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Abstract

We discuss some of the relations between covariant perturbation theory and Light-Cone-
time-ordered perturbation theory. We avoid the ill-defined quantization procedure by establish-
ing direct (algebraic) equivalence between terms in different perturbative expansions. Zero-
modes arise from a specific class of Feynman diagrgmrs)—! ambiguities, associated with
fermion spin, can be avoided by regrouping LC time-ordered diagrams.

1. Introduction

As an initial value problem null-plane field theory is ill-defined. The standard initial val-
ues on a light-like surface overdetermine the fielts] give a non-unique evolution. The first
problem can be solved by Dirac quantization which determines the true independent initial
variables. The second problem cannot be solved without restricting the initial (or propagating)
fields. These problems make canonical quantization a risky undertaking. Since covariant pertur-
bation theory is well-established, we wish to compare it with the LC time-ordered perturbation
theory before extending our considerations beyond the boundaries of perturbation theory.

It turns out that in some case we have to rely on analiticity to resolve ambiguities, and we have
to keep in the back of our mind which divergent LC time-ordered diagrams are generated by
the same Feynman diagrams in order to cancel (non-covariant) divergences associated with the
longitudinal momentum.

Details can be found in a forecoming paper.

2. Light-Front ambiguities

In a Hamiltonian formulation we distinguish kinematical variables which characterize our
fields and dynamical operators (Hamiltonians) which govern the evolution of the fields in time.
If we choose a light-like direction as time direction for our Hamiltonian (LC time) this picture
is blurred. The following three examples illustrate this:

e If one regularizegp™)~! or (p~)~! this can be done in different ways. A regularization which
maintains analiticity is useful (the physical amplitude is the boundary of an analytical function
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on a strip near the real axis). If the Lorentz scafais real,p* andp~ are complex conjugate
variables. Therefore in the regularization of the (kinematical) varighte—' the dynamical
variablep~ appears.
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with o(z) = 0(x) — 6(—=z). This is the well-known Mandelstam-Leibbrandt prescription. The
object is singular on the light-front, as can be seen after making a Fourier transformation.
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The null-plane is "glowing": besides a sign-functionzin, the dependence an is singular.
e Loop integrals in Feynman diagrams with constahtmomenta along the loop give rise
to zero-mode contributions. These are the only diagrams where the zero-modes appear. The
problem arises if, fop™ = 0, the poles i~ cross the real axis at infinity.

Fln[pTp~ +ie]] =

rxtax— —ie

B 1 PR im In[Hi|
/dp 2ptp~ — HE] -+ [2ptp~ — HY] o) 2 [Lis[Hf- . Hi]

J=1

3)

One can calculate this expression analyticallyfor> 0 andp™ < 0 separately and take the
limit to real p* only after integration. Tadpole-diagrams are a special case of this type of dia-
grams. Tadpoles are removed from perturbation theory by normal ordering of the Hamiltonian,
zero-modes are in this way related with normal ordening. A likely interpretation of these delta-
like contributions is that the infinite density of the phase sgace ! nearp™ = 0 competes

with the infinite off-shell energyp? + m?)/(2p™). The amplitude calculated in this way is the
same as for a covariant calculation using a Wick-rotation.

¢ In Hamiltonian perturbation theory as well as in Feynman diagrams we have for fermions the
so-called instantaneous interaction: /(2p™). The interpretation of this term is confused, but

it cannot be interpreted as a constraint although it contains kinematical variables only. If one
assumes*/(2p*) as a kinematical operator one can restrict it to the Hilbert-space of physical
states. There it acts as a local operator with the strehgthm).
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Inserting1/(2m) at the places wherg* /(2p™) appear in the perturbative expansion leads to
amplitudes that differ from the original expressions.

3. Equivalence
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A number of algebraic relations allow one to reduce any Feynman diagram to time-ordered
diagrams. The successive application of these formulae reduces any Feynman diagram step by
step to a number of LC time-ordered diagrams.

The application itself is governed by the topology of the generating Feynman diagram and
the longitudinalp™-momenta in the internal lines of the diagram. As the result of causality

a line should always have positige -momentum if it goes forward in time. Positive energy

is related with positives™-momentum of a free state. Completeness tells us that all states are
superpositions of free states, thus this property holds for an arbitrary state.

The direction of each line is fixed in LC time. Only the relatively unconnected vertices: space-
like separated and not connected by a line with has a specific time direction, have to be ordered
with respect to each other. This gives rise to different LC time-ordered diagrams, although less
in number than the time-ordered diagrams obtained in "old-fashioned perturbation theory".

The idea that governs the application of the reduction algorithm is an equal-LC-time surface
that crosses a Feynman diagram. Vertices in the Feynman diagram cross this surface at certain
times, we call the crossing an event. Each event terminates an intermediate state, so we extract
the energy denominator of this state, from the Feynman diagram. Events can occur in different
orders, so each of the possible orders appear at each step of the reduction algorithm, and we end
up with a sum of terms, each representing a specific ordering. The reduction gives us a sum of
products of energy denominators.

If a loop crosses the equal time surface it does so an even number of times; if it goes into the
surface is must come out as well. Now the algorithm has two steps:

B <<
2

¢ 1 A vertex, on each of the lines going into and out of the surface, can cross the surface, giving
rise to one energy denominator and two different time-orderings.
e 2 Two sets of lines going into and out of of the surface might connect and become just one
set of lines in and out of the surface. Then the two reduced parts of LC time-ordered diagrams
contribute to the sum of all relative orderings of both the LC time-ordered parts.

The explicit formulae are lengthy, so we lack space here to write them down. But we can
summarize them in the following way:
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1. Energy integration; for each physical sector, depending’grwe get a determinantal
form for the Feynman diagram:

/dp;prD = Z W<H177Hn) (5)

physical sectors
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where theH’s are the one particle Hamiltonians.

2. Basic step; (step 1 in the figure).

1

W(H17H27H37 tU 7Hn) = ﬁ
- 0

(W(Hs, Hs,---,H,) +W(Hy, Hs,---, Hy,)) (6)

Either the event that ends line 1, with on-shell enegyhappened or the one that ended
the line 2. It yields the energy denominator of the intermediate statg aihd H-.

3. Simultaneous combinations; the product of two ordered parts is the sum of all relative
orderings (step 2 in the figure):
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The H"’s are the composite Hamiltonians containing fiis and theH’’s.

4. Multiple loops are reduced loop by loop, the lines are now composite lines. The Hamil-
tonians in ddV -functions are the sum of one particle Hamiltonians.

4. Fermions

In the case of fermions the Feynman diagram has energy dependence in the numerator of
the integral. Before doing the energy integration this dependence must be removed, since the
numerator must contain only operators on the Hilbert space, and thus can only depend on kine-
matical variables. Technically we are making a Laurent expansion, in the energy, of the propa-
gator:
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H, is the on-shell energy(p? + m?)/(2p™). The second term must be included in the interac-
tion (instantaneous). This leads to two problems: the energy integration is divergent for many
Feynman diagrams, secondly; there seems to appear additional singularities of th%liform:
We can deal with both in a consistent way:

¢ 1 We can make the contour integration symmetric with respect to the origin, then one can sub-
tract the contributions from the semicircles in the contour integration, this leads to the following
regularization of divergent integrals:

/dp’ =0 A /dpp_ 1_ o= mio(«) 9)
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The regularization preserves the linearity of the integral and is independent of the shift in inte-
gration variable (which is to be expected since a "pole" at infinity is subtracted).
This regularization is consistent with the causal formulation.
e 2 Among the LC time-ordered diagrams there are a numbgt @fivergent ones. They con-
tain "one-state-particles"”, these are intermediate states which start at the creation of a fermion
which is annihilated at the end of the same intermediate state. The creation point can approach
the annihilation point, this gives rise to a divergence. But this divergence is cancelled against the
same LC time ordered diagram but with an instantaneous interaction instead of this state. The
only remaining ambiguities are related to the creation or annihilation of a fermion pair where
both lines are instantaneous interactions. But the assoc?fatemgularity lies always inside
a specific physical domain, and does not lead to a divergence. (Principal value regularization
appears natural sincé can be interpreted as phase space, and (@) term would not make
sense in that respect.)

It is hard to check whether these methods for fermions lead to the same answers as the
covariant calculation since both contain at low order overall divergences.
A consistent method should also deal with divergent diagrams.
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