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The original motivation for applying the “front-form” approach of Dirac [1] to quantum
chromodynamics was that it offered a transparent picture of hadrons in QCD arising from
partonic excitations above a simple vacuum. However, it is now emerging that the “instant
form” vacuum structure for generating spontaneous symmetry breaking is manifested in
the front form in the singular infrared region k+ ≡ (k0 + k3)/

√
2 → 0. Thus confinement-

physics may arise from modes of small or vanishing k+. The subsequent “zero mode
problem”, how to deal with such modes, has impeded progress. Discretised Light Cone
Quantisation (DLCQ) defines a field theory on the light-cone such that it is a priori
infrared regular: “space” is of compact longitudinal (x−) length L and transverse length
L⊥. Bosonic fields are assigned periodic boundary conditions guaranteeing the standard
Euler-Lagrange equations. The compact space leads to discrete Fourier momenta so that

the zero mode of some generic bosonic field ϕ,
◦
ϕ≡ 〈ϕ〉0 ≡

∫ +L
−L dx−ϕ(x−, x⊥)/2L, can be

cleanly extracted from the other modes. At the very least this generates an unambiguous
zero mode problem to be solved.

My early attempts suggest that to tackle the problem in QCD I face two problems from
the outset: nonperturbative gauge-fixing and renormalisation. A class of models generated
by dimensional reduction from higher to 1+1 dimensions avert these two impediments
while still containing some of the structure of the original theory. The following analysis
of zero modes arising in such theories gives a paradigm of how the “zero mode problem”
can be solved in 3+1 QCD. What will emerge is a picture of how, even including zero
modes in a consistent field-theoretic way, something like the original partonic picture of
the infinite momentum frame can appear.

I begin with pure SU(2) glue in 2+1 dimensions which has the advantage of avoiding
complications from the (Fij)

2 term in the Lagrangian. Bold face here means a matrix in
SU(2) colour space. Using the labels α(β) = +,− for light-cone Lorentz indices the La-
grangian density L = −(1/2)Tr(FµνFµν) decomposes into L = −1

2
Tr(FαβFαβ+2Fα⊥Fα⊥).

Dimensional reduction means assuming that all the fields of the problem are independent
of the one transverse dimension: ∂⊥A

µ = 0. In other words, I consider the subsector of
zero modes with respect to the transverse coordinate. This is not even unphysical: in
light-cone field theory, the longest transverse modes could give the largest scale structure
in hadron wavefunctions of the complete theory. A DLCQ treatment ignoring zero modes
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has been given by [2]. Marking the distinction to standard two-dimensional QCD is the
presence still in problem of the transverse gluon component. Identifying it with an ad-
joint scalar field Φ elegantly formulates the problem: Defining the covariant derivative
Dα ≡ ∂α1− ig[Aα, ·] the Lagrangian takes the form of 1+1 SU(2) gauge theory coupled
to scalar adjoint matter:

L = −1

2
Tr(FαβFαβ − 2DαΦDαΦ). (1)

I make the following adjustment of notation: (A+,A−) ≡ (V,A). The equations of
motion are the following

DβF
βα = gJα, with Jα = −i[Φ,DαΦ], and DαDαΦ = 0. (2)

Introducing the matter currents Jα simplifies the formalism enormously.
It is useful to introduce a colour helicity basis for the SU(2) matrices Aµ = τ 3Aµ

3 +
τ+Aµ

++τ−Aµ
−, where τ± ≡ (τ 1±iτ 2)/

√
2 and the τa are 1/2 the respective Pauli matrices.

One can introduce a ‘metric’ such that these colour indices behave like light-cone Lorentz
indices: τ± = τ∓. The off-diagonal components are thus hermitian conjugates of each
other. For the adjoint scalar field this decomposition means breaking the problem into a
Hermitian scalar field ϕ3 and a complex scalar field ϕ−, with ϕ+ = ϕ†−.

Now it is an old story why the light-cone gauge A+ = 0 is not permissible, at least in
the formulation with periodic boundary conditions [3]. The nearest admissible gauge is
∂−A

+ = ∂−V = 0 which leaves intact the zero mode of A+. The residual freedom with
respect to x− independent gauge transformations further permits rotation in colour space
diagonalising the zero mode of V. Thus V = vτ 3. This mode v is essentially related
to the gauge-invariant Wilson loop around compact x− space. I define the dimensionless
quantity z ≡ gvL/π. There remains a trivial Gribov gauge fixing ambiguity: large gauge
transformations which shift z → z +1. We could choose, for example, to work in the first
“fundamental modular region” [4] 0 < z < 1.

In the language of the Dirac constraint procedure this gauge fixing renders “second
class” the corresponding components of the Gauss law constraint equations, meaning one
can implement them in the sense of strong quantum operator equations in the subsequent
quantum theory. Alternately, these are the off-diagonal projections of the equation of
motion, −(D−)2A = gJ+, namely

−(∂−)2A3 = gJ+
3 , −(∂− ± igv)2A± = gJ+

± . (3)

The matter current components in the helicity basis will be given explicitly below. Note
that the zero mode of the first of these equations gives a “first class” constraint, and thus

is only implementable on physical states
◦

J+
3 |phys〉 = 0. This will be further discussed

below.
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Quantisation is canonical. The complex fields ϕ± have conjugate momenta

π± = (∂− ∓ igv)ϕ∓ (4)

with the equal x+ commutators

[ϕ−(x−), π−(y−)] = [ϕ+(x−), π+(y−)] =
i

2
δL(x− − y−). (5)

In particular,
◦
ϕ± have conjugate momenta indicating they are dynamical field variables.

In contrast, ϕ3 has momentum π3 = ∂−ϕ3 so
◦
π3 = 0;

◦
ϕ3 is not an independent field. For

the normal modes of ϕ3 we have the canonical commutator

[ϕ3(x
−), π3(y−)] =

i

2
δ̄L(x− − y−) (6)

where the bar over the delta function denotes the absence of its zero mode piece, 1/2L.
The following mode expansions can thus be employed

ϕ3(x
−) =

a0√
4π

+
1√
4π

∞∑
n=1

(anwne
−iknx− + a†nwne

iknx−) (7)

ϕ−(x−) =
u0√
4π

b0 +
1√
4π

∞∑
n=1

(bnune
−iknx− + d†nvne

iknx−) (8)

with kn = nπ/L the discrete momenta. The commutators [an, a
†
m] = δnm apply for the

hermitian field normal modes and wn = 1/
√

n. For the complex field components the
nonvanishing commutators are: [bn, b

†
m] = [dn, d

†
m] = δm,n, and [b0, b

†
0] = 1. The coefficient

functions are un = 1/
√
|n + z| and vn = 1/

√
|n− z|. The only other dynamical mode

in the theory is the mode v, with conjugate momentum p = 2L∂+v. Their commutator
is [v, p] = i. Its analogue in 1+1 dimensional pure glue coupled to external sources was
recently explored in [3]. For the moment I regard it, or z, as a background field.

With these mode expansions the condition on physical states becomes (after a finite
subtraction of a c-number)

(b†0b0 +
∞∑

n=1

b†nbn −
∞∑

n=1

d†ndn)|phys〉 = 0. (9)

Thus physical states are those with the same number of “dn” particles as “b0” and normal
mode “bn” particles.

Taking the zero mode projection of the diagonal part of DαDαΦ = 0 generates a
constraint equation of the form

〈ϕ+
1

(∂− + igv)
J+
− − ϕ−

1

(∂− − igv)
J+

+ 〉0,s = 0. (10)
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The subscript s indicates that we have to symmetrise operator products due to possi-
bly noncommuting operators, guaranteeing hermiticity. The components of the matter
currents are

J+
3 =

1

i
(ϕ+π− − ϕ−π+)s and J+

+ =
1

i
(ϕ3π+ − ϕ+π3)s (11)

with J+
− = (J+

+ )†. When the mode expansions and the expressions for the currents are
inserted, the constraint has the final form:

∞∑
n=0

u2
n(b†nbna0)s +

∞∑
n=1

v2
n(d†ndna0)s =

−
∞∑

n=1

∞∑
m=0

∞∑
p=1

δp
n+m(a†nb

†
mbp + anbmb†p)[(

wn

um

− um

wn

)u3
p + (

wn

up

+
up

wn

)u3
m]

+
∞∑

n=1

∞∑
m=0

∞∑
p=1

δp
n+m(a†pbmdn + apb

†
md†n)[(

wp

vn

+
vn

wp

)u3
m + (

wp

um

+
um

wp

)v3
n]

−
∞∑

n=1

∞∑
m=1

∞∑
p=1

δp
n+m(a†nd

†
mdp + andmd†p)[(

wn

vm

− vm

wn

)v3
p + (

wn

vp

+
vp

wn

)v3
m]. (12)

We see that, at the very least, the mode a0 generates off-diagonal interactions between
the true partons of the theory.

The normal mode operators bn and dn should give the partonic interpretation to the
theory. The rest need to be “integrated” out. How then can we imagine recovering a
unique ground state with b0, a0 and z modes around?

The b0 mode is the only true zero Fock mode in the problem. It can and does mix with
the Fock vacuum in formally physical states. In the way the theory has been cast, this
mode resembles the QED1+1 fermion “zero mode” of [5]. Computation of the spectrum
there shows it gives a state whose invariant mass rises steeply in the continuum limit as
coupling increases. Similar behaviour here would mean this zero mode, though necessary
for other rich aspects of the physics, does not impede the recovery of a unique ground
state.

The constrained mode a0 of course does not impair vacuum triviality. “Integrating” it
out here means solving the operator valued constraint equation for it and substituting in
the Hamiltonian P−. This will lead to new interactions in the Hamiltonian between the
true partons of the theory. The linear nature of the constraint here means no symmetry
breaking effects can be tied to this mode in this particular theory. How does one go about
solving such a constraint equation? The work of [6] on ϕ4

1+1 essentially has lead the way
for this: a Fock space truncation is a successful nonperturbative approximation scheme.
Thus the technology exists to solve operator constraints like (12) for the matrix elements
of a0.
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The gauge mode z is the real subtlety. One can write the schematically for the com-
plete Hamiltonian P− = −d2/dz2+WFock(z), where W is defined by the Fock sector of the
theory. A tedious computation of 〈0|WFock(z)|0〉 shows it to have an absolute minimum
at z = 1/2. This defines the true vacuum of theory above which one can quantise the
quantum mode z by perturbing about this minimum. This spectrum itself has a char-
acteristic mass gap proportional to L and is superimposed on the Fock space spectrum.
Nonetheless, a unique vacuum is recovered, and it is not that given by z = 0.

The general conclusion is that DLCQ is a method that cleanly identifies the “zero
mode problem” of QCD and enables a solution. Though much concrete computation
needs to be done we can foresee, without brutalising canonical QCD, a picture of rich
excitations built on top of a single ground state emerging.

This work was done in collaboration with H.C. Pauli and S.S. Pinsky and will appear
in a forthcoming publication [7]. I would like to thank the organisers of the workshop
“Theory of Hadrons and Light-front QCD” for support and the stimulating atmosphere
created at Polana Zgorzeliesko. This work was supported by the DFG under Grant no.
DFG Pa 450/1-2.
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