − p+

L)
+ P−

HL + P−
LL =

M2
b + ~k2

b⊥

2
(
Mbv+ + δEv+ − p+

L

) + P−
HL + P−

LL

=
Mb

2v+
− δE

2v+
+

p+
L

2v+2
+O(1/Mb) + P−

HL + P−
LL. (4)

Note that we assumed that ~p⊥ of the heavy quark is small compared to its mass which is
justified in a frame where the transverse velocity of the heavy hadron vanishes. The term
proportional to Mb cancels between the l.h.s. and the r.h.s. of Eq.(4) and we are left with

δE

v+
=

p+
L

2v+2
+O(1/Mb) + P−

HL + P−
LL. (5)

The brown muck Hamiltonian P−
LL is the same as for light-light systems and will not

be discussed here. The interaction term between the heavy quark and the brown muck
(P−

HL) is more tedious but straightforward. For example, heavy quark pair creation terms
(via instantaneous gluons) are proportional to 1/(p+

b1
+ p+

b2
)2 ∝ 1/M2

b and can thus be
neglected. Similarly, pair creation of heavy quarks from virtual gluons is also suppressed
by at least one power of Mb. This also justifies our omission of states containing more
than one heavy quark from the start. Other terms that vanish in P−

HL include interactions
that involve instantaneous exchanges of heavy quarks, which are typically proportional
to the inverse p+ of the exchanged quark and thus of the order O(M−1

b ). Up to this
point, all interaction terms that we have considered vanish in the heavy quark limit. The
more interesting ones are of course those terms which survive. The simplest ones are
the instantaneous gluon exchange interactions with light quarks or gluons, which are,
respectively, VQq ∝ (p+

q − p
′+
q )−2 and VQg ∝ (p+

g + p′+g )(p+
g − p′+g )

−2
and remain unchanged

in the limit Mb → ∞. Terms which involve instantaneous gluon exchange and are off-
diagonal in the brown muck Fock space behave in the same way.

The quark gluon vertex simplifies considerably. For finite quark mass one has for the
matrix element for the emission of a gluon with momentum k, polarization i and color a
between quarks of momentum p1 and p2

P−
QQg = −igT a

{
2

ki

k+
− ~σ⊥~p2⊥ − iMb

p+
2

σi − σi~σ⊥~p1⊥ + iMb

p+
1

}
, (6)

where spinors as well as creation/destruction operators have been omitted for simplicity.
In the heavy quark limit [note 1/p+

1 − 1/p+
2 = O(M−2

b )] the spin dependent terms drop
out and one finds

P−
QQg = −2igT a ki

k+
. (7)
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The spin of the heavy quark thus decouples completely, giving rise to the well known
SU(2Nf ) symmetry in heavy quark systems.

3. Divergences

Throughout the above discussion we have tacitly assumed that all momentum scales
other than the heavy quark longitudinal momentum are small compared to the heavy
quark mass (or longitudinal momentum). To justify this assumption we impose the fol-
lowing cutoffs:

• a small momentum cutoff Θ(k+
i − εv+) on all light constituents and on all momenta

exchanged in instantaneous interactions.

• a cutoff on the maximum allowed difference in kinetic energy at each vertex
Θ
(

Λ
v+ −

∣∣∣P−
kin(in)− P−

kin(out)
∣∣∣)

Notice that the cutoffs have been chosen such that the spectrum (with the regulators
present) is manifestly independent of v+. Notice further that the above cutoffs guarantee
that the heavy quark limit commutes with loop integrations. In other words, for loop
integrals it does not matter whether one first computes the amplitudes using the full
Hamiltonian and then takes the heavy quark limit or whether one takes the heavy quark
limit first and computes loops using the heavy quark effective LF Hamiltonian. This
guarantees that the heavy quark limit is nonsingular.

It should be emphasized that, while the above conditions are sufficient to guarantee
a meaningful heavy quark limit, other, less stringent, ways to cutoff the divergences (e.g.
using a transverse lattice in combination with some low-k+ regulator) are conceivable.

In Section 2, we illustrated the heavy quark limit starting from the canonical LF
Hamiltonian. However, most regularization schemes, particularly momentum cutoffs such
as the one described above, require non-canonical counterterms, including “counterterm
functions” [4]. How does this influence the heavy quark limit? The counterterm functions
typically depend on ratios of momenta and one might be worried that this provides some
“hidden” dependence on the heavy quark mass, because heavy quark momenta are of the
order of the heavy quark mass. It turns out that, with the above or similar cutoffs, heavy
quark momenta typically enter the counterterm functions through ratios between two
heavy quark momenta, but not ratios of heavy quark to brown muck momenta.2 Upon
expanding the heavy quark momentum in powers of 1/Mb one thus finds that log’s of Mb

cancel in the effective LF Hamiltonian and only O(1/Mb) corrections remain from the
dependence of the counterterm functions on the heavy quark momentum. This is just
another example of the fact that, with the above cutoffs in place, the heavy quark limit

2I was not able to give a strict proof for this intuitively obvious result but could not find a counterex-
ample either.
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and loop integrations commute. Therefore, as long as one keeps Λ � Mb:

The conterterm functions, which arise from renormalizing the LF-Hamiltonian using
noncovariant cutoffs, depend, to leading order in 1/Mb, only on ratios of brown muck
momenta but not on the heavy quark momentum or its mass.

By restricting all momenta (except the longitudinal momentum of the heavy quark)
and momentum transfers to the heavy quark to be small compared to the heavy quark
mass, we have implicitly limited the applications of the above formalism to physical pro-
cesses which satisfy these conditions. In particular, we cannot use the above formalism
directly for calculating Isgur-Wise functions at large recoil or decay constants for heavy
mesons because these processes typically involve a large momentum transfer. The formal-
ism is applicable, however, for calculating B-meson spectra as well as the QQ̄-potential
at distances that are large compared to the inverse heavy quark mass.

For finite MQ, the total momentum that can be carried by the brown muck is bounded
from above by the total momentum of the hadron. Since the total momentum of the
hadron in the heavy quark limit is infinite, this natural cutoff no longer exists. However,
this does not lead to any new divergences: One can solve analytically the problem of
photons coupled to an infinitely heavy electron, where one obtains a photon distribution
that falls of at large k+ like ρ(k+) ≡

∫
dk2

⊥ρ(k+, k2
⊥) ∼ 1/

(
v+Λk+4

)
+1/k+5

log (Λv+/k+).
In QCD, if one excludes the strict chiral limit, there are no massless excitations and one
expects an even more rapid falloff at large k+.

4. Two Heavy Sources

As we discussed in section 2, two heavy sources at fixed separation can be formally
treated as one extended heavy source (just think of a dumbbell). Therefore, HLF for two
sources is the same as for one source with two minor modifications:

• All vertices involving a heavy source get modified according to the rule{
χ†

′
T aχ × Ô(brown muck)

}
+ h.c. →{[

χ†Q
′
T aχQFR(q)− χ†

Q̄
T aχQ̄

′FR(−q)
]
× Ô(brown muck)

}
+ h.c., (8)

where the “form factor”

FR(q) = exp

[
i

2

(
q+R3

v+
− ~R⊥~q⊥

)]
(9)

arises from acting with the (kinematic !) displacement operator on the position
of the heavy quark/antiquark (from x− = 0, ~x⊥ = ~0⊥ to x− = ±R3/2v+, ~x⊥ =

±~R⊥/2) and q is the net momentum transferred to the brown muck. This rule
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holds irrespective of the number of gluons involved in this process. Ô(brown muck)
contains all the creation/destruction operators acting on the brown muck as well
as the counterterms and, when necessary, the counterterm functions. Note that
Ô(brown muck) is the same for one or two heavy sources.

• There is a static potential between the two heavy quarks. The canonical Hamil-

tonian yields P−
HH = g2 χ†Q

′
T aχQ χ†

Q̄
T aχQ̄

′ δ(2)(~R⊥)|R3|v+. In general, there will be

a more complicated dependence on ~R which has to be determined by demanding
self-consistency. For example, singularities arising from exchange of gluons with low
q+ between the two sources should cancel (nonperturbatively) with the IR behavior
of the instantaneous potential in P−

HH [5].

Using Eq.(5), V (~R) can thus be extracted as follows:

1. For a given ~R and v+, write down the effective LF-Hamiltonian for the heavy pair
interacting with the brown muck (including the form factors Eq.(9) and including all
the counterterms and counterterm functions which would also appear in a “heavy-
light” system).

2. The lowest eigenvalue δE(1) from Eq.(5), i.e. the QCD-ground state in the presence

of the two heavy sources, is then equal to V (~R).

The heavy quark potential thus calculated is equivalent to the potential which a lattice
theorist would extract from an asymmetric rectangular Wilson loop. Since there is plenty
of “quenched” lattice data around, it would make sense to omit light quarks completely
in a first approach and to focus on the pure glue part of the brown muck. However, the
formalism described above is so general that one could also use it in a LF calculation that
includes (dynamical) light quarks.

5. Summary

I have set up a very general scheme for computing the potential energy between two
heavy quarks from a LF calculation. The scheme has been deliberately left very general in
order to make it easy for people using very different approaches to LF-QCD to adopt the
scheme and to calculate this important observable. Calculating the heavy quark potential
on the LF is useful for testing rotational invariance and for comparing to lattice data and
fits to charmonium spectra. Compared to other LF calculations, the main advantage is
that the calculation can be done in the pure glue sector (the two sources are static!) and
one thus does not have to bother about issues such as kinetic versus vertex masses and zero
modes of the quark. Of course, if the effective QQ potential violates rotational invariance,
this would perhaps also show up indirectly in the charmonium spectrum. However, a direct
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calculation of the QQ potential, as I propose here, will reveal the source of the violation
more clearly: instead of comparing charmonium states, which are polarized in various
directions, one can just orient the “dumbbell” in different directions.

Conceivable applications of this scheme are, for example:

• helping to pin down the counterterm functions in Heff
LF : one could imagine param-

eterizing the noncovariant counterterm functions in the Hamiltonian (basing the
ansatz on some superposition of perturbation theory, power-counting and intuition)
by a number of “coupling constants.” Demanding rotational invariance of the QQ̄
potential at all distances provides constraints in this coupling constant space, thus
complementing renormalization group studies of LF Hamiltonians.

• fixing the transverse scale and determining the renormalization constants for the
various couplings which appear in the transverse lattice formulation of LF QCD.

Another potential use of the above formalism derives from a curious mathematical ob-
servation: usually, in a LF Hamiltonian, all energies scale like (momentum)−1 and thus
an unconstrained variational calculation (total momentum not fixed) of the energy leads
to nonsense: infinite LF momentum, zero energy for all states. This is quite cumber-
sone because this usually implies that one has to build momentum conservation into the
variational ansatz — thus making it often difficult to calculate matrix elements of the
interaction in the multiparticle (> 3) sectors of the wavefunction (unless one uses a plane
wave basis). This is not the case for the Heff

LF for a heavy quark system (5), where, first of
all, the brown muck momentum is not conserved, and second “runaway solutions” (mo-
mentum→∞) are prevented due to the term proportional to the brown muck momentum
on the r.h.s. of Eq.(5), which arises from expanding the heavy quark kinetic term and acts
like a Lagrangean multiplier. For heavy quark systems it is therefore easy to write down
an ansatz for a orthonormalized set of many body wavefunctions that still allows simple
evaluation of matrix elements. Many body techniques can thus more easily be applied to
heavy quark systems on the LF than to hadrons with finite mass on the LF.
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