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Abstract

We examine the generalized leading-logarithmic approximation (LLA) equations for com-
pound states of n-reggeized gluons. It is shown that in multi-color QCD, whenNc →∞, these
equations have a sufficient number of conservation laws to be exactly solvable. Holomorphic
factorization of the wave functions is used to reduce the corresponding quantum mechanical
problem to the solution of the one-dimensional Heisenberg model with the spins being the gen-
erators of the M̈obius group of conformal transformations.

1. Introduction

This talk is centered around obtaining the exact solution to a perturbative QCD evolution
equation known as the Bartels-Kwiecinski-Praszalowicz (BKP)-equation1 in the limiting case
where the number of colors of gluons,Nc, is infinite. One may wonder what relevance any
equations of perturbative QCD may have in understanding the low energy confining properties
of the theory. The answer to this question is not well defined. However, what is clear is that
only in the perturbative regime of QCD, we are able to exactly treat gauge and Lorentz invari-
ance. Even then, within this regime one discovers that such a task is nontrivial. Thus the first
lesson one gains from examination of perturbative QCD is experience with nonabelian gauge
calculations that can be tested for their correctness.

That may be a useful reason for those working in low energy QCD to nevertheless study
the high energy regime as a warm-up exercise. However that is not the primary reason for this
talk. The general class of equations that we are considering here are the only known evolution
equations in QCD that exactly respect gauge invariance and have a kinematic regime in which
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they are exactly valid. Although their practical uses are for calculating high energy scattering
amplitudes, it is natural to also examine what properties of these equations and their solutions
correspond to what we believe to be true at low energy.

To start with, let us first introduce the names of the equations to which we are referring
and give some history on their development. The first evolution equation in this class was the
Gribov-Lipatov-Altarelli-Parisi (GLAP) equation2 which was derived in the early 70’s. This
equation is a predecessor to the main equations we want to discuss here. From this group, the
first was the Fadin-Kuraev-Lipatov (FKL)-equation3, which was derived in 1975. This equa-
tion was the initial form of a more contemporary version known as the Balitsky-Fadin-Kuraev-
Lipatov (BFKL)-equation3. The FKL-equation was derived for massive Yang Mills theory with
a massive Higgs particle and for arbitrary SU(N) gauge group. This is an equation for the two-
to-two scattering amplitude in the Regge limit,m2e1/g2 ∼ s � m2 ∼ t, where m is the mass
of the vector boson,

√
s is the center of mass energy and

√
−t is the momentum transfer. We

note that the Regge limit also implies the leading-log-approximation, whereg2 ln(s/t) ∼ 1 and
g2 � 1. To obtain the equation, working in momentum space using s-channel unitarity along
with analyticity, the amplitude was computed to eighth-order. From this the general form could
be deduced into what became the FKL-equation. Only the t=0 solution was obtained in [3].
The solution showed that the amplitude violated the Froissart bound. However it should be
realized that the region where this violation occurs is also beyond the region where the FKL-
approximations are valid.

In 1978 it was verified that there are no infrared divergences in QCD for scattering of col-
orless particles at arbitrary t in the BFKL-equation. In particular this held at t=0, where the
problem is typically most pronounced. The solution for arbitrary t was found in 19864. A rel-
evant point for the present discussion is that the calculation was done in transverse coordinate
representation (or impact parameter space). In this representation it was recognized that the
BFKL-equation had two-dimensional M̈obius invariance.

The shortcoming of the BFKL-equation is that it violates the unitarity bounds. To correct
this, the suggestive approach is to consider diagrams with an arbitrary number of reggeized
gluons. The BFKL-equation only accouts for two reggeized gluons. The equation with N
reggeized gluons was obtained by Bartels and by Kwiecinski and Praszalowicz1. The purpose
of this talk is to examine the solutions of this equation forNc → ∞. What will be achieved
here is a relation of this equation in the above limit, to exactly solvable models. The end result
is a reduction of the problem to a one-dimensional lattice model.

Before turning to the quantitative discussion, let us place into perspective what contact this
development makes with the problem of confinement. We have believed since the early sev-
enties that Yang-Mills theory is plausibly the low-energy limit of an appropriate string theory.
In the high energy limit, one may then ask if any aspect of QCD’s string-like nature manifests.
There is no known reason from general principles to expect this. Nevertheless, in light of the
results we discuss here, we do find a string-like remnant of QCD in this limit.

Examining the issue a little further, we next recall that high energy processes in fact have
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an intrinsic dependence on the low energy properties of QCD. We have known since the 60’s,
that the dominant exchange in a high energy collision at fixed t is the pomeron. From what
little we know about the dynamical make-up of the pomeron, we suspect it is some sort of
collective excitation made of several gluons plus perhaps quarks. Thus to study the low energy
regime of QCD, one way is to focus of particular bound states and try to derive their properties
from QCD. However another option is to study the Regge families of hadrons, such as the
pomeron, and try to calculate their parameters from QCD. We can not offer any reason why
the latter option is better than the former. However, the one evident fact is that we have much
better experimental data about Reggeons than about individual hadrons. Also from the point of
view of light-cone kinematics, the description of Reggeons is more natural than of individual
particles. If one accepts this line of reasoning to its fullest extent, one could imagine calculating
masses of hadrons using Reggeon concepts. At present we do not have sufficient control on the
approximations involved in our evolution equations to justify such calculations. However one
could assume the radius of convergence for our equations is sufficiently large to make some sort
of estimates. We will not discuss this point further in this talk.

2. Evolution Equations

The GLAP equation2,

dni(x)

dξ
= −ωini(x) +

∑
j

∫ 1

x

dx′

x
ωj→i(

x

x′
)nj(x

′) (1)

where,

ξ =
1

c
ln(1 +

α

π
c ln

Q2

µ2
) (2)

and

ωi =
∑
k

∫ 1

0
dxωi→k(x), (3)

determines theQ2-evolution of the parton distributionsni(x), wherex = k+

p+
is the ratio of

the parton to hadron longitudinal momentum in the light-cone frame. The splitting kernels,
ωi→k(

x
x′

), describe the inclusive probabilities of the parton decay into the opening phase space
dξ. Mellin transforming in lnx

x′
gives the anomalous dimension matrixγ(j) for the twist two

operators in QCD. For example in the case of pure gluondynamics,

ng(x) =
∫ σ+i∞

σ−i∞

dj

2πi
(
1

x
)jeξγ(j) (4)

where

γ(j) =
2

j(j − 1)(j + 1)(j + 2)
− 1

12
− ψ(j − 1) + ψ(1) (5)
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andψ(j) = Γ′(j)
Γ(j)

. Note thatγ(j) = γ(1− j)− πctg(πj) andγ(2) = 0 due to the conservation

of the stress tensorTµν . From eq. (4) we obtain that forx→ 0, ng(x) ∼ 1
x
exp(c

√
ξ ln 1

x
). This

implies that total cross-sectionσt(x,Q
2), for γ∗p scattering at large energies

√
s = Q√

x
grows

more rapidly than any power of lns. This is a violation of the Froissart boundσt < c ln2 s.
At small x, for parton distributionsng(x, k⊥) depending on transverse parton momentum

k⊥, one should use the BFKL equation3,

dn(x, k⊥)

dln 1
x

= 2ω(−k2
⊥)n(x, k⊥) +

∫
d2k′⊥K(k⊥, k

′
⊥)n(x, k′⊥) (6)

wheren(x) =
∫
d2k⊥n(x, k⊥) and

ω(−k2
⊥) = − g2

16π3
Nc

∫
d2k′⊥

k2
⊥

(k − k′)2
⊥k

′2
⊥
. (7)

wherek2
⊥ > 0. Note that the gluon Regge trajectoryj(−k2

⊥) is related toω by j(−k2
⊥) =

1 + ω(−k2
⊥). The kernel K for SU(Nc) gauge theory is,

K(k⊥, k
′
⊥) =

g2

4π
Nc

1

(k − k′)2
⊥
. (8)

Observe that the infrared divergences cancel in the right hand side of eq.(6).
The solution of eq. (6) can be written in the form3,

n(x, k⊥) =
1

x

∞∑
m=−∞

eimφ
∫ ∞

−∞
dν(

1

x
)ω(ν,m)k2iν

⊥ cm,ν , (9)

wherecm,ν is determined by the initial conditions forn(x, k⊥) at fixed x,φ = arctg(
kx
⊥

ky
⊥
), and

the eigenvalueω(ν,m) of the corresponding stationary equation is,

ω(ν,m) =
g2

2π2
Nc

∫ 1

0

dy

1− y
[y

−1+|m|
2 cos(ν ln y)− 1] =

g2

2π2
Nc(ψ(1)−Reψ(

1

2
+ iν +

|m|
2

)).(10)

The biggest value ofω is ω(0, 0) = g2

π2Nc ln 2, and therefore from eq. (9) we obtain that
n(x, k⊥) ∼ 1

x
( 1

x
)ω(0,0). This means that the solution of the BFKL-equation also does not agree

with the Froissart bound. For this equation as well as for the GLAP-equation, the reason for this
violation is that the evolution equations were obtained in the leading logarithmic approximation,
where the S-matrix does not satisfy unitarity3.

Thus we find in both cases, the GLAP and BFKL equations, the result is incomplete. As
such we will construct a modified leading logarithmic approximation (LLA) that is compatible
with the Froissart bound.
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3. Partonic Wave Functions

The partonic distributionsni(x, k⊥) are proportional to the imaginary part of the scattering
amplitude at the momentum transfer q=0. It is natural to generalize the evolution equations for
arbitrary momentum transfer. In this case the resulting equations could be considered as equa-
tions for the hadronic wave function. The usual Schrödinger equationEψ = Hψ determines
the mass of the hadron as a function of its spin,m2 = m2(j). To determine j=j(m2), one can
replace this equation by the BFKL equation

2H12ψ = Eψ, (11)

where

E = −16
ωπ2

g2Nc

(12)

andj = 1 + ω is the position of the j-plane singularity of the t-channel partial wave. The high
energy asymptotics of scattering amplitudes are determined by the eigenvalues of equation (11)
asA(s, t) ∼ s1+ω(t). The eigenvaluesω could in general also depend on t=−q2, but due to the
conformal invariance of the BFKL equation3, in LLA this dependence is absent. The operator
H12 on the left hand side of eq. (11) is4,

H12 =
1

|P1|2|P2|2
P ∗1P2 ln |ρ12|2P1P

∗
2 + h.c.+ ln(|P1|2|P2|2)− 4ψ(1), (13)

whereρ12 = ρ1 − ρ2, ρr = xr + iyr, the momentaPr = i ∂
∂ρr

, and h.c means the complex
conjugated expression.

To unitarize the results of the LLA, one must generalize eq.(11) for compound states with
an arbitrary number of gluons. Such a generalization was done in [1]. Here we discuss the
BKP-equation for the largeNc case. Thus we consider the equation,

Hψ = Eψ (14)

with E as given in eq. (12) and where the Hamiltonian H contains only interactions of neigh-
boring particles,

H =
m∑

r=1

Hr,r+1. (15)

The pair HamiltonianHr,r+1 acts on the coordinates r and r+1 of the gluons as given by eq.
(13).

Note that there is also a generalization of the GLAP-equation (1) for matrix elements of
quasipartonic operators of high twist5. This B’F’KL-equation is also simplified in the region of
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largeNc. It takes the form of eqs. (14) and (15) with the pair kernel describing the evolution
of twist two operators. The eigenvalues of this equation are proportional to the anomalous
dimensions of the quasi-partonic operators whose contributions are important in the small-x
region. We will not discuss this equation any further below.

4. The BKP-Equation in the LargeNc Limit

From eqs. (13) and (14) one can derive the holomorphic separability of the Hamiltonian,
which is a central property for our present discussion. Thus we can write

H = H +H∗, (16)

whereH andH∗ act on the holomorphic (ρj) and antiholomorphic (ρ∗j ) coordinates respectively
with

H =
n∑

j=1

Hj,j+1, (17)

and similarly forH∗. The pair holomorphic Hamiltonian is,

Hj,j+1 =
1

Pj

ln(ρj,j+1)Pj +
1

Pj+1

ln(ρj,j+1)Pj+1 + ln(Pj, Pj+1)− 2ψ(1). (18)

An important outcome of holomorphic separability is that the solution of eq. (14) separates as6,

ψ(~ρ1, ~ρ2, · · · , ~ρn) =
∑

ψ(ρ1, ρ2, · · · , ρn)ψ̃(ρ∗1, ρ
∗
2, · · · , ρ∗n) (19)

where the sum is over all degenerate solutions of the Schrödinger equation in the holomorphic
and antiholomorphic subspaces,

E = ε+ ε̃, Hψ = εψ,H∗ψ = ε̃ψ (20)

The pair HamiltonianHj,j+1 in eq. (18) can also be written in the forms6,

Hj,j+1 = ln(ρ2
j,j+1Pj) + ln(ρ2

j,j+1Pj+1)− 2 ln ρj,j+1 − 2ψ(1) (21)

= ρj,j+1 ln(PjPj+1)ρ
−1
j,j+1 + 2 ln ρj,j+1 − 2ψ(1) (22)

From the above representations, it is obvious that H is invariant under the Möbius transformations4,

ρj →
aρj + b

cρj + d
, (23)

where a,b,c, and d are arbitrary complex parameters. The generators of these transformations
are

~M =
n∑

i=1

~Mi, M
z
i = ρi∂i M

−
i = ∂i M

+
i = −ρ2

i∂i (24)
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One can also obtain the transposed HamiltonianHT from H by two different similarity trans-
formations,

HT = P1P2 · · ·PnHP
−1
1 P−1

2 · · ·P−1
n (25)

= ρ−1
12 ρ

−1
23 · · · ρ−1

n1Hρ12ρ23 · · · ρn1. (26)

This implies that there are two different normalization conditions for the solutions of eq. (14)
which are compatible with eqs. (25) and (26). These are,

||ψ1||2 =
∫
ψ∗

n∏
r=1

dρrPr ψ (27)

||ψ2||2 =
∫
ψ∗

n∏
r=1

dρi

ρr,r+1

ψ. (28)

From eqs. (25) and (26) we conclude that there is a nontrivial differential operator6,

A = ρ12ρ23 · · · ρn1P1P2 · · ·Pn, (29)

which commutes with H,

[A,H] = 0 (30)

Below we will show that there are an infinite number of operators that commute with H.

5. Equivalence Between Multi-color QCD at High Energies and an Exactly Solvable
Spin Model

We can write down the operator A in eq.(29) as follows7,

A = intr(M1M2 · · ·Mn), (31)

whereMi is the 2*2 matrix constructed from the M̈obius generatorsMi in eq. (24),

Mi =

(
ρi∂i ∂i

−ρ2
i∂i −ρi∂i

)
(32)

In representation (31) the operator A can be interpreted as a transfer matrix for a lattice theory.
On the links in the "space" direction (the auxiliary subspace) there are discrete variablesξ
taking valuesξ = ±1 and on the links in the "time" direction (the quantum subspace), there are
continuous variablesρ.

To solve eq (20) exactly, one should find the one parameter family of integrals of motion,
including the operator A of eq.(31). It turns out7 that such a family is the following,

t(θ) = tr(L1(θ)L2(θ) · · ·Ln(θ)), (33)
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where,

Li(θ) =

(
θ + ρi∂i ∂i

−ρ2
i∂i θ − ρi∂i

)
(34)

is the so called L-operator. Let us also introduce the monodromy matrix,

T (θ) = L1(θ)L2(θ) · · ·Ln(θ). (35)

One can verify8 that it satisfies the following Yang-Baxter equation:

T i1i1′ (u)T i2i2′ (v)(u− v − P12) = (u− v + P12)T
i2i2′ (v)T i1i1′ (u), (36)

whereP12 is the operator that interchanges the matrix spin indices (the right and left ones
correspondingly). By taking the traces over indicesir andir′, we obtain:

t(u)t(v) = t(v)t(u), (37)

so that the operators defined in eq. (33) commute with each other.
Now we want to prove that the operatort(θ) of eq. (33) also commute with the holomorphic

Hamiltonian in eq. (20). For this purpose the idea we use is9 that the spin model with the
transfer matrix (33) can be considered as a modification of the Heisenberg model. However,
instead of the fundamental representation of the group SU(2) with spin S=1

2
, here we have the

infinite-dimensional representation of the Möebious group SU(1,1) with spin S=0 . For this new
spin model, there is an unique Hamiltonian describing the interaction of nearest spins for which
the model is exactly solvable. The general method of obtaining this Hamiltonian was developed
many years ago8. Briefly, to do this one should construct the operatorL12(θ), which satisfies
the trilinear Yang-Baxter equation for the case when both the quantum and auxiliary subspaces
are one-dimensional (ρ1 andρ2). Then for this new spin model, the Hamiltonian is given by eq.
(17), whereH1,2 can be calculated from the small-θ expansion ofL1,2(θ):

L1,2(θ) = P 1,2(1 + θH1,2 + · · ·). (38)

HereP 1,2 is the operator which interchanges the coordinatesρ1 andρ2. According to the general
theory8, L1,2(θ) should also satisfy the linear Yang-Baxter equation:

L1(u)L2(v)L
1,2(v − u) = L1,2(v − u)L2(v)L1(u) (39)

In this equation, theLi operators are 2*2 matrices (34). From eq. (39) we find3 thatH1,2

depends only on the Casimir operator of the conformal group. This can be written in the form:

( ~M1 + ~M2)
2 = m̂(m̂− 1) (40)
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We also find thatH1,2 satisfies the equation

[H12(m̂)−H12(m̂− 1)](m̂− 1) = 2, (41)

for which the solution is

H1,2 = ψ(m̂) + ψ(1− m̂)− 2ψ(1) (42)

up to an additional term∆(m̂), which is a periodic function (ie.∆(m̂) = ∆(m̂ + 1)). Using
eq. (10), we can verify that the expression forH1,2 determined by eqs. (18) and (42) coincide.
Thus, according to the general theory in [8], the Hamiltonian (17) commutes with all operators
of the typet(θ) in eq.(33).

6. Conclusion

We have shown above that in the generalized leading logarithmic approximation, the equa-
tion for the compound states of n-reggeized gluons is significantly simplified in the largeNc-
limit. In particular, it is conformally invariant and the Hamiltonian has the remarkable property
of holomorphic separability. In addition, the equations for holomorphic and antiholomorphic
wave functions have a sufficient number of conservation laws to be exactly solvable. This is
related with the fact that the Hamiltonians in the corresponding subspaces coincide with the lo-
cal Hamiltonians of the exactly solvable Heisenberg model for spin S=0. As such, the quantum
mechanical problem posed in eq. (20) is reduced to the pure algebraic one of constructing the
representations of the Yang-Baxter algebra in eq. (36). The simple method of finding these
representations was developed in [10]. It is based on the solution of the Baxter equation

Λ(λ)Q(λ) = (λ+ i)nQ(λ+ i) + (λ− i)nQ(λ− i), (43)

where n is the number of reggeized gluons,Λ(λ) are the eigenvalues of the operatort(iλ) in eq.
(33) and the function Q is the integer function in the complexλ- plane. The eigenvalueΛ(λ)
has the polynomial expansion inλ,

Λ(λ) = 2λn − j(j + 1)λn−2 + · · ·+ A, (44)

where n is the number of reggeized gluons, m=j-1 is the conformal weight of the corresponding
composite operator, j(j+1) is the eigenvalue of the Casimir operator(

∑
i
~Mi)

2, and A is the
eigenvalue of the integral of motion A. The eigenvalues and eigenfunctions of eqs. (20) can be
expressed throughQ(λ). For n=2 eq. (43) is solved in terms of hypergeometric functions. For
n=3 the solution of eq. (43) for integer j can be expanded as a linear combination of its solutions
Q

(2)
j for n=2 as,

Q(λ) =
j∑

k=1

dk(A)Q
(2)
k (λ), (45)
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where the parameter A is determined in eq.(44) anddk(A) are orthogonal polynomials satisfying
the recurrence relations,

Adk(A) =
k(k + 1)

2k + 1
(k − j)(k + j + 1)(dk+1(A) + dk−1(A)). (46)

The quantization condition for the eigenvalues A is,

dj(A) = 0. (47)

It is possible to express the energiesε in eq. (20) directly in terms ofdk(A) , when eq.(46) is
analytically continued to complex j. The solution of eq. (46) would give a possibility to find the
Odderon intercept11.
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