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Abstract

We discuss the calculation of the B → π and D → π form factors based on an expansion
in terms of pion wave functions on the light-cone with increasing twist and QCD sum rule
methods. The results are compared with predictions of conventional QCD sum rules and
other approaches.

1. Introduction

The method of QCD sum rules 1 has proved to be particularly useful in heavy quark
physics, where a small distance scale is provided by the inverse heavy quark mass. In
order to calculate form factors of heavy hadrons one can consider suitable three-point
vacuum correlation functions and apply the operator product expansion in terms of vac-
uum condensates which take into account nonperturbative quark-gluon dynamics . Some
recent calculations along these lines can be found in refs. 2,3. In this report we present
an alternative, more economical method based on an expansion of vacuum-to-pion matrix
elements near the light-cone. This method is used in ref. 4 to calculate the B → π and
D → π form factors. After outlining the calculational procedure we show numerical
results and discuss their sensitivity to various input parameters. We also compare our
predictions with other estimates.

2. Derivation of the sum rules.

For definiteness, we focus on the D → π form factor f+
D entering the matrix element

< π|d̄γµc|D >= 2f+
D (p2)qµ + [f+

D (p2) + f−D (p2)]pµ (1)

with p+q, q and p being the D and π momenta and the momentum transfer, respectively.
The corresponding B → π form factor f+

B can be treated in parallel by obvious formal
replacements. These form factors are measurable in B,D → πlνl semileptonic decays.

Let us consider the matrix element

Fµ(p, q) = i
∫

d4xeipx〈π(q) | T{d̄(x)γµc(x), c̄(0)iγ5u(0)} | 0〉
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= F ((p + q)2, p2)qµ + F̃ ((p + q)2, p2)pµ (2)

between the vacuum and an on-shell pion state. This object is represented diagrammat-
ically in Fig. 1. The pion momentum squared, q2 = m2

π, vanishes in the chiral limit
adopted throughout this discussion. Then, contracting the c-quark fields in (2) and keep-
ing only the lowest order term, i.e. the free c-quark propagator, yields

F ((p + q)2, p2) = i
∫

d4x
∫ d4P

(2π)4
ei(p−P )x

∑
a

φa(x
2, q · x)

P 2 −m2
c

, (3)

where
φa(x

2, q · x) =< π(q) | d̄(x)Γau(0) | 0 > , (4)

Γa denoting certain combinations of Dirac matrices. This approximation corresponds to
Fig. 1a.

If (p+q)2 is taken sufficiently large and negative, and the time-like momentum transfer
squared p2 is far from the kinematical limit, p2 = m2

D, the c-quark propagating between
the points x and 0 is far off-shell. In that case, it is justified to keep only the first few terms
in the expansion of the matrix elements (4) around x2 = 0, that is near the light-cone:

φa(x
2, q · x) =

∑
n

∫ 1

0
duϕn

a(u)exp(iuq · x) (x2)n . (5)

The form of the expansion is dictated by translational invariance. Logarithms in x2 which
may also appear in (5) are disregarded for simplicity. These terms can be consistently
treated by means of QCD perturbation theory. They give rise to normalization scale de-
pendence. Inserting (5) into (3) and integrating over x and P , one obtains, schematically,

F ((p + q)2, p2) =
∑
a

∑
n

∫ 1

0
du

ϕn
a(u)

[m2
c − (p + qu)2]2n

. (6)

It is thus possible to calculate the invariant function F with reasonable accuracy in the
kinematical region of highly virtual c-quarks provided one knows the distribution functions
ϕn

a(u) at least for low values of n. The latter are nothing but the light-cone wave functions
of the pion introduced in the context of hard exclusive processes 5−7.

The leading twist 2 wave function is defined by

< π(q) | d̄(x)γµγ5Pexp{i
∫ 1

0
dα xµA

µ(αx)}u(0) | 0 >= −ifπqµ

∫ 1

0
dueiuq·xϕπ(u) , (7)

where the exponential factor involving the gluon field is necessary for gauge invariance.
The asymptotic form of ϕπ is well known: ϕπ(u) = 6u(1 − u). In our calculation of f+

D

and f+
B we have included quark-antiquark wave functions up to twist four. In addition,

we have also calculated the first-order correction to the free b-quark propagation shown in
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Fig. 1b which involves quark-antiquark-gluon wave functions of twist 3 and four. On the
other hand, the perturbative O(αs) corrections corresponding to inserting gluon exchanges
between quark lines in Fig. 1a have not been evaluated directly but have only been taken
into account in a rough indirect way, as explained below.

In order to extract the desired form factor f+
D from the result on the invariant function

F ((p + q)2, p2) sketched in (6) we employ a QCD sum rule with respect to the D-meson
channel. Writing a dispersion relation in (p + q)2, we approximate the hadronic spectral
function in the D-channel by the pole contribution of the D meson and a continuum
contribution. In accordance with quark-hadron duality, the latter is identified with the
spectral function derived from the QCD representation (6) above the threshold (p+ q)2 =
sc. Formally, subtraction of the continuum then amounts to simply changing the lower
integration boundary in (7) from 0 to ∆ = (m2

c−p2)/(sc−p2). After Borel transformation
one arrives at a sum rule for the product fDf+

D , where fD is the D meson decay constant:

fDf+
D (p2) =

fπm2
c

2m2
D

{ ∫ 1

∆

du

u
exp

[
m2

D

M2
− m2

c − p2(1− u)

uM2

]
Φ2(u,M2, p2)

−
∫ 1

0
udu

∫ 1

0
dα1

∫ 1−α1

0
dα2

Θ(α1 + uα2 −∆)

(α1 + uα2)2

× exp

[
m2

D

M2
− m2

c − p2(1− α1 − uα2)

(α1 + uα2)M2

]
Φ3(u,M2, p2)

}
, (8)

where

Φ2 = ϕπ(u) +
µπ

mc

[
uϕp(u) +

1

6
ϕσ(u)

(
2 +

m2
c + p2

uM2

) ]
+ ... , (9)

Φ3 =
2f3π

fπmc

ϕ3π(α1, 1− α1 − α2, α2)

[
1− m2

c − p2

(α1 + uα2)M2

]
+ ... (10)

Here, ϕp, ϕσ, and ϕ3π represent twist 3 pion wave functions, while the ellipses denote
contributions of higher twist. The contributions of twist 4 are given explicitly in refs. 4,8.
The analogous sum rule for the B → π form factor follows from the above by formally
changing c → b and D → B̄.

3. Numerical evaluation

The numerical values to be substituted for mc, fD and the threshold sc are interrelated
by the QCD sum rule for the two-point correlation function 〈 0 | T{j5(x), j+

5 (0)} | 0 〉,
j5 = c̄iγ5u. This sum rule should be used without O(αs) corrections in order to be
consistent with the neglect of these corrections in the sum rule for fDf+

D given above. A
similar interrelation exists for mb, fB and sb from the analogous correlation function of
b− flavoured currents. For the wave functions we use the parametrization suggested in
ref. 9. Other details on the choice of parameters are given in refs. 4,8.
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The form factor f+
D derived from (8) is plotted in Fig. 2 as a function of Borel

mass squared M2. Numerically, the twist 3 contributions turn out to be more important
than the nonasymptotic corrections to the leading twist 2 wave function. In the range
3 < M2 < 5 GeV2 the corrections due to twist 4 in (8) remain subdominant and,
simultaneously, the contribution from excited and continuum states does not exceed 30%.
Restricting oneself to this interval, one obtains the value f+

D (0) = 0.66 ± 0.03 for the
D → π form factor at zero momentum transfer. The analogous fiducial interval for the
B → π form factor is 8 < M2 < 12 GeV2 yielding f+

B (0) = 0.29± 0.01 .
The maximum momentum transfer p2 to which these sum rules are applicable is es-

timated to be about 1 GeV2 for f+
D and about 15 GeV2 for f+

B . The p2−dependence
of both form factors is plotted in Fig. 3. It is important to investigate the theoretical
uncertainties in these results. Two main sources are the nonasymptotic corrections to
the leading twist wave function ϕπ and to the twist 3 three-particle wave function ϕ3π.
In order to estimate the sensitivity of our results to these corrections we drop them and
recalculate the form factors. As can be seen from Fig. 3, the result changes by less than
10 %.

4. Conclusion

Summarizing our investigations, in Fig. 4 we compare our predictions on f+
D (p2) and

f+
B (p2) with the results of other calculations. Within the uncertainties there is satisfactory

agreement. In particular, we would like to emphasize the coincidence with the result
f+

B (0) = 0.24 ± 0.025 derived from conventional QCD sum rule 2 in which the large-
distance effects are parametrized in terms of vacuum condensates rather than by pion
wave functions on the light-cone. On the other hand, the value f+

D (0) = 0.5±0.1 obtained
in ref. 3 is smaller than ours. Also the p2-dependence of the form factors is rather similar
in the different approaches. Note, however, that in the quark model 10 the momentum
dependence of the form factors is not predicted but simply assumed to be given by a
single pole:

f+(p2) =
f+(0)

1− p2/m2∗
(11)

with m∗ = 2.01 GeV in the case of f+
D and m∗ =5.3 GeV for f+

B as expected in the spirit
of vector dominance. The authors of refs. 2,3 have fitted their calculated shape for f+ to
the form (11) and obtained m∗ = 1.95 ± 0.10 GeV for f+

D and m∗ = 5.2 ± 0.05 GeV for
f+

B . In comparison to that we find a somewhat steeper p2-dependence.
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In conclusion, we emphasize that light-cone sum rules such as the ones exemplified in
this report represent a well defined alternative to the conventional QCD sum rule method.
In this variant, the nonperturbative aspects are described by a set of wave functions on the
light-cone with varying twist and quark-gluon multiplicity. These universal functions can
be studied in a variety of processes involving the π and K meson, or other light mesons.
The main problem to be solved if one wants to fully exploit the light-cone approach is
the reliable determination of the nonasymptotic effects in the wave functions. In this
respect, measurements of hadronic form factors, couplings etc. can provide important
information. A second, mainly technical problem, concerns the higher order perturbative
corrections which are still unknown.

The most important advantage of the light-cone sum rules is the possibility to take
light hadrons on mass-shell from the very beginning. One thus avoids the notorious
model-dependence of extrapolations from Euclidean to physical momenta in light chan-
nels. Furthermore, in many cases the light-cone approach is technically much easier than
a conventional QCD sum rule calculation. Finally, the light-cone method is rather versa-
tile. It can also be profitably employed to calculate heavy-to-light form factors such as
B → ρ and B → K∗, amplitudes of rare decays 11 and hadronic couplings such as D∗Dπ
and B∗Bπ 8 .
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Figure 1: QCD diagrams contributing to the matrix element (2) involving (a) quark-
antiquark light-cone wave functions; (b) three-particle quark-antiquark-gluon wave func-
tions. Solid lines represent quarks, dashed lines gluons, wavy lines are external currents,
and the ovals denote π meson wave functions on the light-cone.
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Figure 2: Form factor f+
D at zero momentum transfer as a function of the Borel mass

squared M2. The arrows indicate the fiducial interval in M2 as described in the text.
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Figure 3: Sensitivity of the heavy-to-light form factors to the nonasymptotic effects in
the light-cone wave functions. The dashed curves show the results for purely asymptotic
wave functions, while the solid curves include nonasymptotic corrections.
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Figure 4: Comparison of our predictions (solid lines) with the form factors calculated from
conventional QCD sum rules 2,3 (dashed curves) and from a quark model 10 (dash-dotted
curves).
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