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Abstract

The light–cone Hamiltonian of the effective QCD string with quarks is derived from Lorentz
and gauge invariant Green function ofqq̄ system in confining gluonic fields. To incorporate
confinement we start first with the Euclidean dynamics of the system and make use of the min-
imal area law asymptotis of averaged Wilson loop. It leads to the effective action of valence
quarks connected by the frozen string. Minkowski dynamics of this effective model is investi-
gated and different asymptotical regimes are found.

1. Introduction

The question how nonperturbative phenomena like confinement and chiral symmetry break-
ing arise in light cone (l.c.) frame is of primary importance to take the real advantage of light
cone quantization [1] of QCD. In order to make profit of the results elaborated in Euclidean for-
mulation of the theory we start with the consideration of Euclidean Green function ofqq̄ system
where the interaction is described by the averaged Wilson loop. Confinement is included via the
minimal area law asymptotics of Wilson loop which results (after continuation in Minkowski
space) in the Hamiltonian of valence quarks connected by the frozen string.

As well as in our rest frame analysis [2], [3] the Hamiltonian contains explicitly the density
of total momentum fraction carried by the string that eventually leads to existence of different
dynamical regimes of the system.

2. Light cone Hamiltonian of the effective QCD string with quarks

We begin as in [2], [3] with quenched approximation for Green function of spinless quark
and antiquark [4] interacting in Euclidean space

G(xx̄, yȳ) =

+∞∫
0

ds

+∞∫
0

ds̄ e−K−K̄DzDz̄ < W (C) >A (1)

where< W (C) >A is the usual averaged Wilson loop operator along the contour consisting
of zµ, z̄µ, trajectories andK, K̄ are the kinetic terms of quarks
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K =
1

2

1∫
0

dγ
(
m2

1s +
1

s
˙̄z
2
µ

)
, K̄ =

1

2

1∫
0

dγ̄
(
m2

2s̄ +
1

s̄
˙̄z
2
µ

)
(2)

The confinement enters the dynamics via the assumption of the area law for the asymptotics
of the Wilson loop at large distances in Euclidean space (for recent numerical calculations see
[5]) as it follows from the cluster expansion arguments [6]

< W (C) >A≈ exp[−σS] (3)

whereS is the minimal surface for a given contourC.
Our aim is to continue eq. (1) into Minkowski space with light cone variables

z± =
z3 ± z0√

2
, z4 = −iz0, ~z⊥ = (z1, z2) (4)

and define the Hamiltonian through the equation∂G/∂T = −iHT where the evolution param-
eterT is chosen asT = z+ = z̄+.

To take advantage of this frame one is to exploit the fact that creation of massive states from
the vacuum is suppressed on light cone. For the interaction (2) such creation is originated by
the backward motion (in l.c. time) of quarks. Consequently one can separate in a selfconsistent
way the domain ofq(q̄) trajectories with no backtracking in l.c. time and reparametrize eqs.
(2), (3) from proper timesγ, γ̄ to the physical l.c. timesz+, z̄+ which is equivalent [7] to the
following substitution in (2), (3) respectively

K → K ′ =
1

2

∫
dτ

(
µ1(ż

2
⊥ + 2ż−)− m2

1

µ1

)
, K̄ =

1

2

∫
dτ

(
µ2( ˙̄z

2
⊥ + 2˙̄z−)− m2

2

µ2

)
(5)

z+(τ) = z̄+(τ) = τ (6)

As a result one arrives [7] to the following local in l.c. time3D effective action

G =
∫

Dµ1Dµ2Dz⊥Dz̄⊥Dz−Dz̄− exp[iA] (7)

A = K + K̄ − σ
∫

dτ dβ
√

(ẇw′)2 − ẇ2w′2 (8)

where the straight line approximation [2,3,7] for the surfaceSmin is used

wµ(τ, β) = zµ(τ)β + z̄µ(τ)(1− β), ẇµ =
∂wµ

∂τ
, w′

µ =
∂wµ

∂β
(9)

and one is to perform path integration overµ1(τ), µ2(τ) in the same way as overz⊥, z̄⊥ andz−,
z̄−.
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To obtain the Hamiltonian we note first that action (8) contains time derivatives ofwµ in
the interaction term and therefore the string carries a finite fraction of the total and relative
momentum of the system. To incorporate it explicitly let us introduce in the same way as in
ref.[3] the totalRµ and relativerµ coordinates

Rµ = x(τ)zµ(τ) + (1− x(τ))z̄µ(τ) , rµ = zµ(τ)− z̄µ(τ) (10)

where parameterx(τ) will be determined from the condition [3] thaṫRµ is decoupled in the
total action fromṙµ.

We use the formalism of auxiliary fields [8] in order to write the effective action (8) in a
gaussian form which is trasformed in the following Hamiltonian [7]

H =
1

2

m2
1

µ1

+
m2

2

µ2

+
~p2
⊥ −

(~p⊥~r⊥)
r2
⊥

a3

+
((~p⊥~r⊥) + λ(P+r−))2

µ̃r2
⊥

+
∫ σ2

ν
dβ r2

⊥+ (11)

+

∫
νdβ · (P+r−)2

P+(µ1 + µ2)r2
⊥

}

whereν(τ, β) is the auxiliary field which should be integrated out in the full path integral
representation for the Green function and

a3 = µ1(1− x)2 + µ2x
2 +

∫
(β − x)2ν dβ

µ̃ = µ1µ2/(µ1 + µ2), λ = x− µ1/(µ1 + µ2)
(12)

Here we have introduced the total momentum

P+ = p1+ + p2+ = µ1 + µ2 +
∫

ν dβ , ~P⊥ = 0 (13)

and Feynman–Bjorken variablex

x =
p1+

p1+ + p2+

=
µ1 +

∫
βν dβ

µ1 + µ2 +
∫

ν dβ
(14)

which coincides [7] withx(τ) entering eq. (10). From eqs. (13), (14) it follows thatν(τ, β) is
the density of fraction of total momentum carried by the string whileµi(τ) are that of quarks.

One is to express [7]µi with the help of eqs. (13), (14) throughx, P+, ν and then substitute
[2] ν(τ, β) by its extremal valueνext defined by equation

δH

δν

∣∣∣∣∣
νext

= 0 (15)
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It results in Hamiltonian depending only on canonically conjugated pairs{x, (P+r−)},
{~p⊥, ~r⊥} and Weyl ordering enables to construct the operator ofH which will be used to calcu-
late wave functions and formfactors [9].

3. Dynamical regimes of the system on light cone

To illuminate the main features of Hamiltonian (11) let us consider different limiting dynam-
ical regimes originated by the interplay between the quarks and the string degrees of freedom.

The first and the simplest one is the case of heavy quarks with massesm1, m2 �
√

σ where
we have [7] for~p2 � (m1 + m2)

2

H =
M2

2P+

, M ≈ m1 + m2 +
~p2

2m̃
+ σ|~r| (16)

and the following canonically conjugatedpz, rz naturally arise

pz = (m1 + m2) (x−m1/(m1 + m2)) , rz =
(P+r−)

m1 + m2

(17)

In the case of light quarks pure dynamical regimes appear [7] either for stretched alongz
axis or for squeezed in perpendicular plane configurations.

The latter type of configurations corresponding toL − |Lz| � L appear in regimes which
are the direct counterparts of the rest frame ones [2,3]. The transverse linear potential describes
[7] excitations of radial quantum numbernr

H → 1

2P+

(2|~p⊥|+ σ|~r⊥|)2 , nr � L ≈ |Lz| � 1 (18)

so thatM2 → 2πσ(2nr + ∆1) and in the opposite case one obtains [7] in the leading order the
Hamiltonian of transverse rotating string [2,3] with

ν(β) =
P+

M

(
8σL

π

)1/2 1√
1− 4(β − 1/2)2

, L ≈ |Lz| � nr (19)

andM2 → 2πσ(L + ∆2).
The regime of stretched configurations is a specifically l.c. one and we arrive [7] in this

limit L � |Lz| at well known t’Hooft1 + 1 QCD Hamiltonian

H → 1

2P+

(2σ|P+r−|), nr � L � |Lz| � 1 (20)

with M2 → 2πσ[(2nr) + ∆3].
Summarizing the spectrum at least asymptotically has the following simple pattern
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M2 = 2πσ(2nr + L + ∆) (21)

which coincides with that of the rest frame Hamiltonian [2,3].

4. Discussion

To conclude we derive l.c. Hamiltonian of the effective QCD string with quarks wave func-
tions of which simply connected [9] to form factors and structure functions. Due to the noninert
nature of the interaction properly defined Feynman–Bjorken variablex and total momentumP+

involve the contribution from the string. In is important to note that total momentumP+ and
relative distancer− enter the mass squared operatorM2 only via combination (P+r−) which
is canonically conjugated tox. This property violates usual assumption thatP+ is decoupled
from M2. Also we stress thatM2 can not be decomposed into a pure kinetic (usually refered to
quarks) and pure potential (string) parts. It brings about in particular the existence of different
dynamical regimes of the system. The second important consequence of the interplay between
the string and the quarks is that properly defined l.c. orbital momentum will be dependent of
the interaction.

References

1. S.J.Brodsky, H.–C.Pauli, Lectures at the 30-th Schladming Winter school in Particle
Physics, SLAC–PUB–5558 (1991).
2. A.Yu.Dubin, A.B.Kaidalov, Yu.A.Simonov, Yad. Fiz.56, 164 (1993)
A.Yu.Dubin, A.B.Kaidalov, Yu.A.Simonov, Phys. Lett.B323, 41 (1994).
3. E.L.Gubankova, A.Yu.Dubin, Phys. Lett.B334, 180 (1994),
E.L.Gubankova, A.Yu.Dubin, Submitted to Phys. Rev. D, HEP–PH 9408278.
4. Yu.A.Simonov, Nucl.Phys.B307, 512 (1988).
Yu.A.Simonov, Phys. Lett.226, 151 (1989).
5. I.J.Ford et al., Phys. Lett.B208, 286 (1988).
6. Yu.A.Simonov, Yad. Fiz.54, 192 (1951),
H.G.Dosch, Yu.A.Simonov, Phys. Lett.B205, 399 (1988).
7. A.Yu.Dubin, A.B.Kaidalov, Yu.A.Simonov, Yad. Fiz. in press, HEP–PH 9408212,
A.Yu.Dubin, A.B.Kaidalov, Yu.A.Simonov, Submitted to Phys. Lett. B
8. Polyakov A.M. Gauge Fields and strings. Harwood academic publishers 1987.
9. A.H.Mueller, Phys. Rep.73, 237 (1981),
L.V.Gribov, E.M.Levin, M.G.Ryskin, Phys. Rep.100, 1 (1983).
10. G.t’Hoft, Nucl. Phys.B75, 461 (1974).

232


