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Abstract

We consider Hamiltonian of field theory &t = 0 between fastly moving states and investi-
gate the limit of infinite momentur(p® — oo) of the states. In this way we get the information
about the Hamiltonian on the light-front. We fix ultraviolet cutoff in transversal momenta and
introduce partial renormalization of the remaining ultraviolet divergences. For\p® and
Yukawa models we assume the approximate decomposition of the fields in “hard” and “soft”
parts with respect to momentum argument of the Fourier modes?()inf these fields (“hard”
momenta increasing proportionally to the momentinof the states). The resulting light-front
Hamiltonian in such approximation contains new terms comparatively to the canonical form.
They depend on vacuum averages of “soft” field operators which are unknown but can play the
role of vacuum parameters in the light-front Hamiltonian. For the Yukawa model such param-
eters form entire functions in transversal space of (noncoinciding) arguments of field operators
entering this vacuum averages.

1. Introduction

It exists an open question whether the light-front field theory is equivalent to usual equal-
time one. A definite answer was found only for simple 2 - dimensional models (keor
Schwinger modéf ). Here we analyse this problem using, aS®inthe limiting transition to
the light-front.

2. Light-Front Hamiltonian

For explanation we start with ( 1+1 ) - dimensional*- model. Lorentz coordinates aré
andz?.

Consider matrix elements of equal-time Hamilton{d@?),._, and of momentum operator
(P?),0—o between “fastly moving states” (with total momentwi— oc). Then the matrix ele-
ments of the light-front Hamiltoniaf®~),+—, can be obtained by following limiting transition
(equivalent to Lorentz boost to infinite momentum frame):
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(dF[(P7)ar=olg™) = lim (\/%7709’3 = \3577“]30 — P¥)0_o| p* = \gn»’ (1)

n—0

whereq™,¢'" are finite light-front momenta.
Let H = (P° — P30,z = 2%, p = p*>, 0 = 05. In terms of canonical variables
é(x), T (z) = dyp we have atr® = 0

H = / dx{;(l'[ +00)% + ;m2¢2 +A0Y),  PP= —/d:vH8¢. )

Next we estimate the - dependence of matrix elements of operators between fastly moving
states ( for whichp| > 114, ¢ is a fixed parameter, ang — oo ). We suppose that this
dependence is determined by Lorentz boost properties of the operators. Accordingly we rescale
the momentum integration variables in the “Hamiltonidh?

p=qn ', alp) = /nalg),

[a(p),a'(p)] = 6(p — ©), lalq),a'(¢)] = 6(q — &), ©)

wherea'(p), a(p) are “bare” creation and annihilation operators ( see eq.(8) below ). Then some
power ofy is extracted from each term of the Hamiltonian.

If we keep only the modes witlp| > n~'4, we get, after limiting transition, the naive
canonical light-front Hamiltonian. As a next approximation we take into account the modes
with [p| < A, whereA > §, and A does not depend on. The intermediate modes with
A < |p| < n~'6 are neglected. Then Hamiltonian can be decomposed in poweysasf
follows:

H= Z“ + H, +nHy + O(n?), (4)
where
Hy = (g0 [T +00)s, 5)a-0= | dal2ala'(a)a(o) ©)
Hy = (H)pj<a, (6)
Hy = : [ dy{"-6* + 60 (0)8 + d(0)6" + 26} - ™)
Here
7 — — e = dq p iqy
o(y) = (d(x =nY))pizn-1s |q26\/m(a(Q)e + h.c.), (8)
d(x) = (G(x))pza; (9)
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(.. .)p<a means that only the modes withi < A are included.
Now we apply the perturbation theory with respectto

HIN =EID. =3 wlh) B = LS (10)
n=0 n=0
or
(Ho — Ey)|fo) =0, (11)
(Hy — E1)|fo) + (Ho — Ey)| f1) =0, (12)
(Hy — Ey)|fo) + (H1 — Ev)|f1) + (Ho — Eb)|f2) =0, (13)

The light-front “energies”are equal ton,,_o(n ' E(n)). So the proper solution corresponds
to Ey = E; = 0. We assume that(p)|physical vacuum) = 0if |p| > n~'d,n — 0 because at
large|p| the H, part of H dominate. Then each solution of eq.(11)gt= 0 is a superposition
of states

al(pr) ... a'(pa)d ... oIL.. . M|physical vacuum), (14)

Whereplv <3 Pn Z 7771& QAS = (¢)\p|§/\7 ﬂ = (H)|p\§/\-
LetP, be a projector onto the subspace of all such superpositions, sewttfat = | fo), PoHo =
0. Then atty, = E; = 0 it follows from eq.(12) that

PoH1Pol fo) = 0. (15)

The operatotH; depends only on “soft” fields, [I. Between soft states we havg = H,
which is positive definite. Hence the eq.(15) can be fulfiled only under absengélah the
states (14). Thus each solutipfy) of egs (11) and (15) is a superposition of states

a'(py) ...a' (p,)|physical vacuum) =0, py,...,pn > 1 0. (16)

According to eq.(12) af, = E; = 0 we can than putf;) = 0 without destroying the
generality.

Let P/ be the projector onto the subspace of all superpositions of states (16), 8 that
0,P4lfo) = |fo). Then from eq.(13) one gets

PoH2 Pyl fo) = Bzl fo)- (17)

The eq.(17) permits to find,. Some terms off, contains, beside hard fields, also products of
“soft” fields ¢. Between statefsy) this products reduce to vacuum averages of them, because
¢ comute with hard fields. Puting



by (y) = 5: \/Cf%(d( Yexp(iqy) + h.c.) = ®(z" =0,27), (18)

we reduce the operat%P()HzP{) to the form

(P) —_PLH,P, = /dx (m2 4+ 12M(62), )02 + 4N (0),®° + ADY} ;. (19)

zt=0 = \/—

This operator is the light-front Hamiltonian which differs from the naive one by terms with
unknown “condensate” parametdrs).,, (¢),. The same form is obtained in a better approxi-
mation, when one uses the “Gauss” vacuum and corresponding operatbiastead of bare
ones.

To apply this procedure to ( 3+1 ) - dimensional* - model we need only to introduce a
transversal cutoffpt| < Ay, wherept = (p', p?). In ( 3+1) - models containing fermions,
scalar and vector particles we can also introduce the transversal gutpfl A, . Then only
logarithmic divergences of bosonic masses remain. In general they cannot be removed by nor-
mal ordering. So, infinite mass counterterms must be added to the Hamiltonian from the begin-
ning. No divergences specific to Hamiltonian approach and absent in the Feynman formalism
arise at this stage because the counterterms do not contain time derfvaivesake the analy-
sis rigorous one has to transform the Hamiltonian contaning counterterms to a finite form before
the transition, — 0. ( by “similarity transformation®). Here we describe shortly only the for-
mal result for Yukawa model, using as before the approximate decomposition for fields, which
formally escapes the ultraviolet divergences (at fixed.

The model contains one scalar fieltlz) and one bispinor fermionic field

o=(3)
a = 1,2. The “Hamiltonian”"H = (P° — P3),0_¢ is
H=H,+ i/d3:c\IJT70 ((1° = 4)0s — 0L — (M + go)) . (20)
As before one obtains the decomposition
H = 71] (Ho +nH; + 773/2H3/2 + 772H2) + 0(773/2)- (21)
Then?/? appears because terms with three field operators exi$t iBonsequently the pertur-
bation parameter ig!/2. It must beE, = E,; = E; = E3/5 = 0. The E, is connected with
light-front Lagrangian. The result is
(P )oico = & / di / d%l{;(wﬂ +A2M(G2),) B + 4N (6), D + A +
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Zf VAL + M + g0+ g(), 0" [ L — M — g® — g{g),| ¥ —
- @«aﬂ —(o)2)ulot, —
_g / dz'~ / P (T F (' — o) (7) () D(F) —
—yg /dx’ (A (2™ —27)®(zh, 2/ )P (at,27) +
+ Ag(2'” — 27 ) UL (&) F(0) Ty (2, 27)] — (4mV2) AT x
x / dr'~As(x'™ — 27 ) (M + g{d)s + 9®)ur (M + g{d)s + 9®)s-} 1,

where® is defined as befor&,, are hard components of spinors (defined as for scalar field ),
Az~ —x7) (withi = 1,2,3) and F(2'+ — z+) are some functions depending on vacuum
averages of products of soft fields 0. ,,, Ul , taken at different points of space. The ap-
pearence of such functions can be compared with the approach of théwloeke also entire
functions are introduced into the light-front Hamiltonian from other reasons. The described
considerations may help to reduce the arbitrarines contained in these functions.
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