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Abstract

The mechanism by which the physical vacuum can be different from the perturbative vac-
uum in the light-cone representation is described and illustrated.

In this talk I shall review the mechanism by which the physical vacuum in an interacting
theory becomes a state other than the light-cone perturbative vacuum. Vacuum structure in
the light-cone representation is always associated with zero modes but there are two distinctly
different cases. In one case the vacuum remains the physical vacuum but some field gains
a constrained zero mode due to the interaction and that zero mode generates a nonzero, and
possibly symmetry breaking, V.E.V. for an operator which does not have one in free theory.
Such effects have been discussed at these meetings before, especially by Robertson1, Werner
et al.2 and Pinsky et al.3; I shall not discuss that type of vacuum structure in this talk. I shall
discuss the case where the interacting vacuum is a different state than the perturbative vacuum.
That effect must occur for theories with degenerate vacua, such as the Schwinger model, and
requires the presence of unconstrained zero modes.

I shall first review the argument that the physical vacuum is the perturbative vacuum in the
light-cone representation even for interacting theories, and review the mechanism by which this
argument can fail. I shall then go quickly through the examples of free theory and the Schwinger
model. I have spoken on these cases before and the details have been published4,5. I shall then
apply the same methods to the case of masslessQCD2. Finally I shall speculate briefly on
QCD4.

The argument that the physical vacuum is the perturbative vacuum in the light-cone repre-
sentation is as follows: the operator,P+ has the same form in an interacting theory as it does
in free theory, that is,P+ = P+

FREE; the physical vacuum must be an eigenstate ofP+ with
eigenvalue 0; for theories which can be specified with quantization conditions onx+ = 0 the
only such state is the perturbative vacuum.

I want to give two arguments thatP+ = P+
FREE since they relate to later things. The first is

simply to calculate the answer. We integrate:

P+ =
1

2

∫
T++dx−
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where,

T++ =
∑
φ

∂φ

∂x+

∂L
∂(∂+φ)

− g++L

Sinceg++ is zero this expression does not depend on the interaction for nonderivative coupling.
I shall refer to this argument as the algebraic argument.

Another argument thatP+ = P+
FREE, in some ways more instructive for our later work,

makes use of the fact thatP+ is the generator of translations within our initial value surface,
x+ = 0. That is:

∂−φ =
i

2
[P+, φ]

Since we initialize our fields to be isomorphic to free fields on the initial value surface,P+
FREE

will correctly generate these translations for all fields initialized onx+ = 0. If we have a well
posed initial value problem, and thus a complete set of fields, the only operator we can mix with
P+

FREE is a multiple of the identity which would have no effect on the dynamics.

The flaw in this argument is that in the presence of massless fields one cannot formulate a
proper initial value problem with initial values onx+ = 0. One must also specify certain zero
modes—functions ofx+. Since these are true degrees of freedom they commute with the fields
specified onx+ = 0 and thus can mix withP+ without contradicting the Heisenberg equations.
One might ask about the algebraic argument; I shall return to that question presently.

To be definite let us consider the case of a massless Fermi field in1+1 dimensions. We can
initialize the fieldψ+ onx+ = 0:

ψ+(0, x−) =
1√
2L

∞∑
n=1

b(n)e−ik−(n)x− + d∗(n)eik−(n)x−

The fieldψ− cannot be initialized onx+ = 0 and thus furnishes the zero modes discussed
above:

ψ−(x+, 0) =
1√
2L

∞∑
n=1

β(n)e−ik+(n)x+

+ δ∗(n)eik+(n)x+

Here we see that any functional ofψ− could mix withP+ and there would be no contradiction
with the Heisenberg equation, that is, if:

P+ = P+
FREE + F(ψ−)

then still:

∂−ψ+ =
i

2
[P+, ψ+]

While such mixing would not contradict this Heisenberg equation it would contradict the full
dynamics in free theory so in free theory theψ− modes do not mix withP+.
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In the Schwinger model they do. We shall work in the gauge∂−A
+ = 0 and find that the

equations of motion are:
∂2A−

∂x−2
= −1

2
J ′

+

−∂
2A+

∂x+2
+

∂2A−

∂x+∂x−
=

1

2
J ′
−

The prime on theJ ’s reflects the need to subtract an overall zero mode fromJ0 before coupling
the current to the Maxwell field. We define gauge invariant products of Fermi fields as:

:ψ∗+(x)ψ+(x): ≡ lim
ε−→0

(
e−ie

∫ x+ε−

x
A

(−)
− dx−ψ∗+(x+ ε−)ψ+(x)e−ie

∫ x+ε−

x
A

(+)
− dx− − V.E.V.

)

:ψ∗−(x)ψ−(x): ≡ lim
ε+→0

(
e−ie

∫ x+ε+

x
A

(−)
+ dx+

ψ∗−(x+ ε+)ψ−(x)e−ie
∫ x+ε+

x
A

(+)
+ dx+ − V.E.V.

)
From which we calculate the zero modes of the currents to be:

J+′(0) =
1

2L
Q+ −

e2

2π
A+ − 1

2

1

2L
Q+ +

1

2

e2

2π
A+ − 1

2L
Q− +

1

2

e2

2π
A−(0)

J−′(0) =
1

2L
Q− −

e2

2π
A−(0)− 1

2

1

2L
Q− +

1

2

e2

2π
A−(0)− 1

2L
Q+ +

1

2

e2

2π
A+ = −J+′(0)

Which in turn allows us to solve for the zero modes of the gauge fields:

A+ = − 1

Lm2
Q−

A−(0) = − 1

Lm2
Q+

To findP+ we must integrate the density:

T++ = 2i lim
ε−→0

(
e−ie

∫ x+ε−

x
A

(−)
− dx−ψ∗+(x+ ε−)∂−ψ+(x)e−ie

∫ x+ε−

x
A

(+)
− dx− − C.C.− V.E.V.

)

It is here that we see that the algebraic argument thatP+ is trivial has failed. The effect is
precisely like an anomaly: we have a singular operator product and we find that not all properties
of the classical product can be maintained in the quantum theory; here we must give up gauge
invariance or the purely kinematical nature ofP+. ForP+ we get:

P+ =
1

2

∫ L

−L
:2i
(
ψ∗+∂−ψ+ − ∂−ψ

∗
+ψ+

)
:dx− = P+

FREE −
1

4Lm2
Q2
−
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if we define a set of special states,|M,N〉, as:

|M,N〉 = δ∗
(
M
)
. . . δ∗

(
1
)
d∗
(
N
)
. . . d∗

(
1
)
|0〉 (M > 0, N > 0)

|M,N〉 = β∗
(
M
)
. . . β∗

(
1
)
d∗
(
N
)
. . . d∗

(
1
)
|0〉 (M < 0, N > 0)

|M,N〉 = δ∗
(
M
)
. . . δ∗

(
1
)
b∗
(
N
)
. . . b∗

(
1
)
|0〉 (M > 0, N < 0)

|M,N〉 = β∗
(
M
)
. . . β∗

(
1
)
b∗
(
N
)
. . . b∗

(
1
)
|0〉 (M < 0, N < 0)

we find that:
P+|M,N〉 = 0

ForM = −N these states are in the physical subspace and form the degenerate ground states
of the Schwinger model. To form aθ-state we take:

|θ〉 =
∑

eiMθ|M,−M〉

The point is not just that degenerate ground states can be accommodated within the light-
cone representation but that there is a limited number of ways that that can occur. That fact
leads, in the case of the Schwinger model, to the fact that the ground states are much simpler in
the light-cone representation than they are in the equal-time representation—simpler to express
and simpler to find. It also suggests that the light-cone representation may be useful in the
analysis of vacuum structure for more complicated theories; the number of operators which can
mix with P+ grows rather slowly with the dimension of space-time and the vacuum structure is
controlled substantially byP+.

Let us now apply these same considerations toQCD2 with color groupSU(2) and quarks
in the fundamental representation. We initialize the fields as before:

ψi
+(0, x−) =

1√
2L

∞∑
n=1

bi(n)e−ik−(n)x− + di∗(n)eik−(n)x−

ψi
−(x+, 0) =

1√
2L

∞∑
n=1

βi(n)e−ik+(n)x+

+ δi∗(n)eik+(n)x+

where thei’s are color indices. Gauge invariant currents are given by, for instance:

:ψ∗+(x)T aψ+(x): ≡ lim
ε−→0

(
e−ie

∫ x+ε−

x
A

b(−)
− T b

jkdx−ψi∗
+ (x+ ε−)T a

ijψ
k
+(x)e−ie

∫ x+ε−

x
A

c(+)
− T c

jkdx− − V.E.V.

)

We find for the currents:

Ja+(0, x−) =
g

2L

∞∑
n=1

(
Ca∗(n)eik−(n)x− − Ca(n)e−ik−(n)x−

)
+

g

2L
Qa

+ −
g2

4π
Aa+
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Ja−(x+, 0) =
g

2L

∞∑
n=1

(
Da∗(n)eik+(n)x+ −Da(n)e−ik+(n)x+

)
+

g

2L
Qa
− −

g2

4π
Aa−

where theC ’s andD’s are the fusion operators and theQ’s are the charges. A fully symmetrized
equation of motion for the gauge field is:

−∂2
−A

1− +g
2

(
−A2+∂−A

3− − ∂−A
3−A2+ + A3+∂−A

2− + ∂−A
2−A3+

+1
2
A2+∂+A

3+ + 1
2
∂+A

3+A2+ − 1
2
A3+∂+A

2+ − 1
2
∂+A

2+A3+
)

+g2

16

(
A1−A2+A2+ + A2+A2+A1− + 2A2+A1−A2+

−A2−A1+A2+ − A2+A1+A2− − A1+A2−A2+ − A2+A2−A1+

−A3−A1+A3+ − A3+A1+A3− − A1+A3−A3+ − A3+A3−A1+

+A1−A3+A3+ + A3+A3+A1− + 2A3+A1−A3+
)

= 1
2
J ′1+

and similarly for the other Maxwell equation. The zero modes of these equations are:

g
4
(A2+∂+A

3+ + ∂+A
3+A2+ − A3+∂+A

2+ − ∂+A
2+A3+)

+g2

16
(A1−A2+A2+ + A2+A2+A1− + 2A2+A1−A2+

−A2−A1+A2+ − A2+A1+A2− − A1+A2−A2+ − A2+A2−A1+

−A3−A1+A3+ − A3+A1+A3− − A1+A3−A3+ − A3+A3−A1+

+A1−A3+A3+ + A3+A3+A1− + 2A3+A1−A3+)

= −1
2

(
− g

2L
Qa
− − g2

4π
Aa+

)

−∂2
+A

1+ + g
2

(
−A2−∂+A

3+ − ∂+A
3+A2− + A3−∂+A

2+ + ∂+A
2+A3−

)
+g2

16

(
A1+A2−A2− + A2−A2−A1+ + 2A2−A1+A2−

−A2+A1−A2− − A2−A1−A2+ − A1−A2+A2− − A2−A2+A1−

−A3+A1−A3− − A3−A1−A3+ − A1−A3+A3− − A3−A3+A1−

+A1+A3−A3− + A3−A3−A1+ + 2A3−A1+A3−
)

= −1
2

(
− g

2L
Qa

+ − g2

4π
Aa−

)
I do not think these equations can be implemented at the operator level. A construction which
works is as follows: Set

Aa+ = −2π

Lg
Qa
− ; Aa−(0) = −2π

Lg
Qa

+

P+ = P+
FREE −

π

2L
(Qa

−Q
a
−)

P− = P−FREE −
π

2L
(Qa

+Q
a
+) +

g2

2

∑ 1

k2
−(n)

Ca∗(n)Ca(n)
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Define the physical subspace by:

Da(n)|P〉 = 0 a = 1, 2, 3

(Qa
−Q

a
−)|P〉 = (Qa

+Q
a
+)|P〉 = 0

The unexpected thing is that these last two restrictions hold separately. It is that fact that holds
the ground state of the system in the perturbative vacuum. If the restriction were the naively
expected:

(Qa
−Q

a
− +Qa

+Q
a
+)|P〉 = 0

the perturbative vacuum would decay into some combination of|1〉 = (d1∗(1)β1∗(1)+d2∗(1)β2∗(1))|0〉
and|2〉 = (δ1∗(1)b1∗(1) + δ2∗(1)b2∗(1))|0〉. The physical effect is that long range interactions
( the zero modes ) stabilize the the perturbative light-cone vacuum and prevent the occurrence
of degenerate ground states. Eric Zhitnitsky has told me that Andi Smilga has reached a similar
conclusion on the basis of lattice calculations.

Issues in1 + 1 dimensions which would be interesting to examine include the problem of
adjoint matter, which semiclassical arguments suggest should be different from fundamental
matter, and whether or not twisted boundary conditions make a difference6. In four dimensions
one expects the operators which can mix withP+ to be formed from sixteen gluon and six
quark fields, in each case a function of the single variablex+. The problem is to calculate the
mixing. As is seen from the discussion above, operator mixing induced by renormalization
plays a central role in the analysis. In higher dimensions that problem is more important and
more difficult. Indeed that problem is central not only to the zero mode problem but the whole
field of light-cone techniques—as the Ohio State group keeps reminding us. While the problem
is difficult and I do not know how to solve it yet, I believe the light-cone representation may
prove to be a valuable tool in the analysis of vacuum structure.

I thank the organizers for their kind invitation to speak here and for their warm hospatility
during the meeting.
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