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Abstract

The rotational invariance is violated in the lightcone quantization method when the Fock
space is truncated for practical calculations. To what extent the rotation symmetry is broken in
the lightcone quantization approach can be quantified by calculating the explicit rotation depen-
dence of the two-body scattering phase shifts. We analyze the scattering phase shifts in a simple
scalar field model, extending the lightcone ladder approximation to the lowest order lightcone
Tamm-Dancoff approximation in which the self-energy corrections are incorporated. We find
that the self-energy effects significantly restore the rotation symmetry. Also, these effects make
the phase shifts stabilize as the coupling constant grows. This is in a good agreement with the
previous bound state results that the self-energy effects are as repulsive as relativistic kinematic
corrections and retardation effects.

1. Introduction

For an explicit illustration of the rotation dependence in the two-body scattering phase
shifts1, let’s consider a scalar field model2,3 which describes the interaction between two scalar
particlesφ, φ̄ with equal massm exchanging a scalar particleχ with massλ. This model with
λ = 0 is known as the Wick- Cutkosky model4 and the interaction Lagrangian is given by

L = gφ2χ . (1)

Because the transverse components of the angular momentum (Jx and Jy) in the lightcone
Poincare algebra5 contain interactions changing particle numbers in equalτ , the calculated
scattering amplitude in the truncated Fock space is not rotationally invariant. The degree of
the rotation symmetry breaking was quantified by our recent work of calculating the two-body
scattering phase shifts1. The numerical results showed that the rotation symmetry is broken
more severely as the coupling constant of the model gets larger. More recently, we extended
the lightcone ladder approximation to the lowest order lightcone Tamm-Dancoff approximation
in the same model6 and investigated the effects of the self-energy corrections and counter-
terms to the rotation problem7. We found astonishingly a siginificant restoration of the rotation
symmetry by this extension. Also, we observed that the self-energy effects stabilized the phase

203



shifts as the coupling constant grows. Even though the rotation problem is unavoidable in the
lightcone quantization method with the Fock-space truncation, this calculation indicates that the
rotation symmetry can be dynamically restored by adding the interactions which were neglected
before. In this talk, we summarize our scattering formulation and discuss implications of our
computation in the lightcone quantization scheme.

2. Formalism

In order to discuss the lightcone quantization more physically, we consider the c.m. system
of two particles where the initial and final momenta of the first (second) particle arek(−k)and
l(−l), respectively, and define the lightcone timeτ asτ = t + n̂ · r/c by introducing a unit
vectorn̂ on the lightcone surface (i.e. ifτ = t + z/c, thenn̂ = ẑ). In this reference frame, the
lightcone two-body wavefunction,Ψ(k, n̂) satisfies the following equation in the lowest order
Tamm-Dancoff approximation including the self-energy corrections and counter-terms8 under
the truncation of the Fock-space up to the three-body6:

(k2 − q2
in)Ψ(k, n̂) = −

∫ d3l

(2π)3

m2

ε(l)
V (k, l, n̂)Ψ(l, n̂), (2)

whereε(l) =
√

l2 + m2, q2
in = s/4 −m2 (s is the square of the total c.m. energy), and

V (k, l, n̂) =
4παVLA(k, l, n̂)

1 + (αm2/4π)g(l2, n̂ · l)
.

Here, the dimensionless coupling constant,α, is given byα = g2/16πm2 , the kernel in the
ladder approximation,VLA(k, l, n̂), is given by

VLA = −
[
(k − l)2 + λ2 − (n̂ · k)(n̂ · l)(ε(k) − ε(l))2

ε(k)ε(l)
+
(
ε2(k) + ε2(l) − s

2

) ∣∣∣∣∣n̂ · k
ε(k)

− n̂ · l
ε(l)

∣∣∣∣∣
]−1

, (3)

and the self-energy corrections and counter-terms are summarized by

g(k2, n̂ · k) =
4

a(k2, n̂ · k)

∫ 1

0
dz log

(
1 +

a(k2, n̂ · k)(z − z2)

λ2z + m2(1− z)2

)

+
4

b(k2, n̂ · k)

∫ 1

0
dz log

(
1 +

b(k2, n̂ · k)(z − z2)

λ2z + m2(1− z)2

)
(4)

with

a(k2, n̂ · k) = 2(k2 − q2
in)

(
1 +

n̂ · k
ε(k)

)
,

b(k2, n̂ · k) = 2(k2 − q2
in)

(
1 − n̂ · k

ε(k)

)
.
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The conventional method to solve Eq.(2) is to set up an equivalent Lippman-Schwinger equation9

which is given by

T (k, l, n̂) = V (k, l, n̂) −
∫ d3q

(2π)3

m2

ε(q)

V (k, q, n̂)T (q, l, n̂)

q2 − q2
in + iε

. (5)

Using the partial wave expansion of the scattering amplitudeT (k, l, n̂) given by

Tj(k, l, n̂) =
∫

dΩT (k, l, n̂)Pj(cosθ), (6)

whereθ is the angle betweenk andl, and similarly definingVj(k, l, n̂) as

Vj(k, l, n̂) =
∫

dΩV (k, l, n̂)Pj(cosθ), (7)

we obtain

Tj(k, l, n̂) = Vj(k, l, n̂)

−
∫ |q|2d|q|

(2π)3

m2

ε(q)

Vj(k, q, n̂)Tj(q, l, n̂)

q2 − q2
in + iε

. (8)

The n̂-dependence in Eqs.(2)-(8) indicates the violation of the rotation invariance. However,
we made a connection between our analysis and the bipolar harmonics formalism presented
by Fuda10 and found that the physical amplitude suggested by Fuda is the rotational average
of our Tj(qin, qin, n̂) over n̂-direction and does not carrŷn-dependence. Such procedure of
integrating out the quantization axis dependence to obtain a physical amplitude is not possible
in the ordinary equalt-quantization because the space for the boost operation is not compact.
Integrating out the quantization axis dependence in equalt-quantization would necessarily re-
quire to include the lightcone surface. Therefore, the lightcone quantization method appears to
be the most efficient way of solving quantum field theories. In order to quantify the dependence
of the phase shift on the direction̂n, we fix the scattering plane as the plane made byŷ and
ẑ and the direction of initial momentumk as ẑ and then vary the direction̂n. The effect of
rotating the direction̂n in a given scattering plane defined by its perpendicular directionk × l
is equivalent to the effect of rotatingk × l in a given direction of the lightcone time evolution,
e.g.,τ = t + z/c. In any case, the focus of study is the dynamics dependent on the relative
angle between̂n andk × l.

3. Numerical Results

We calculated both S-wave (j = 0) and P-wave (j = 1) phase shifts for various coupling
constants (β = α

π
) and c.m. momenta. Since the detailed numerical results were presented in

our recent papers1,7, we discuss only the main features of the numerical results. For the small
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β (e.g., β = 0.1), the light-cone results for̂n = x̂, ŷ and ẑ are almost same whether the self
energy corrections are included or not. Asβ gets larger(e.g. β > 0.3), however, one can see
that the three lightcone results forn̂ = x̂, ŷ, andẑ deviate. The results including the self-energy
corrections are consistently lower than the ones without them, indicating that the self-energy
effects are repulsive. Also, we observe that the phase shifts with the self-energy correction do
not change much as the coupling constant grows. This is in a good agreement with the previous
bound state results that the self-energy effects are as repulsive as relativistic kinematic correc-
tions and retardation effects, and make the binding energy be frozen as the coupling constant
increases6. The similar results were obtained in the generalized theory of the Wick-Cutkosky
model using discretized lightcone quantization11 and in the Yukawa model12. Furthermore, as
we can observe from the numerical results, the deviations amongn̂ = x̂, ŷ, and ẑ are smaller
after the self-energy corrections are included. Such reduction of then̂-dependence is more dra-
matic in the P-wave analyses. Especially, the dramatic falloff1 of the phase shift witĥn = ẑ
in the large c.m. momentum region (k2/m2 > 1) shown forβ = 20 disappears completely by
the self-energy corrections. This indicates a significant restoration of the rotational invariance
in the scattering kernel by adding the self-energy interactions. It shows an example that the
rotation symmetry in the lightcone quantization can be dynamically restored.

4. Summary and Conclusion

Practical computations using the light-cone quantization method require, in general, the
truncation of the higher Fock states. As a consequence, the calculated scattering amplitude in
the truncated Fock-space is not rotationally invariant because the transverse angular momentum
operator whose direction is perpendicular to the direction of the quantization axis in the light-
cone quantization method involves the interaction that changes the particle number. However,
in view of the rotational compactness, the lightcone quantization appears to be most efficient in
solving quantum field theories. The extent of the rotation symmetry breaking can be quantified
by the explicit rotation dependence of the two-body scattering phase shifts. In a recent work7,
we investigated the scattering problem in the light-cone formalism using a simple scalar field
model by extending the lightcone ladder approximation to the lowest order lightcone Tamm-
Dancoff approximation which includes the self-energy corrections and counter-terms. We found
that the self-energy interactions significantly restore the rotation symmetry and remove the dra-
matic falloff of the phase shifts observed1 in the P-wave analysis with the large coupling and
the large momentum. It shows an example that the rotation symmetry in the lightcone quan-
tization can be dynamically restored. Also, we observe that the self-energy effects make the
phase shifts frozen as the coupling constant is increased. This is in a good agreement with the
previous bound state results that the self-energy effects are as repulsive as relativistic kinematic
corrections and retardation effects.
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