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Abstract

A calculation of the anomalous moment of the electron for large coupling is underway. It is
based on discretized light-cone quantization, Tamm-Dancoff truncation, and sector-dependent
renormalization. Fock states with one electron and as many as two photons are included. The
coupling is kept large to make the effects of two-photon Fock states discernible. Mass renor-
malization is carried out, including a necessarily nonperturbative renormalization for the bare
electron. Results are presented for ranges of numerical parameters withα set to unity and a
photon mass of one-tenth the electron mass.

1. Introduction

A nonperturbative calculation of the anomalous moment of the electron1 is currently in
progress. The intent is to demonstrate that a formalism for nonperturbative calculations can be
constructed and thereby to respond to the challenge by Feynman2 to find a better understanding
of the anomalous moment. In addition, this work provides a (3+1)-dimensional gauge-theoretic
setting in which to test nonperturbative renormalization of the light-cone Hamiltonian. Limi-
tations on numerical accuracy are expected to make nonperturbative effects discernible only at
large coupling.

The work is done in light-front quantization,3 where a Fock-state expansion for the dressed
electron is well defined. A HamiltonianHLC is constructed and the dressed state|p, s〉, with
momentump and spins, is required to be an eigenstate:

HLC|p, s〉 = M2|p, s〉 . (1)

The eigenvalue is equal to the square of the physical electron massme. The state|p, s〉 is
expanded in a Fock basis

|p, s〉 =
∑
n

∫
[dx]n [d2k⊥]n ψ

(n)
ps (x,~k⊥)|n : x,~k⊥〉 , (2)
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with wave functionsψ(n)
p,s . The notation for the integrations is defined by

[dx]n = 4πδ(1 −
n∑

i=1

xi)
n∏

i=1

dxi

4π
√
xi

and [d2k⊥]n = 4π2δ(
n∑

i=1

~k⊥i)
n∏

i=1

d2k⊥i

4π2
, (3)

wherex is the usual longitudinal momentum fraction and~k⊥ the relative transverse momentum.
The solution of (1) yields the light-front wave functions.

The anomalous momentae is computed from the standard form factorF2(q
2) at zero mo-

mentum transfer:ae = F2(0). In the frame whereq = (0, q2
⊥/p

+, ~q⊥ = q1x̂) the form fac-
tor can be computed from the spin-flip matrix element of the plus component of the current:
− q1

2me
F2(q

2) = 1
2p+ 〈p + q, ↑ |J+(0)|p, ↓〉. Brodsky and Drell4 have given a reduction of this

matrix element to a convenient form that depends directly on the wave functions. From this we
have

ae = −2me

∑
j

ej

∑
n

∫
[dx]n [d2k⊥]n ψ

(n)∗
p↑ (x,~k⊥)

∑
i6=j

xi
∂

∂k1i

ψ
(n)
p↓ (x,~k⊥) , (4)

whereej is the fractional charge of the struck constituent.

The numerical calculation is based on discretizations of (1), (2), and (4) that mostly follow
the work on discretized light-cone quantization (DLCQ) by Tang, Brodsky, and Pauli.5 The
Fock space is truncated to include only one electron and at most two photons. The allowed
momentum states must satisfy an invariant-mass cutoff:∑

i

(m2
i + k2

⊥i)/xi ≤ Λ2 . (5)

The photon is given a small massmγ which reduces the errors associated with the numerical
approximations to the integrals in (4). Renormalization of the electron mass is done in a sector-
dependent way;6 this is discussed in the next section. However, coupling renormalization is
not yet included in the numerical calculation. The calculation of results presented here was
done with additional temporary simplifications. Instantaneous fermion couplings are excluded.
This eliminates self-coupling in the topmost|eγγ〉 sector, thereby simplifying the diagonaliza-
tion problem. It also reduces the complexity of the mass renormalization. Periodic boundary
conditions are used for both electron and photon fields, and zero modes are ignored. The tem-
porary selection of periodic boundary conditions for the electron was made to facilitate use of
computer code used for a scalar theory.7

When truncated to include at most one photon in the basis, the calculation yields the Schwinger
result.1 This can be seen analytically in Ref. 4. However, to obtain this result one must take cou-
pling renormalization into account.
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2. Mass and Coupling Renormalization

The sector-dependent mass renormalization is carried out as follows. In the top|eγγ〉 sector
there can be no corrections to the bare mass; therefore, the bare mass is the physical mass. In the
middle|eγ〉 sector, the only corrections come from single loops where one photon is emitted and
absorbed. The requirement imposed is that the|eγ〉 scattering states have the correct threshold.6

The contribution can be computed directly,5 with spectator dependence taken into account both
in application of the cutoffΛ2 and in determination of the available momentum. The bottom
|e〉 sector requires a nonperturbative treatment, which actually drives the method of solution for
the eigenvalue problem.

To formulate the nonperturbative renormalization, we write the Fock-state expansion schemat-
ically as

|p, s〉 = ψ0|e〉 + ~ψ1|eγ〉 + ~ψ2|eγγ〉 . (6)

The eigenvalue problem (1), on elimination of the amplitude vector~ψ2, becomes a coupled set
of two integral equations

m2
0ψ0 +~b† · ~ψ1 = M2ψ0 , ~bψ0 + A~ψ1 = M2 ~ψ1 , (7)

wherem0 is the bare electron mass and~b† andA are integral operators obtained fromHLC. We
now require thatm0 be such thatM2 = m2

e is an eigenvalue, and solve (7) for~ψ1/ψ0 andm2
0.

This approach can be generalized to cases with more Fock sectors.

Renormalization is complicated by the need to separately renormalize the couplings in dif-
ferent terms of the Hamiltonian.∗ Also, the Ward identity that usually guarantees cancellation
of wave function and vertex renormalization does not hold in the truncated Fock space. For
example, with truncation to include at most one photon, theeeγ vertex experiences self-energy
corrections on one leg only and no vertex correction. Thus only a

√
Z2 factor appears, with no

second
√
Z2 and noZ1.9 In general, renormalization should be done from the top two sectors

down to the lowest two. TheZ2 factors can be computed from the bare-electron probability am-
plitudeψ0.10 TheZ1 factors for spin-flip and no-flipeeγ vertices should be obtainable from the
no-flip transition amplitude evaluated near threshold for two photon helicities.† TheZ1 factors
for instantaneous fermion and photon couplings are related to Compton scattering and fermion
scattering, respectively.

3. Numerical Results

Preliminary calculations have been done to examine convergence rates. The results for
truncations to one and two photons are presented in Fig. 1. The numerical parameters are

∗In Yukawa theory this has been used to restore rotational invariance.8

†The spin-flip transition is avoided so that the anomalous moment does not become an input to the calculation.
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the number of transverse pointsN⊥ in the positive and negativex andy directions, and the
resolutionK of the longitudinal momentum. The transverse momentum is divided into units of
Λ/N⊥; the longitudinal momentum fraction into units of1/K.
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Figure 1: The anomalous moment, as a function of the number of transverse pointsN⊥, for
various values of the resolutionK, and invariant-mass cutoffΛ2. The coupling strength is
α = 1.0 and the photon mass isme/10. For (a) and (c) the Fock space is truncated to include
at most one photon, and for (b) and (d), to include at most two photons. The cutoffΛ2 is 10m2

e

for (a) and (b), and20m2
e for (c) and (d).
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4. Future Work

There are several things left to be included as work proceeds. Coupling renormalization has
already been discussed. Also needed are antiperiodic boundary conditions for the electron field
and zero modes11 for the photon field. Instantaneous fermions should be added. Cutoffs other
than the invariant-mass cutoff could be considered; for example, the Hamiltonian itself can be
limited by the change allowed in the invariant mass across any given matrix element.12 Finally,
the Fock basis could be expanded to include an electron-positron pair; this will require photon
mass renormalization and additional coupling renormalization. Clearly, there are still important
challenges to be faced, and there are interesting ways in which to extend the calculation.
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