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Abstract

We describe a nonperturbative calculation of the spectrum of SU(2) Yang-Mills theory based
on a Hamiltonian formulation. Our approach exploits gauge invariant variables similar to those
used in nuclear physics to describe collective motion in nuclei.

1. Introduction

Our understanding of the low energy behaviour of QCD depends crucially on the devel-
opment of nonperturbative methods. The variational approach in the Schrödinger picture has
been successfull in scalar field theory. However, it remains difficult to apply for a nonabelian
gauge theory because of the requirement to satisfy the Gauss law constraint. The necessity to
maintain gauge invariance is an essential ingredient in practical calculations. In order to study
the configurations which contribute significantly to the nonperturbative ground state, we have
to take into account the gauge invariant functional measure [1,2]. The nontrivial gauge invari-
ant volume element will induce a centrifugal effect and the boundary conditions on the wave
functional will differ drastically from those in perturbative calculations .

In this presentation, I will investigate the properties of the ground state in SU(2) gauge the-
ory and give predictions for the lowest glueball states [3]. The polar representation for the SU(2)
vector potential [4] allows to separate explicitly the gauge degrees of freedom. More appropri-
ate gauge invariant variablesρ(x), β(x), γ(x) are introduced. These variables describe the field
configuration in an intrinsic frame and they can be interpreted as "density" and "deformation"
variables. They are analogous to the collective variables introduced by Bohr and Mottelson to
described the dynamics of deformed nuclei [5]. In these gauge invariant variables, the hamilto-
nian becomes non local. However, a derivative expansion (or strong coupling expansion) valid
in the nonperturbative domain and for slowly-varying fields allows one to write expliciltly the
first few terms of an effective hamiltonian. One can thus obtain approximate solutions for the
dynamics which are gauge invariant.

2. The polar representation
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In the hamiltonian formalism, we choose the temporal gaugeAa
0 = 0. The hamiltonian

reads :

H =
1

2

∫
d3x tr

(
E2 + B2

)
. (1)

For the SU(2) color group, the vector potentialAia (where i is a space index and a is a color
index ) is a3× 3 matrix. The polar representation is given by [4] :

Aia = finλnhna −
1

2g
hkb∂ihkcεabc , (2)

whereλn, n = 1, 2, 3 are three numbers,̂f(θi) andĥ(φa) are orthogonal matrices parametrized
by two sets of three Euler anglesθi andφa andg is the bare coupling constant. The matrixf̂
describes a rotation in ordinary space and the matrixĥ a rotation in color space. In general,
λn, θi andφa are space-dependent. Under a local gauge transformation, the matrixĥ is simply
rotated whilef̂ andλn remain unchanged. Therefore, among the nine variablesAia, six gauge
invariant variablesλn andθi are explicitly separated from the three gauge degrees of freedom
φa. The functional integration measure becomes∏

i,a

DAa
i (x) =

∏
n>m

∣∣∣λ2
n(x)− λ2

m(x)
∣∣∣ ∏

p

Dλp(x) df̂ dĥ . (3)

In terms of the new variablesλn, θi, φa, the Gauss law operator becomes a local operator. The
wave functional for a color singlet state depends only on the six gauge invariant variables :
Ψ(λn(x), θi(x)).

In terms of the new gauge invariant variables, the hamiltonian becomes non local. However,
we can use a derivative expansion to write explicitly the first few terms. In the following,
we will consider only the lowest order in1/g2, which corresponds also to the constant field
approximation.

3. The gauge invariant collective coordinatesρ(x), β(x), γ(x)

We introduce now three gauge invariant variablesρ, β, γ defined as :

ρ2 = λ2
1 + λ2

2 + λ2
3 , (4)

λ2
2 − λ2

1 =
2√
3
ρ2β sin γ , (5)

2λ2
3 −

(
λ2

1 + λ2
2

)
= 2ρ2β cos γ , (6)

where0 < β < 1 and, from symmetry properties, we can restrict the angleγ between 0 and
π/3. The range of variation ofβ andγ is also restricted tocos

(
γ + 2π

3

)
≥ − 1

2β
to make the

threeλ2
n positive. The variableρ has the dimension of1/L.
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The vibrational part of the wave function ( i. e. the part of the wave function which is
independent of the three Euler anglesθi) is a function of the three gauge invariant collective
coordinatesρ, β, γ : Ψ (ρ, β, γ). In theβ, γ plane, the axisβ = 0 corresponds to a "spherical"
field configuration :λ1 = λ2 = λ3. The axisγ = 0 corresponds to an "axial symmetric" field
configuration. An arbitrary point in theβ, γ plane corresponds to a "triaxial" field configura-
tion. We will show thatρ, β andγ are convenient coordinates to perform practical calculations.
Furthermore, they give a physical insight in the structure of the vacuum state and the lowest
excited states.

The expression for the volume element of the vibrational coordinates is given by :

dτ =
1

9
ρ8 β4 | sin 3γ|(

1
3
− β2 + 2

3
β3 cos 3γ

)1/2
dρ dβ dγ . (7)

2. Strong coupling expansion for the0+ state

In the constant field approximation (or in the strong coupling approximation), we can write
explicitly the SU(2) hamiltonian in terms of the gauge invariant variablesρ, β, γ and the Euler
anglesθi :

H = Tvib + V + Trot . (8)

The vibrational energyTvib is given by

Tvib = − 1

2L3

{
1

ρ8

∂

∂ρ

(
ρ8 ∂

∂ρ

)
+

1

ρ2
F (β, γ)

}
, (9)

whereF (β, γ) is a differential operator in theβ, γ variables. We have introduced a length L,
the total volume beingL3. Trot is the rotational kinetic energy. The potential energyB2/2 is
equal to :

V = L3 g2

6
ρ4
(
1− β2

)
. (10)

In order to work out approximate solutions of the collective Schrödinger equation, we will per-
form an average with respect to the deformation variablesβ, γ, taking into account the nontrivial
gauge invariant volume element (7). This corresponds to the assumption that theβ andγ vibra-
tions are stiffer than theρ vibration. We will subsequently use a semiclassical approximation to
describe theρ vibration : we look for the minimum of theρ−dependent effective potential and
calculate small vibrations around this point.

In the following we will consider only the zero angular momentum states of positive parity.
In reference [3], we describe also the lowest0− and2+ states.

For the0+ states, we introduce the following transformation :Ψ̃(ρ, β, γ) = ρ4 Ψ(ρ, β, γ).
The advantage of this transformation is that the wave functionΨ̃ is now normalized according
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to a measure flat in theρ direction. The new kinetic energy in theρ variable is equal tõTρ =

− 1
2L3

∂2

∂ρ2 which makes it adequate to perform a semiclassical calculation of the ground state
energy. The average over the variablesβ, γ with respect to the measure (??) gives〈1− β2〉0+ =
6
11

and <β3 cos 3γ>
<β3>

� 1, which indicates a large asymmetry. We end up with aρ−dependent
effective potential :

〈V0+〉 = g2L3ρ4 1

11
+

6

L3ρ2
. (11)

According to our semiclassical strategy we first look for the minimum of〈V0+〉. It corresponds
to

L2ρ̄2
0+ = g−2/3 (33)1/3 = g−2/3 3.2 , (12)

which leads to a magnetic energyL4B2 = g2/3 1.87. In our approach, the vacuum is thus
described as a strongly deformed minimum withβ ' 1/

√
2 and a nonvanishing value of̄ρ2 or

B2. Its wave function is of the formρ−4 exp(−L3 ωρ(ρ− ρ̄)2). This minimum is not optimally
described by a perturbative approach which starts from a state located arroundB2 = 0.

The frequency of theρ vibration around the minimum (12) is equal to :ωρ = g2/3 2.64.
The0+ sector is described in this harmonic approximation asρ-vibrational states. In the strong
coupling approximation, the energies are proportional tog2/3. For the ground state energy, we
obtain the value :

E0 =
g2/3

L
4.13 . (13)

For the lowest0+ excited state, we find :E(0+) = 6.77 (all the masses are in unit ofg2/3/L).
The difference between the ground state energy and the first excited0+ energy is the mass of
the lightest glueball :M(0+) = 2.64.

2. Discussion and Perspectives

The great advantage of our approach is that it provides simple and transparent gauge invari-
ant wave functions describing the ground state and the lowest excited states in SU(2) Yang Mills
theory. The gauge invariant variables we have introduced allow an attractive interpretation of
the spectrum in terms of vibrational and rotational states.

The results̄ρ2 6= 0 andB2 6= 0 at the minimum suggest that a perturbative approach arround
ρ̄ = 0 is not optimal. We have found a strongly deformed ground state with an energy (in units of
g2/3/L) : E0 = 4.13. For the lowest0+ state, our result is (in units ofg2/3/L) : E(0+) = 6.77.
For the lowest0− and2+ states, we obtain [3] :E(0−) = 9.52, E(2+) = 8.13, which leads to
the following dimensionless ratios :M(0−)/M(0+) = 2.04 andM(2+)/M(0+) = 1.51.

These results are to be compared to those of the authors of [6,7,8] who have performed a
perturbative calculation for theSU(2) gauge theory in a finite volume. Our Hamiltonian in
the constant field limit agrees with Lüsher effective hamiltonian in lowest order [6]. However,
whereas the authors of references [6,7,8] perform at this stage an exact diagonalization using a
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large polynomial basis adapted to describe the potential energy, we include in contrast the dy-
namical effects arising from the coordinate dependance of the kinetic energy. This dependance
is a consequence of the fact that our method takes into account the nontrivial gauge invariant
measure. This is a nonperturbative effect. The results of [7] for the ground state energy and
the energies of the lowest0+,0− and2+ excited states are the following (in unit ofg2/3/L) :
E0 = 4.116, E(0+) = 6.386, E(0−) = 8.786, E(2+) = 6.01, which leads to the following
ratios :M(0−)/M(0+) = 2.057 andM(2+)/M(0+) = 0.834. We therefore obtain a excellent
agreement for the ground state energy. Our results are also very good for the lowest0+ and0−

excited states. For the2+ state, our result should be improved by calculating more accurately
the average over theβ − γ part of our wave function.

Let us finish with some remarks about the derivative expansion. This is an expansion in
powers of1/g2. It is expected to be valid when the derivatives of gauge invariant quantities are

small compared to some scale, which is set byB2, for instance
(
~∇ρ
)2

/B2 � 1. In lowest
order in the derivative expansion, the wavefunctional reduces to a function of gauge invariant
quantities constant in space. The next step is to investigate the coupling due to gradient terms
and its effect on the vacuum state properties and the glueball spectrum.
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