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Abstract

Nonzero quark and gluon condensates are responsible for confinement of quarks and gluons.
By confinement we mean: i) the absence of any asymptotic states for either quarks, or gluons,
i) the absence of any continuum spectrum for partons, iii) the absence of any colour-full parton
bound systems, and iv) the presence of hadrons which are colour-less bound states of quarks
(antiquarks) and gluons. Confinement does not require potentials that diverge at long distances,
as opposed to recent claims by Wilson et al. in Phys.Retd, 6720 (1994). Other “no-go
theorems” for hadrons treated by LFQCD are collected.

Nonzero quark and gluon condensataliow for an explicit construction of singular con-
tributions in four, out of seven, superficially divergent QCD vertex functions. They appear
in inverses of quark and gluon propagators (), D' (p), in the gluon-quark vertex function
I'*(k,k-p,p), and in the triple-gluon vertex functiditi*#2#3 (p;, py, p3), as the following physical
poles, respectively,
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Quark and gluon condensates are responsible for confinement of quarks and gluons. By
confinement we medni) the absence of any asymptotic states for either quarks or gluons, ii)
the absence of any continuum spectrum for partons, iii) the absence of any colour-full parton
bound systems, and iv) the presence of hadrons which are colour-less bound states of quarks
(antiquarks) and gluons.

Phenomenologically, the Local Parton-Hadron Duality of Dokshitzer and Ttasgports
the presence of physical singularities in three-point vertex functions (quark-gluon-quark, and
triple-gluon). By Slavnov-Taylor identities the same physical singularities must gpipetr
in the inverse of quark propagator, and in the inverse of transverse gluon propagator. Just
algebraically, these singularities in inverses of propagators lead to the absémgmrk and
gluon asymptotic states. These physical singularities are also supported by the existence of
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self-consistent solutions of Dyson-Schwinger equafiovisich are exact solutions on the one-
loop level, at these singularities.

Both quark and gluon propagators are of the Wheeler’yipe they are real propagators,
equal to the avarage of retarded and advanced propagators. Nonzero values of quark and gluon
condensatésinsure that quark and gluon propagators correspond to short living quark and
gluon states Time scales of these states are inversly proportional to inverses of mass scales
of condensates, and are equal to fractions of fermi. The absence of any continuum partonic
states is guarantegtly: 1) the Wheeler character of the relative motion propagator, and 2) the
vanishing of the scalar product of the Wightman-Garding relative momérdaumch the hadron
momentum. In both of these properties a crucial role play nonzero quark and gluon condensates.

The nonzero values of quark and gluon condensaes characterized by nonzero mass
scalesy andr connected with these condensates by following matrix elements of composite
operators in the physical vacuum
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For u and d, s, c and b, and t quarkss equal, approximately, to the following fractions of
GeV: 1/4, 1/5, 1/10, and 1/50, respectively. The gluon condensate mass ssalwown to be
around 1/3 GeV.

The nonzero values gfandv allow for the existence of the following physical singularities
in inverses of quark and gluon propagators
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where m is the current quark mass, and M is the mass of corresponding pseudoscalar mesons:
m for u, d; K for s; D for c; and B for b.

It is trivial to invert algebraically inverses of propagators in Eq.(3), and the result for the
gluon transverse propagator is particularly easy
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This equation demonstrates the absence of a real momentum pole for gluon, and therefore the
absence of any asymptotic gluon state. In Eq.(4) there are two complex conjugate poles in the
variablep?, showing the real character of the Wheeler gluon propagator. The presence of these
poles is not in conflict either with causality, or with unitarity, or with analytitity

The presence of physical poles in Eq.(3), and the numerical values of the condensate mass
scalesy, andv, can be verifietlby reproducing these mass scales from vacuum-to-vacuum tran-
sitions obtained by closing up in the position space, quark, and gluon lines, respectively, repre-
sented by nonperturbative propagators. For numerical stability of such calculations anomalous
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dimensions of propagators must be included. Then, the mass scaihek’ are independent of
a huge variation of an arbitrary mass scaleised as a normalization point in the renormaliza-
tion group equation solutions. The normalization mass scadevaried between 1 GeV and
100 000 GeV, and 10 stability is maintained.

Nonzero mass scalegandv are responsible for an exponential damping of the Fourier
transform of propagators. For example, the time-dependence of the zero three-momentum gluon
propagator is givehby the expression
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This expression has the time scale of a shortly living gluon state of the vatue/2/v. This
“life time” is between 0.6 and 0.8 fm, far between 1/3 and 1/2 GeV.
The quark propagator, calculated algebraically from Eq.(3), is
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and complex numbers Z andare defined by the mass scales: m, M, ands follows
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The Wheeler relative motion propagator in quark-antiquark systém is
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From this expression for the Wheeler relative-motion propagator we find immediately the defi-
nition of a momentum-dependent constituent quark mags?)
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For zero value of the Wightman-Gardinhgelative momentum ¢ in the quark-antiquark sys-
tem the constituent quark mass takes the maximal \&t{6), which is: 0.33 GeV foruand d
quarks, 0.4 GeV for s quark, 1.7 GeV for c quark, and approximately 5 GeV for b quark. The
explicit expression for the maximal value of the constituent quark mass is

M(0) = (mM + x3/M)'2, (10)

For very large values of the relative momentum g the rila§g?) tends to zero, irrespective of
flavour.

We note, that it is essential to demand the orthogonality of the space-like Wightman-Garding
relative momentum (g, to the time-like momentum P;=Hp, of the whole hadron. The condi-
tion gP=0 insures two basic properties of the relativistic, relative-mttion

|. The space-like character of the relative momentum q, %< 0, which is necessary
for the proper, relativistic definition of anglebetween various relative momenta during the
relative-motion with the cosine of these angles in the intefrval0, 1.0], what is necessary for
any sensible angular momentum and partial wave andlysis

Il. The cluster decomposition propettin the sense of decoupling of the relative-motion
dynamics described by three degrees of freedom of the constrained morhepi¥0, from
the overall motion of the whole bound system with total four-momentum P being on the bound
state mass-shelR? = M2,

It is often belived, and it is recently emphasized by Wilson ét #ilat confinement “requires
potentials that diverge at long distances”. This is not true for non-Abelian gauge quantum field
theory with mass gap. It is in conflict with cluster property, as shown by Strac@mily for the
zero mass gap an increasing potential is allowed, but in Wilson’ethale is a nonzero mass
gap. Even, if the mass gap would be set equal to zero, then there would have to exist strong
infrared singularity. For example, thepsingularity in the gluon propagator, but this in turn is
inconsistent with Dyson-Schwinger equations, produciagen more singular terms than‘p
in higher loops.

The constituent quark model in the Wilson et akersion, with the momentum independent
constituent quark mass, is also in conflict with the decreasing d/u ratio in the deep inelastic
scattering off nucleoris

When dealing with hadrons in the light-front approaihs necessary to consider the rel-
ative motion of hadron constituents for the samecomponent in the position space. This
means, that solving the bound state problem in the momentum space one has to average out
over the “-” component of the relative momentum. One does not take the zero value of the
light-front relative energy, but instead the zero value of the relative “time”, i.e. the zero value of
the relative x. This is one of the “no-go theorems” for doing hadrons with LFQC#nce it
is in conflict with the demand of obeying the Wightman-Garding orthoganalityhe relative
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momentum between the hadron constituents and the total hadron momentum. In the hadron rest
frame, this orthogonality conditidmmeans that the time component of the relative momentum
is equal to zero.
In the QED bound state computatidns an equation below Eq.(2.2), in the first fefand
in Eq.’s (2.2a), (2.2d), and below, in the second’rghere is explicitly chosen the zero value of
the relative energy as the appropriate way to calculate QED bound state.
There is one more “no-go theorem”, with the null-plane theohrQCD is in conflict with
Lorentz invarianc®. Nakanishi and Yamawaki establish consistency in their-theory”, but
get commutation relation in their Eq.(5.17) which does not vanish in space-like distances, i.e. it
violates causality.
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