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Abstract

Light-front field theory offers a scenario in which a constituent picture of hadrons may
arise, but only if cutoffs that violate explicit covariance and gauge invariance are used. The
perturbative renormalization group can be used to approximate the cutoff QCD hamiltonian, and
even at lowest orders the resultant hamiltonian displays interesting phenomenological features.
A general scheme for computing and using these hamiltonians is discussed and it is explicitly
shown that a confining interaction appears when the hamiltonian is computed to second order.

1. Introduction and Basic Strategy

Quantum chromodynamics (QCD) is widely accepted as the fundamental theory of the
strong interaction, but we are still unable to solve this theory in the low energy regime and obtain
an accurate approximation for the structure of hadrons. This problem remains one of the most
important unsolved problems in physics. The primary source of difficulty is that manifestly
covariant and gauge invariant formulations of QCD yield a picture of hadrons as complicated
many-body excitations on top of a complicated vacuum. In this picture we must solve coupled
strongly-interacting many-body problems to obtain hadrons, in contrast to the simple few-body
states found in the phenomenologically successful constituent quark model. Light-front field
theory offers an alternative in which hadrons may be approximated as few-body bound states.

How can a constituent picture of hadrons arise in light-front field theory? The key is renor-
malization. [1] The issue is not whether hadrons contain arbitrarily many quarks and gluons
added to a complicated vacuum. They do. The issue is whether the dynamical effects of almost
all of the partons in a hadron and in the vacuum can be approximated by effective interactions
in a light-front QCD hamiltonian that can be used to compute the dominant ‘valence’ structure
of hadrons. To address this issue I would like the reader to consider how many-body states enter
the structure of a hadron.

First, in a field theory with local interactions high energy many-body states do not decouple
from low energy few-body states. If one uses perturbation theory to estimate the errors made
when high energy states are simply removed by a cutoff, the answer is simple. The errors are
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infinite. For example, a single quark mixes perturbatively with high energy quark-gluon states,
and the energy shift in second-order perturbation theory is infinite. This is an old story in field
theory. We know that a regulator must be introduced, and if these high energy components are
to be removed from the state so that it can be dominated by few-body components, this regulator
must be a cutoff. However, after a cutoff is introduced, results are strongly dependent on the
cutoff.

To remove cutoff dependence and properly account for the effects of high free-energy com-
ponents, renormalization is required. The ‘effective’ hamiltonian becomes cutoff dependent,
and must be designed to remove cutoff dependence from physical quantities such as masses and
form factors. If the regulator does not violate the symmetries of the original theory, the resultant
‘counterterms’ will also respect these symmetries; and the only relevant and marginal operators
that appear in the effective hamiltonian are canonical masses and couplings. Regulators that re-
spect all the symmetries of QCD do not remove high energy states, and therefore do not yield a
constituent picture. To obtain a constituent picture we are forced to use cutoffs that violate these
symmetries. As a result, the effective QCD hamiltonian will contain operators that also violate
these symmetries, forcing us to invent a renormalization procedure capable of identifying the
extra relevant and marginal operators and fixing their strength. Wilson’s renormalization group
[2,3] suitably generalized for our problem offers the necessary tools.

Even if we can remove high free-energy components from physical states, and replace them
with effective interactions, we are still faced with the fact that low free-energy many-body
states do not typically decouple from low free-energy few-body states in QCD. The vacuum is
supposed to be a complicated superposition dominated by low free-energy states. This second
problem is what forces us to use light-front coordinates. In these coordinates we may be able
to force the many-body states that appear as low free-energy states in equal time field theory
to act like high energy states, so that the problem of replacing them with effective interactions
resembles the renormalization problems we encounter when removing high free-energy states.

The principal observations that lead to this possibility are simple. First, the longitudinal
momenta conjugate to the light-front longitudinal spatial coordinate are all positive,

p+
i ≥ 0 . (1)

Since every individual longitudinal momentum is positive, any state with many partons must
contain some ‘wee’ partons;i.e., partons with small longitudinal momentum fraction. The free
energy of a particle in light-front coordinates is

p−i =
p2
⊥i + m2

p+
i

. (2)

This dispersion relation implies that a particle with small longitudinal momentum is a high
energy particle, so that states containing wee partons are high energy states. Thus, we are
left with the hope (possibly naive) that if we can successfully remove all high energy states in
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QCD and replace them with effective interactions, we will be left with few-body states and a
constituent picture of hadrons in light-front QCD.

It should be clear that the first step in this program is the calculation of effective interactions
that result from the removal of high energy partons. This is the type of problem that led Wilson
to develop his version of the renormalization group. For details I refer the reader to the excel-
lent review articles by Wilson and Kogut [2,3], my recent article on light-front renormalization
groups [4], and the recent articles by Głazek and Wilson [5] that develop the new similarity
renormalization group. To identify the effective cutoff hamiltonian, we can directly study the
cutoff dependence of the hamiltonian itself. The principal tool for this study is a renormaliza-
tion group transformation. Given a hamiltonian with cutoffΛ0, the transformation produces a
new hamiltonian with cutoffΛ1. These hamiltonians must produce equivalent results in some
sense, and in the similarity renormalization group they are unitarily equivalent. By studying the
properties of the transformation, we can try to identify a cutoff hamiltonian that is produced by
an infinite number of transformations. If we find such a hamiltonian, by design it will produce
the same results as a hamiltonian with an infinite cutoff; so it is a renormalized hamiltonian.

If the cutoff respects all the symmetries of the theory, the cutoff renormalized hamiltonian
should be uniquely identified up to a few free masses and couplings, and irrelevant operators that
can be ignored if the cutoff is sufficiently large. In massless QCD, a single running coupling
will remain undetermined. On the other hand, if the cutoff violates these symmetries there
will be many new candidate renormalized hamiltonians, because there are many relevant and
marginal operators that violate the symmetries. Only one of these hamiltonians should restore
these symmetries to physical quantities; so one strategy for finding the correct hamiltonian is
to identify the relevant and marginal symmetry-breaking operators and tune their strengths to
restore the symmetries. As far as I know, no exceptions to these rules have been found. The
basic idea is that the complete set of symmetries determines the theory.

This procedure is confronted with serious problems in light-front QCD. First, in light-front
field theory there are an infinite number of relevant and marginal operators because functions
of longitudinal momenta appear in these operators. [1,4] This problem is due to the fact that
longitudinal scaling is a boost, which is a Lorentz symmetry that cannot be broken. While boost
invariance should be restored by only one choice of these functions, apparent ambiguities arise
at finite orders of perturbation theory. The second problem is unique to non-abelian gauge the-
ories. Many gauge-variant Green’s functions are infrared divergent in QCD, and it is difficult to
invent a scheme that can produce all the required counterterms without computing such Green’s
functions (e.g., the quark-gluon vertex) at an intermediate stage. Wilson and I have devised
coupling coherenceto circumvent these problems. [6]

I refer to reader to the literature for details on coupling coherence, [4,6,7] and will provide
only a sketch. The basic idea is that only the canonical masses and couplings should be inde-
pendent functions of the cutoff, if the cutoff free hamiltonian respects the symmetries of the
theory. All new relevant, marginal, and irrelevant couplings should depend on the cutoff only
because they depend on these canonical couplings. The renormalization group equations deter-
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mine how all the constants change with the cutoff; and when one inserts the ansatz that only a
few constants depend on the cutoff, the remaining constants (including functions of longitudinal
momentum fractions) are determined by the renormalization group equations. In practice we
have only been able to apply coupling coherence to the perturbative renormalization group; but
in all cases considered to date, the counterterms that result are exactly those required to restore
the symmetries of the theory, even though no direct reference is made to these symmetries in
the calculations. [4,6]

The conclusion we have reached is that, given a cutoff, the renormalization group and cou-
pling coherence uniquely determine the hamiltonian to each order in the canonical coupling. In
QCD this allows us to compute the effective hamiltonian as an expansion,

HΛ = H(0) + gΛH(1) + g2
ΛH(2) + · · · . (3)

I have suppressed the fact that there is also dependence on the running current quark masses;
but the most important point is that the operators,H(n), depend onΛ only because of their
dimension (e.g., a factor ofΛ2 for mass operators) and because of the cutoff functions. If the
cutoff is chosen properly, as discussed below, we may be able to exploit asymptotic freedom
to approximate the QCD hamiltonian by truncating this series at a finite order. It will almost
certainly be necessary to further tune the strength of the relevant operators (ı.e., the quark and
gluon dispersion relations, and the chiral symmetry breaking quark-gluon vertex); but this is
our starting point.

Having computed an approximate cutoff QCD hamiltonian, the next step is to study this
hamiltonian non-perturbatively. An essential part of this step is the demonstration that the
resultant low energy states are indeed dominated by few-body components so that a constituent
picture arises. I am going to oversimplify this second step by ignoring the fact that we will need
to push the cutoff as low as possible and confront the fact that the coupling becomes large as
Λ → ΛQCD. Elsewhere in these proceedings, Wilson and Robertson discuss a strategy in which
a sequence of weak-coupling calculations are extrapolated to this potentially large coupling, [8]
a strategy first outlined by Wilson and collaborators. [1] For the purpose of this article it is
sufficient to assume that the cutoff remains sufficiently large that the coupling does not become
unmanageably large. If this is the case, we can simply use bound state perturbation theory to
study our approximate QCD hamiltonian.

Once the cutoff is lowered to a suitable point where it is conceivable that the important
many-parton components of hadron wave functions have been ‘integrated out,’ we must still
deal with remaining interactions that involve parton emission and absorption. We assume that
these interactions become unimportant at small cutoffs, so that it is possible to first approxi-
mate the hamiltonian by keeping only interactions in which parton number is conserved. This
ansatz is quite reasonable from a variational point of view. If we consider a trial state in which a
quark-antiquark pair are separated, the expectation value of the hamiltonian provides an upper
bound on the energy. Any additional quarks and gluons in the wave function can only lower the
energy. This means that if the hamiltonian is confining, there must be a two-body interaction
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which causes the energy to grow without bound as the pair is separated. In other words, the
type of interactions we need to get a reasonable phenomenology without parton emission and
absorption must actually appear in the hamiltonian, although there is no guarantee that they
will appear in a perturbative approximation to the hamiltonian. We assume that few-body in-
teractions largely determine the structure of hadrons, so that the additional interactions can be
studied in bound state perturbation theory.

Given any hamiltonian, one can study bound states by first writing

H = H0 + V . (4)

To paraphrase Weinberg, you are free to choose anyH0 you please; but if you choose wrong,
you’ll be sorry. The main criteria in choosingH0 are first that it be a reasonable approximation
of H, so that bound state perturbation theory does not diverge; and second that it be solvable.
Since the problem we will initially address is that of meson structure, this last restriction simply
means that the quark-antiquark and quark-antiquark-gluon problems with two-body interactions
should be tractable. This is not an overly severe restriction if one is willing to use a computer.

The strategy I will follow in this paper mirrors the strategy outlined above. I will compute
the QCD hamiltonian toO(g2) using a similarity renormalization group and coupling coher-
ence, and I will then show that with a reasonable choice ofH0 this hamiltonian confines quarks
and gluons. This result was first shown in Ref. [7].

There are two related questions one must ask to decide if the simple confinement mechanism
survives. We first computeH perturbatively by removing high energy states, and we must ask
whether confining interactions that appear at low orders in this calculation survive to higher
orders. We then use bound state perturbation theory to study the approximate hamiltonian, and
this depends on an explicit choice ofH0. We must ask whether a choice ofH0 which includes
confining interactions fromH leads to a reasonable bound state perturbative expansion. These
questions are actually intertwined, but it is easier to study the second question using order-of-
magnitude arguments than it is to study the first.

I must emphasize that to second order one can also force QED to be confining; but it is rel-
atively straightforward to see that ifH0 is chosen to contain the confining interactions in QED,
there are large perturbative corrections that cancel confinement. The fundamental observation is
that even when confinement is included inH0 for QED, photons are massless and not confined.
This means photon exchange persists to arbitrarily large distances as charged particles separate
and this photon exchange cancels the confining interaction. On the other hand, in QCD the
same interactions that confine quarks appear in second order to confine gluons. This means that
it is self-consistent to assume that the confinement mechanism survives because confinement
turns off the long-range gluon exchanges that are necessary to cancel confinement. Hopefully
this point will be clarified somewhat below.

2. Quark and Gluon Dispersion Relations from Coupling Coherence
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The problem I want to address in this Section is the calculation of the one-body operators
(ı.e., the quark and gluon dispersion relations) to second-order in the QCD coupling constant.
Since this constant does not run until third order, I only need to consider how the coupling runs
to justify my choice of cutoffs. I can use any cutoff I want, but I would like to have some
hope that the second-order results are not meaningless. This means I have to exploit asymptotic
freedom to justify the first step in the analysis, the perturbative calculation ofH.

If the cutoff is chosen properly, the QCD hamiltonian is approximately free when the cutoff
is large. The free hamiltonian must be a fixed point (i.e., a hamiltonian that does not change un-
der the action of the transformation) for this to happen, which is actually rather easy to arrange
since the transformation reduces to a scaling operation when applied to free hamiltonians. Near
this fixed point, degrees of freedom with nearly the same free energy may still couple strongly
to one another even when the coupling constant is small, which follows from nearly degener-
ate perturbation theory. Degrees of freedom that have drastically different free energy couple
weakly. This means that if we want to exploit the fact that the coupling constant is small, the
cutoff cannot remove the coupling between nearly degenerate degrees of freedom.

If the cutoff cuts through nearly degenerate degrees of freedom, we must solve a non-
perturbative problem to replace the effects of their coupling with effective interactions. This
is exactly what I want to avoid. Therefore, I am forced to use a cutoff on free energies. If
the cutoff removes states (e.g., all particles with a free energy above some fixed value are re-
moved), states just below the cutoff will couple strongly to states just above the cutoff, and
we must again solve a non-perturbative problem to replace the effects of their coupling with
effective interactions. For example, the quarks in a high energy pion interact strongly with one
another. Therefore I am forced to use a cutoff that does not remove states, but instead removes
only the direct coupling between states of drastically different free energy. In other words, the
cutoffs must act at the vertices, preventing the free energy from changing by more than a fixed
amount through a vertex. This is exactly the type of cutoff that the similarity transformation
runs. In summary, to exploit asymptotic freedom I must use a cutoff that removes the coupling
between states of drastically different free energy. The easiest cutoff functions to use in low
order analytic calculations are step functions, which I will use here; although step functions
introduce pathologies that are undesirable later.

Before proceeding to a brief discussion of the similarity transformation and coupling co-
herence, I want to point out a very interesting feature of the cutoff on free light-front ener-
gies. Light-front energy has the dimension of transverse momentum squared (the same as mass
squared) divided by longitudinal momentum. Generically, our cutoff isΛ2/P+, whereΛ has
the dimension of mass. Transverse scale invariance is violated, leading to dimensional transmu-
tation, and the QCD coupling constant is forced to run withΛ. However, our cutoff isΛ2/P+

and contains an arbitrary longitudinal momentum scale,P+. If we succeed in renormalizing
the theory,Λ dependence will disappear from physical quantities, which means thatP+ depen-
dence will also disappear; but this will not happen exactly in a perturbative approximation, and
because of this we will also find dependence onP+ in perturbative approximations. The ap-
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pearance of this extra longitudinal momentum scale has profound implications for our program,
some of which are illustrated and discussed below.

In order to use coupling coherence I need to study how the hamiltonian changes when the
cutoff changes. I want to avoid a detailed derivation of a similarity transformation, [5] so I
will just give the result I need through second order and show that it is easily understood. Let
H = h0 + v, whereh0 is a free hamiltonian andv is cut off so that

〈φi|v|φj〉 = 0 , (5)

if |E0i −E0j| > Λ; whereh0|φi〉 = E0i|φi〉. If this cutoff is lowered toΛ′, the new hamiltonian
matrix elements toO(v2) are

H ′
ab = 〈φa|h0 + v|φb〉

−
∑
k

vakvkb

[
θ(|∆ak| − Λ′)θ(|∆ak| − |∆bk|)

E0k − E0a

+
θ(|∆bk| − Λ′)θ(|∆bk| − |∆ak|)

E0k − E0b

]
, (6)

where∆ij = E0i − E0j and |E0a − E0b| < Λ′. To follow the details of the discussion it
is important to remember that there are implicit cutoffs in this expression because the matrix
elements ofv have already been cut off so thatvij = 0 if |E0i − E0j| > Λ. There are actually
an infinite number of similarity transformations that will reduce the cutoff on how far off the
diagonal matrix elements appear, but I will not discuss the additional constraints I have placed
on the transformation to arrive at this result. They are not central to my discussion. I should
note that I have fixed an error in my Brasil lectures, [7] where I used a transformation that does
not completely avoid small energy denominators.

It is rather easy to understand this result qualitatively. We have removed the coupling be-
tween degrees of freedom whose free energy difference is betweenΛ′ andΛ, so the effects of
these couplings are forced to appear in the new hamiltonian as direct interactions. To first order,
the new hamiltonian is the same as the old hamiltonian, except that couplings betweenΛ′ and
Λ are now zero. To second order, the new hamiltonian contains a new interaction which sums
over the second-order effects of couplings that have been removed. The second-order term in
the new hamiltonian resembles the expression found in second-order perturbation theory, which
is not surprising since the new hamiltonian must produce the same perturbative expansion for
eigenvalues, cross sections, etc. as the original hamiltonian.

I have chosen the transformation so that it is always possible to find a coupling coherent
hamiltonian to second order. To this order, we want the hamiltonian to reproduce itself, with
the only change beingΛ → Λ′. The solution is found by noting that we need the partial sum
above to be added to an interaction inv that is expressed as a sum, so that the transformation
merely changes the limits on the sum in a simple fashion. There are two possibilities. The first
is
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Hab = 〈φa|h0 + v|φb〉

−
∑
k

vakvkb

[
θ(|∆ak| − Λ)θ(|∆ak| − |∆bk|)

E0k − E0a

+
θ(|∆bk| − Λ)θ(|∆bk| − |∆ak|)

E0k − E0b

]
, (7)

and the second is

Hab = 〈φa|h0 + v|φb〉

+
∑
k

vakvkb

[
θ(Λ− |∆ak|)θ(|∆ak| − |∆bk|)

E0k − E0a

+
θ(Λ− |∆bk|)θ(|∆bk| − |∆ak|)

E0k − E0b

]
. (8)

Note that thev in these expressions is the same as that above only to first order. The coupling
coherent interaction inH is written as a power series inv which reproduces itself under the
transformation, except the cutoff changes. In higher orders the canonical variables would also
run.

Given the generic coupling coherent hamiltonian to second order, it is a conceptually sim-
ple exercise to compute the coherent QCD hamiltonian to second order. For a second-order
calculation it is sufficient to assume thatv contains all canonical QCD interactions. Space does
not permit me to list the canonical QCD hamiltonian, so I must again refer the reader to the
literature for details. [1,7,9,10] It is not necessary to be careful in the derivation of the canoni-
cal hamiltonian, because coupling coherence will take care of details. It is sufficient to naively
derive the canonical hamiltonian in light-cone gauge,A+ = 0, and insert cutoffs on free energy
transfer in each of the vertices. The next step is to compute theO(g2) corrections using Eq. (7)
or Eq. (8). To decide which of these equations to use one must in principle go to higher orders,
but in practice it is usually obvious which choice is correct. In the remainder of this section I
will discuss theO(g2) corrections to the one-body operators in the QCD hamiltonian.

First consider the second-order correction to the quark self-energy. This results from the
quark mixing with quark-gluon states whose energy is above the cutoff. If we assume that
the light-front energy transfer through the quark-gluon vertex must be less thanΛ2/P+, the
coupling coherent self-energy for quarks with zero current mass is

ΣΛ(p) =
g2
ΛCF Λ2

4π2P+

{
ln

(
p+

εP+

)
− 3

4

}
+O(ε) . (9)

Let me first describe the variables that appear in this result and then turn to a discussion of two
important features. The quark has longitudinal momentump+, while the longitudinal momen-
tum scale in the cutoff isP+. This coupling coherent solution comes from the second generic
solution above, Eq. (8), in which one sums over states below the cutoff. This sum becomes an
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integral in the continuum theory, and I have completed the quark-gluon loop integral to obtain
this result.

The first and most interesting feature of this result is that I have been forced to introduce a
second cutoff,

p+
i > εP+ , (10)

which restricts how small the longitudinal momenta of any particle can become. Without this
second cutoff on the loop momenta, the self-energy is infinite, even with a cutoff on free en-
ergies. This second cutoff should be thought of as a longitudinal resolution. As we letε → 0
we resolve more and more wee partons, and in the process we should confront effects normally
ascribed to the vacuum. In this case the wee gluons are responsible for giving the quark a mass
that is literally infinite. Theorists who insist on deriving intuition from manifestly gauge invari-
ant calculations may find this interpretation repugnant, but within the framework of a light-front
hamiltonian calculation it is quite natural. It is gauge invariance that is not natural, a heretical
conclusion that will put light-front theorists on the defensive until we solve non-perturbative
problems that have not been solved with other methods.

This second, infrared cutoff poses a problem. If we introduce a second cutoff, shouldn’t
we introduce a second renormalization group transformation to run this cutoff and find the new
counterterms required by it? The oversimple answer I will need here is ‘no.’ The divergences
that require us to introduceε appear only in second-order diagrams and subdiagrams, so they
look like super-renormalizable divergences that can be removed to all orders by a few countert-
erms. In principle the infrared divergences could require us to introduce complicated functions
of transverse momentum, a possibility emphasized by Wilson. However, in perturbation the-
ory we find that these divergences always cancel without the need for counterterms that violate
transverse locality. [11] I will assume here that we can maintain such cancellations at all stages
of our calculation.

When we computeHΛ perturbatively, the cancellations are those of perturbation theory. For
example, the divergence in the quark mass is canceled by perturbative mixing of the quark with
quark-gluon states, until the cutoff approachesΛQCD. There is no phenomenological reason to
believe that such a cancellation can persist as the cutoff approachesΛQCD, because there are no
free massless gluons. This means that the perturbative cancellations at high energies must be
replaced by new cancellations at low energies, cancellations that do not require mixing between
few-body and many-body states. [11] These cancellations are related to confinement, as we
will see. When we study the cutoff hamiltonian in bound state perturbation theory the need to
maintain precise cancellation of all infrared divergences places severe constraints on our choice
of H0.

So, for the purposes of this paper, I will assume that the infrared divergences are simple
enough that we can introduce the cutoffε, and take it to zero at the end of the calculation. The
reason that this answer is oversimple is because eventually one discovers that parton-parton
interactions diverge as longitudinal momenta go to zero. This can be understood by thinking
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about the fact that the cutoff isΛ2/P+, so that reducing the longitudinal momentum of a pair of
partons that interact is equivalent to lowering the cutoffΛ; andgΛ increases asΛ decreases. This
issue is extremely important, and I am avoiding it because it is complicated and because I do
not have a full solution to this problem. I will only add one cryptic remark. If a renormalization
group is used to run a cutoff on longitudinal momenta, the full interacting QCD hamiltonian
must be a fixed point of the longitudinal transformation because longitudinal scaling is a Lorentz
symmetry that cannot be violated. [4]

If we want to letε → 0, we must face the fact that the quark self-energy diverges even when
Λ is finite and identify a new cancellation mechanism. There are two possibilities. First, the
divergences could be canceled in the energy of a physical quark. Second, the energy of a single
quark could remain infinite with the divergences only being canceled in color singlet states. The
first possibility is clearly the one required in QED. However, there is no experimental evidence
for a finite mass quark; so we can explore the possibility that only color singlets have finite
mass. This can only happen if there are infrared divergent interactions that exactly cancel the
infrared divergent part of the self-energy, and I will show that this does indeed happen in a
second-order analysis of QCD. Roughly speaking, the self-energy of a monopole diverges but
that of a neutral dipole does not.

The second interesting feature of the above ‘mass’ is that it produces a dispersion relation
which differs from that of current masses. Normally a mass produces an energy of the form
m2/p+, wherep+ is the longitudinal momentum of the parton; but here we findΛ2/P+. This
means that the energy does not diverge like1/p+, but at this order is independent of the parton
momentum.

A nearly identical calculation reveals the second-order self-energy of gluons, and again we
find that the dominant term goes like

g2
ΛΛ2

P+
ln

(
p+

εP+

)
. (11)

I do not list the exact expression because it is not important. In QED we find that the photon
mass in the cutoff hamiltonian is infrared finite, and we expect that it is exactly canceled by
mixing with electron-positron pairs. However, in QCD the gluon mass is infinite and cannot
be canceled by mixing with gluon pairs if there are no free massless gluons. Here the story is
almost identical to that for quarks. If this divergence is not canceled by such mixing, there must
be a divergent interaction involving gluons that allows it to be canceled in color singlet states.
Once again, this is exactly what happens in a second-order analysis of QCD.

3. Confinement from Coupling Coherence

In addition to one-body operators we find quark-quark, quark-gluon, and gluon-gluon inter-
actions in the second-order coupling coherent hamiltonian. As we lower the cutoff, we remove
gluon exchange interactions, and these are replaced by direct interactions. The analysis of all
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of these interactions is nearly identical, so I will only consider the quark-antiquark interaction.
As stated above, in light-front coordinates partons with small longitudinal momentum are

high energy partons, and this has important consequences for the light-front hamiltonian. We
find important tree level counterterms that are not encountered in equal time coordinates. In
equal time coordinates a high free-energy gluon has a large momentum, and its exchange pro-
duces quarks with large momenta and therefore high energy. In light-front coordinates the
exchange of a wee gluon changes the momentum of quarks by a small amount, allowing them
to have low energy. As a result we find second-order two-body interactions between low energy
quarks generated by the removal of coupling to high energy gluons, and these interactions are
crucial for producing a constituent picture in light-front coordinates. Since these interactions are
dominated by the exchange of wee gluons, I will concentrate on the part of the quark-antiquark
interaction that diverges as the longitudinal momentum exchange goes to zero.

In the case of gluon exchange between a quark and antiquark, we need the coupling coherent
solution in Eq. (7). The exchange of high energy gluons is removed by the cutoff and replaced
in second order by a direct interaction with cutoffs projecting on all intermediate state energies
above the cutoff. We must add the canonical instantaneous gluon exchange interaction to this
induced interaction. The induced interaction is

VΛ = −4g2
ΛCF

√
p+

1 p+
2 k+

1 k+
2

q2
⊥

(q+)3

×
[
θ(|p−1 − p−2 − q−| − Λ2/P+) θ(|p−1 − p−2 − q−| − |k−2 − k−1 − q−|)

p−1 − p−2 − q−

+
θ(|k−2 − k−1 − q−| − Λ2/P+) θ(|k−2 − k−1 − q−| − |p−1 − p−2 − q−|)

k−2 − k−1 − q−

]
× θ

(
Λ2/P+− | p−1 + k−1 − p−2 − k−2 |

)
. (12)

Here the initial and final quark (antiquark) momenta arep1 andp2 (k1 andk2), and the ex-
changed gluon momentum isq. The energies are all determined by the momenta,p−1 = p2

⊥1/p
+
1 ,

etc. This part of the interaction is independent of the spins, which remain unchanged.
This interaction can be further simplified for our analysis by noting that we are interested

only in its most singular part, for whichq+ is extremely small. In this case|q−| is much larger
thanp−i andk−i , leading to the approximation

VΛ ≈ 4g2
ΛCF

√
p+

1 p+
2 k+

1 k+
2

(
1

q+

)2

θ(|q−| − Λ2/P+)

× θ
(
Λ2/P+− | p−1 + k−1 − p−2 − k−2 |

)
. (13)

The entire analysis can be made without making this approximation, and the results are the
same.
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We also need the instantaneous gluon exchange interaction,

Vinstant = −4g2
ΛCF

√
p+

1 p+
2 k+

1 k+
2

(
1

q+

)2

× θ
(
Λ2/P+− | p−1 + k−1 − p−2 − k−2 |

)
. (14)

The final cutoff on each of these interactions is the same, requiring the quark-antiquark energy
to change by less than the cutoff. Since this final cutoff appears everywhere and is unimportant
for the discussion, I will drop it. In addition to the cutoffs I have displayed, the same cutoff on
longitudinal momenta used in the last Section must be added; so that all longitudinal momenta
are required to exceedεP+.

Adding the above interactions and inserting the cutoff on longitudinal momenta we find

Vsingular = −4g2
ΛCF

√
p+

1 p+
2 k+

1 k+
2

(
1

q+

)2

θ(Λ2/P+ − |q−|) θ(|q+| − εP+) . (15)

The most singular part of the one-gluon exchange operator cancels the instantaneous interaction
above the cutoff, leaving us with the instantaneous exchange potential below the cutoff. If
Λ ≈ ΛQCD, we expect further gluon exchange to be suppressed, and we are left with this
singular interaction between the quark and antiquark.

The next step in the analysis is to take the expectation value of this interaction between
arbitrary quark-antiquark states. The first cutoff forces|q+|/P+ > q2

⊥/Λ2, and the second
cutoff forces|q+| > εP+. We see that|q+| can reach its lower limit only whenq2

⊥ < εΛ2,
and asε → 0 the singularity is suppressed because of this phase space restriction; but it is not
removed. The expectation value is

〈Ψ2(P )|Vsingular|Ψ1(P )〉 = −4g2
ΛCF

∫ dp+
1 d2p⊥1

16π3

dp+
2 d2p⊥2

16π3
φ∗2(p2) φ1(p1)

×
(

1

q+

)2

θ(Λ2/P+ − |q−|) θ(|q+| − εP+) , (16)

where as usualq = p1 − p2 andq− = q2
⊥/q+. The wave functions for the relative motion of

the quark-antiquark pair areφ1 andφ2, and I have suppressed their dependence on the total
momentumP = p1 + k1. I have not displayed the delta function normalization associated with
center-of-mass motion. To evaluate the singular part of this integral, change variables to

Q =
p1 + p2

2
, q = p1 − p2 , (17)

and expand the wave functions aboutq = 0. Only the leading term diverges, and it is
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〈Ψ2(P )|Vsingular|Ψ1(P )〉 = −4g2
ΛCF

∫ dQ+d2Q⊥

16π3
φ∗2(Q) φ1(Q)

×
∫ dq+d2q⊥

16π3

(
1

q+

)2

θ(Λ2/P+ − |q−|)

× θ(|q+| − εP+) θ(ηP+ − |q+|) + finite . (18)

η is an arbitrary constant that simply prevents|q+| from becoming too large, and it does not
matter since the divergence comes only from small|q+|. Completing the final integral we
obtain

〈Ψ2(P )|Vsingular|Ψ1(P )〉 = −g2
ΛCF Λ2

2π2P+
log
(1

ε

) ∫ dQ+d2Q⊥

16π3
φ∗2(Q)φ1(Q) + finite.(19)

Unlessφ1 andφ2 are the same, this vanishes by orthogonality. If they are the same, this
is exactly the same expression we obtain for the expectation value of the quark plus antiquark
divergent mass operators; except with the opposite sign. Therefore, there is a divergence in
the quark-antiquark interaction that is independent of their relative motion and which exactly
cancels the divergent masses! These cancellations only occur for color singlets, and they occur
for any color singlet state with an arbitrary number of quarks and gluons. Moreover, these
cancellations appear directly in the hamiltonian matrix elements, so we can take theε → 0 limit
before diagonalizing the matrix.

This is half of the simple confinement mechanism. At this point it is possible to obtain
finite mass hadrons even though the parton masses diverge. However, since the cancellations
are independent of the relative parton motion, we must study the residual interactions to see if
they are confining. Since I am interested in the long-range interaction, I will study the fourier
transform of the potential and computeV (r) − V (0) so that the divergent constant in which
we are no longer interested is canceled. The details of computing a fourier transform are not
illuminating, so I will simply list the results.

Vsingular(r)− Vsingular(0) →
g2
ΛCF Λ2

4π2P+
log(|x−|) , (20)

whenx⊥ = 0 and|x−| → ∞; and

Vsingular(r)− Vsingular(0) →
g2
ΛCF Λ2

2π2P+
log(|x⊥|) , (21)

when |x⊥| → ∞ andx− = 0. This potential is not rotationally symmetric, but it diverges
logarithmically in all directions.

If the potential is not rotationally symmetric, how can rotational symmetry be restored?
To answer this question, remember that the generators of rotations in light-front field theory
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contain interactions that change parton number. We expect the physical states in which a quark
and antiquark are separated by a large distance to contain gluons. There is no reason to assume
that the gluon content of these states is the same when the state is rotated, so rotational symmetry
will be restored in highly excited states only if we allow additional partons. This complicates
our attempt to derive a constituent picture, but we only need the constituent picture to work well
for low-lying states. The intermediate range part of the potential is rotationally symmetric, and
we may expect the ground state hadrons to be dominated by the valence configuration.

Isn’t the confining potential supposed to be linear and not logarithmic? As far as I know
there is no conclusive evidence that the long-range potential is linear, and heavy quark phe-
nomenology shows that a logarithmic potential can work quite well. [12] The fact is that we
know extremely little about highly excited states with large color dipole moments, and it is not
clear that measurable quantities are ever sensitive to such states. In any case, I do not want to
argue that these calculations show that the long-range potential in light-front QCD is logarith-
mic. Higher order corrections could produce powers of logarithms that add up to produce a
linear potential.

The important point with which I will conclude is thatH contains a confining interaction
that we are free to include inH0, giving us some hope of finding a reasonable bound state
perturbation theory for hadrons that resembles the bound state perturbation theory that has been
successfully applied to the study of atoms.
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