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Hoża 69, PL-00-681 Warsaw, Poland, jmn@fuw.edu.pl

Abstract

Nonzero quark and gluon condensates are responsible for confinement of quarks and gluons.
By confinement we mean: i) the absence of any asymptotic states for either quarks, or gluons,
ii) the absence of any continuum spectrum for partons, iii) the absence of any colour-full parton
bound systems, and iv) the presence of hadrons which are colour-less bound states of quarks
(antiquarks) and gluons. Confinement does not require potentials that diverge at long distances,
as opposed to recent claims by Wilson et al. in Phys.Rev. D49, 6720 (1994). Other “no-go
theorems” for hadrons treated by LFQCD are collected.

Nonzero quark and gluon condensates1 allow for an explicit construction of singular con-
tributions in four, out of seven, superficially divergent QCD vertex functions. They appear
in inverses of quark and gluon propagators S−1(k), D−1

T (p), in the gluon-quark vertex function
Γµ(k,k-p,p), and in the triple-gluon vertex functionΓµ1µ2µ3(p1, p2, p3), as the following physical
poles, respectively,
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Quark and gluon condensates are responsible for confinement of quarks and gluons. By
confinement we mean2: i) the absence of any asymptotic states for either quarks or gluons, ii)
the absence of any continuum spectrum for partons, iii) the absence of any colour-full parton
bound systems, and iv) the presence of hadrons which are colour-less bound states of quarks
(antiquarks) and gluons.

Phenomenologically, the Local Parton-Hadron Duality of Dokshitzer and Troyan1 supports
the presence of physical singularities in three-point vertex functions (quark-gluon-quark, and
triple-gluon). By Slavnov-Taylor identities the same physical singularities must appear2 both
in the inverse of quark propagator, and in the inverse of transverse gluon propagator. Just
algebraically, these singularities in inverses of propagators lead to the absence2 of quark and
gluon asymptotic states. These physical singularities are also supported by the existence of
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self-consistent solutions of Dyson-Schwinger equations3 which are exact solutions on the one-
loop level, at these singularities.

Both quark and gluon propagators are of the Wheeler type2, i.e. they are real propagators,
equal to the avarage of retarded and advanced propagators. Nonzero values of quark and gluon
condensates1 insure that quark and gluon propagators correspond to short living quark and
gluon states3. Time scales of these states are inversly proportional to inverses of mass scales
of condensates, and are equal to fractions of fermi. The absence of any continuum partonic
states is guaranteed2 by: 1) the Wheeler character of the relative motion propagator, and 2) the
vanishing of the scalar product of the Wightman-Garding relative momentum4 and the hadron
momentum. In both of these properties a crucial role play nonzero quark and gluon condensates.

The nonzero values of quark and gluon condensates1 are characterized by nonzero mass
scalesχ andν connected with these condensates by following matrix elements of composite
operators in the physical vacuum

−χ3 ≡<|
√
α : ψψ :|>, ν4 ≡<| α

π
: Ga

µνG
µν
a :|> . (2)

For u and d, s, c and b, and t quarksχ is equal, approximately, to the following fractions of
GeV: 1/4, 1/5, 1/10, and 1/50, respectively. The gluon condensate mass scaleν is known1 to be
around 1/3 GeV.

The nonzero values ofχ andν allow for the existence of the following physical singularities2

in inverses of quark and gluon propagators

S−1(p) = p/−m+ iε+
χ3/M

p/−M + iε
, D−1

T (p) = p2 + iε+
ν4

p2 + iε
, (3)

where m is the current quark mass, and M is the mass of corresponding pseudoscalar mesons:
π for u, d; K for s; D for c; and B for b.

It is trivial to invert algebraically inverses of propagators in Eq.(3), and the result for the
gluon transverse propagator is particularly easy

DT (p2) =
p2

p4 + ν4
=

1

2

(
1

p2 + iν2
+

1

p2 − iν2

)
. (4)

This equation demonstrates the absence of a real momentum pole for gluon, and therefore the
absence of any asymptotic gluon state. In Eq.(4) there are two complex conjugate poles in the
variablep2, showing the real character of the Wheeler gluon propagator. The presence of these
poles is not in conflict either with causality, or with unitarity, or with analyticity2.

The presence of physical poles in Eq.(3), and the numerical values of the condensate mass
scalesχ, andν, can be verified2 by reproducing these mass scales from vacuum-to-vacuum tran-
sitions obtained by closing up in the position space, quark, and gluon lines, respectively, repre-
sented by nonperturbative propagators. For numerical stability of such calculations anomalous
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dimensions of propagators must be included. Then, the mass scalesχ andν are independent of
a huge variation of an arbitrary mass scaleµ, used as a normalization point in the renormaliza-
tion group equation solutions. The normalization mass scaleµ is varied2 between 1 GeV and
100 000 GeV, and 10−6 stability is maintained.

Nonzero mass scalesχ andν are responsible for an exponential damping of the Fourier
transform of propagators. For example, the time-dependence of the zero three-momentum gluon
propagator is given2 by the expression
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This expression has the time scale of a shortly living gluon state of the valueτ =
√

2/ν. This
“life time” is between 0.6 and 0.8 fm, forν between 1/3 and 1/2 GeV.

The quark propagator, calculated algebraically from Eq.(3), is2

S(p/) ≡ Z(p/+ ρ)

p2 − ρ2
+
Z∗(p/+ ρ∗)

p2 − ρ∗2
, (6)

and complex numbers Z andρ are defined by the mass scales: m, M, andχ, as follows
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1

2
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4
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,
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2
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√
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4
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The Wheeler relative motion propagator in quark-antiquark system is2
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√
ρ∗2 − q2(M2 − P

∗2
)

2 | ρ2 − q2 ||M2 − P
2 |2
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P

2
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δ
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 . (8)

From this expression for the Wheeler relative-motion propagator we find immediately the defi-
nition of a momentum-dependent constituent quark massM(q2)

M(q2) ≡
√
| ρ2 − q2 | +q2
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=

√√
(mM + χ3/M)2 − q2 (m2 +M2 − 2χ3/M) + q4 + q2. (9)

For zero value of the Wightman-Garding4 relative momentum q in the quark-antiquark sys-
tem the constituent quark mass takes the maximal valueM(0), which is: 0.33 GeV for u and d
quarks, 0.4 GeV for s quark, 1.7 GeV for c quark, and approximately 5 GeV for b quark. The
explicit expression for the maximal value of the constituent quark mass is

M(0) = (mM + χ3/M)1/2. (10)

For very large values of the relative momentum q the massM(q2) tends to zero, irrespective of
flavour.

We note, that it is essential to demand the orthogonality of the space-like Wightman-Garding4

relative momentum q, to the time-like momentum P = p1 + p2 of the whole hadron. The condi-
tion qP=0 insures two basic properties of the relativistic, relative-motion4:

I. The space-like character of the relative momentum q, i.e.q2 < 0, which is necessary
for the proper, relativistic definition of angles4 between various relative momenta during the
relative-motion with the cosine of these angles in the interval[−1.0, 1.0], what is necessary for
any sensible angular momentum and partial wave analysis4.

II. The cluster decomposition property4 in the sense of decoupling of the relative-motion
dynamics described by three degrees of freedom of the constrained momentum4 q, qP=0, from
the overall motion of the whole bound system with total four-momentum P being on the bound
state mass-shell,P 2 = M2.

It is often belived, and it is recently emphasized by Wilson et al.5, that confinement “requires
potentials that diverge at long distances”. This is not true for non-Abelian gauge quantum field
theory with mass gap. It is in conflict with cluster property, as shown by Strocchi6. Only for the
zero mass gap an increasing potential is allowed, but in Wilson et al.5 there is a nonzero mass
gap. Even, if the mass gap would be set equal to zero, then there would have to exist strong
infrared singularity. For example, the p−4 singularity in the gluon propagator, but this in turn is
inconsistent with Dyson-Schwinger equations, producing7 even more singular terms than p−4

in higher loops.
The constituent quark model in the Wilson et al.5 version, with the momentum independent

constituent quark mass, is also in conflict with the decreasing d/u ratio in the deep inelastic
scattering off nucleons8.

When dealing with hadrons in the light-front approach5 it is necessary to consider the rel-
ative motion of hadron constituents for the same x+ component in the position space. This
means, that solving the bound state problem in the momentum space one has to average out
over the “-” component of the relative momentum. One does not take the zero value of the
light-front relative energy, but instead the zero value of the relative “time”, i.e. the zero value of
the relative x−. This is one of the “no-go theorems” for doing hadrons with LFQCD5, since it
is in conflict with the demand of obeying the Wightman-Garding orthoganality4 of the relative
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momentum between the hadron constituents and the total hadron momentum. In the hadron rest
frame, this orthogonality condition4 means that the time component of the relative momentum
is equal to zero.

In the QED bound state computations9, in an equation below Eq.(2.2), in the first ref.9, and
in Eq.’s (2.2a), (2.2d), and below, in the second ref.9, there is explicitly chosen the zero value of
the relative energy as the appropriate way to calculate QED bound state.

There is one more “no-go theorem”, with the null-plane theory5. LFQCD is in conflict with
Lorentz invariance10. Nakanishi and Yamawaki10 establish consistency in their “ν-theory”, but
get commutation relation in their Eq.(5.17) which does not vanish in space-like distances, i.e. it
violates causality.
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