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Abstract

The emergence of parton model from field theory in the context of light-front current al-
gebra and naive canonical manipulations is reviewed. Shortcomings of the naive canonical
picture, especially concerning renormalization issues are discusssed. In order to illustrate the
novel aspects of the renormalization problem in light-front dynamics, the scaling behaviour of
different components of currents under the dual power counting is stressed. It is noted that the
application of dual power counting to deep inelastic phenomena may provide a simple intuitive
understanding of twist.

1. Introduction

The analysis and the resolution of renormalization problems associated with Hamiltonians is
an important area of study in light-front field theory. Just like the Hamiltonian, matrix elements
of currents or products of currents are also directly related to observables. Thus along with the
study of renormalization problems associated with light-front Hamiltonians we need the study
of renormalization problems associated with light-front currents.

Before we embark on the issues of renormalization of light-front current matrix elements,
however, it may be helpful to recall the canonical structure of light-front currents, their rele-
vance to observables and the inferences from canonical theory1. It is useful to recognise from
a physical point of view the shortcomings of this picture so that we may be guided in studying
the problems of renormalization.

It is worthwhile to remember that one of the motivations for proposing Quantum Chromo-
dynamics (QCD) as the underlying theory of strong interactions was indeed the structure of
light-front current algebra2.

In the following we review1,2 the emergence of parton model from canonical manipula-
tions via light-front current algebra, mention its shortcomings from renormalization point of
view, and briefly indicate how the dual power counting on the light-front may be beneficial in

139



addressing various issues.

2. Fermionic Currents and Canonical Light-Front Commutators

Borrowing from the Lagrangian formalism we may define the vector currentJµ(x) =
ψ̄(x)γµψ(x) whereψ(x) is the four-component Dirac field. (We will ignore the internal fla-
vor symmetry in this discussion).

In light-front variables, not all the four components ofψ are dynamical. It is customary to
define projection operatorsΛ± = 1

4
γ∓γ± whereγ± = γ0 ± γ3. Defineψ± = Λ±ψ. In gauge

theory (QED or QCD), with the choiceA+ = 0, it follows from the equation of motion thatψ−

is constrained. Explicitly,

ψ−(x−, x⊥) =
−i
4

∫
dy−ε(x− − y−)[iα⊥.∂⊥ − gα⊥.A⊥ + γ0m]ψ+(y−, x⊥).

Thus the relation betweenψ− andψ+ is nonlocal and as we shall see the nonlocality has far
reaching consequences.

From the definition of current, we have,

J+ = 2(ψ+)†ψ+, J⊥ = (ψ+)†α⊥ψ− + (ψ−)†α⊥ψ+, J− = 2(ψ−)†ψ−.

Using the canonical commutation relation,{ψ+(x), (ψ+)†(y)}x+=y+ = Λ+δ3(x − y), we get
[J+(x), J+(y)]x+=y+ = 0. To compute[J+(x), J−(y)] we need the equation of constraint and
hence the equation of motion. We have

[J+(x), J−(y)]x+=y+ = ∂+
x

{
− 1

2
ε(x− − y−)δ2(x⊥ − y⊥)ψ̄(x)γ−ψ(y)

}

+∂i
x

{1

2
ε(x− − y−)δ2(x⊥ − y⊥)[ψ̄(x)γiψ(y) + iεijψ̄(x)γjγ5ψ(y)]

}
.

Thus bilocal vector and axial vector currents emerge canonically. It is important to note that
the nonlocality is only in the longitudinal (x−) direction.

For future use define

vµ(x|y) =
1

2
(Jµ(x|y) + Jµ(y|x)), v̄µ(x|y) =

1

2i
(Jµ(x|y)− Jµ(y|x)),

< P |vµ(y|0)|P >= P µV1(y
2, P.y) + yµV2(y

2, P.y),

< P |v̄µ(y|0)|P >= P µV̄1(y
2, P.y) + yµV̄2(y

2, P.y).

Note thatV (y2, P.y) → V (1
2
P+y−) = V (η) sincey2 = 0, andP.y = 1

2
P+y− = η at

y+ = 0, y⊥ = 0.
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3. Scaling Function as Fourier Transform of Bilocal Matrix Element

The hadron tensor relevant for spin-averaged electron-nucleon scattering is given by

W µρ =
1

4π

∫
d4y eiq.y < P |[Jµ(y), Jρ(0)]|P >

= [−gµρ +
qµqρ

q2
]W1 + (P µ − P.qqµ

q2
)(P ρ − P.qqρ

q2
)W2.

Consider forward virtual Compton scattering amplitude

T µρ(P, q) = i
∫
d4y θ(y+) eiq.y < P |[Jµ(y), Jρ(0)]|P > .

We also have

W µρ(P, q) =
1

2π
ImT µρ(P, q).

Write a fixedq2 dispersion relation

T µρ =
∫ dν ′

ν ′ − ν
W µρ where ν = P.q . (1)

Consider Bjorken-Johnson-Low limit of Compton amplitude

Limitq−→∞ T
µρ = − 1

q−

∫
dy−d2y⊥ei( q+y−

2
−q⊥.y⊥) < P |[Jµ(y), Jρ(0)]y+=0|P > .

Using the integral representation for the antisymmetric step function

ε(x−) = − i

π

∫ dq′

q′
e

i
2
q′x−

and taking theq− →∞ of eq. (1), take absorptive part on both sides and compare coefficients.
From "+−" component,

Limitq−→∞ νW2(q
2, ν) = F2(x)

with x = −q2

2ν
and F2(x)

x
= i

2π

∫
dηe−iηxV̄1(η). Thus scaling function is the Fourier transform

of the bilocal matrix element. Just as matrix elements of local currents are measured in elastic
scattering deep inelastiic scattering measures matrix elements of bilocal currents. From "++"
component we getLimitq−→∞W2,WL = 0, whereWL = W1 + (P.q)2

q2 W2.
Making a Fock space expansion for|P >, i.e.,

|P >=
∫
φ(k1)b

†(k1)d
†(P − k1)|0 > +....
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the parton picture with probabilistic interpretation emerges:

F2(x)

x
=

∫
d2k⊥|φ(x, k⊥)|2 + ....

4. Trouble with Canonical Picture: Renormalization Aspects

In the naive canonical manipulations (even though they have lead to an intuitive physical
picture of scaling) renormalization effects are completely ignored. The structure function we
obtained has no dependence on a mass scale whereas in the real world we do need a scale
dependence. Once renormalization effects are taken in to acccount, we encounter divergent
loop integrals when loop momenta also tend to infinity. Thusq− → ∞ limit is valid a priori
only for a cutoff theory. So the question remains whether the intuitive parton based picture still
survives after renormalization effects are taken into account.

5. Dual Scaling Analysis, Light-front Power Counting, Consequences

To start tackling the renormalization problem which is forced upon us from physical consid-
erations, let us begin with light-front canonical reasonings. The starting point of renormaliza-
tion analysis is the study of behaviour of operators under scale transformations. In light-front
dynamics we consider separate scaling analysis3 in the longitudinal (x−) coordinate and trans-
verse (x⊥) coordinate. For the fermion field operators we haveψ+ ∼ 1√

x−
1

x⊥
andψ− ∼

√
x−

(x⊥)2
.

ThusJ+ ∼ 1
x−

1
(x⊥)2

and canonicallyJ+ has a unique scaling behaviour whether or not masses

are present. On the other handJ⊥ ∼ 1
(x⊥)3

andJ− ∼ x−

(x⊥)4
. When masses are present,J⊥ and

J− have no unique transverse scaling behaviour and only dimensional analysis applies in the
transverse coordinate.

First let us recall the consequences for scale breaking which follow from canonical rea-
sonings. In light-front dynamics longitudinal scale transformation corresponds to longitudinal
boost transformation and hence longitudinal scale invariance is a Lorentz symmetry of the the-
ory. Hence canonical reasonings indicate that the longitudinal scale invariance cannot be broken
by masses or renormalization process. This implies that a mass scale can get generated only
through transverse divergences. This inference is corroborated in perturbation theory; for ex-
ample, the standard asymptotic freedom result in light-front QCD arises through transverse
momentum divergences.

Consider deep inelastic process where relevant distance scales are short transverse separa-
tions and medium to large longitudinal separations. The dual power counting is ideally suited
to study this phenomena. The behaviour of bilocal matrix elements for largey− determines
the smallx behaviour of structure functions. On the other hand, power correction to scaling
is determined by the scaling behaviour of operator product of currents under transverse scale
transformations.
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To study power corrections to scaling one can classify operators on the basis of their trans-
verse mass dimension. For example,J+ has transverse mass dimension 2. According to the
terminology of Gell-Mann and Fritzsch+, ⊥, and− components correspond to good, bad and
terrible operators respectively. For good operators we notice that twist and transverse mass
dimension coincide. However, by the same token, bad and terrible operators corresponds to
higher twist! From different considerations similar conclusions have been arrived at before by
parton theorists4.
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