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Abstract

We consider Hamiltonian of field theory atx0 = 0 between fastly moving states and investi-
gate the limit of infinite momentum(p3 →∞) of the states. In this way we get the information
about the Hamiltonian on the light-front. We fix ultraviolet cutoff in transversal momenta and
introduce partial renormalization of the remaining ultraviolet divergences. For the “λφ4” and
Yukawa models we assume the approximate decomposition of the fields in “hard” and “soft”
parts with respect to momentum argument of the Fourier modes ( inx3 ) of these fields (“hard”
momenta increasing proportionally to the momentump3 of the states). The resulting light-front
Hamiltonian in such approximation contains new terms comparatively to the canonical form.
They depend on vacuum averages of “soft” field operators which are unknown but can play the
role of vacuum parameters in the light-front Hamiltonian. For the Yukawa model such param-
eters form entire functions in transversal space of (noncoinciding) arguments of field operators
entering this vacuum averages.

1. Introduction

It exists an open question whether the light-front field theory is equivalent to usual equal-
time one. A definite answer was found only for simple 2 - dimensional models ( likeλφ4 or
Schwinger model1,2 ). Here we analyse this problem using, as in1,2, the limiting transition to
the light-front.

2. Light-Front Hamiltonian

For explanation we start with ( 1+1 ) - dimensionalλφ4- model. Lorentz coordinates arex0

andx3.
Consider matrix elements of equal-time Hamiltonian(P 0)x0=0 and of momentum operator

(P 3)x0=0 between “fastly moving states” (with total momentump3 →∞). Then the matrix ele-
ments of the light-front Hamiltonian(P−)x+=0 can be obtained by following limiting transition
(equivalent to Lorentz boost to infinite momentum frame):
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〈q′+|(P−)x+=0|q+〉 = lim
η→0

(
1√
2 η
〈p′3 =

q′+√
2 η
|(P 0 − P 3)x0=0| p3 =

q+

√
2 η
〉), (1)

whereq+,q′+ are finite light-front momenta.
Let H ≡ (P 0 − P 3)x0=0, x ≡ x3, p ≡ p3, ∂ ≡ ∂3. In terms of canonical variables

φ(x), Π(x) = ∂0φ we have atx0 = 0

H =
∫

dx {1

2
(Π + ∂φ)2 +

1

2
m2φ2 + λφ4}, P 3 = −

∫
dxΠ∂φ. (2)

Next we estimate theη - dependence of matrix elements of operators between fastly moving
states ( for which|p| ≥ η−1δ, δ is a fixed parameter, andη → ∞ ). We suppose that this
dependence is determined by Lorentz boost properties of the operators. Accordingly we rescale
the momentum integration variables in the “Hamiltonian”H:

p ≡ qη−1, a(p) ≡ √
η ǎ(q),

[a(p), a†(p′)] = δ(p− p′), [ǎ(q), ǎ†(q′)] = δ(q − q′), (3)

wherea†(p), a(p) are “bare” creation and annihilation operators ( see eq.(8) below ). Then some
power ofη is extracted from each term of the Hamiltonian.

If we keep only the modes with|p| ≥ η−1δ, we get, after limiting transition, the naive
canonical light-front Hamiltonian. As a next approximation we take into account the modes
with |p| ≤ Λ, whereΛ � δ, andΛ does not depend onη. The intermediate modes with
Λ < |p| < η−1δ are neglected. Then Hamiltonian can be decomposed in powers ofη as
follows:

H =
H0

η
+ H1 + ηH2 + O(η2), (4)

where

H0 = (
1

2
η
∫

dx(Π + ∂φ)2
|p|≥η−1δ)η→0 =

∫ −δ

−∞
dq|2q|ǎ†(q)ǎ(q), (5)

H1 = (H)|p|≤Λ, (6)

H2 = :
∫

dy{m2

2
φ̌2 + 6λφ̂2(0)φ̌2 + 4λφ̂(0)φ̌3 + λφ̌4} : . (7)

Here

φ̌(y) ≡ (φ(x ≡ ηy))|p|≥η−1δ =
∫
|q|≥δ

dq√
4π|q|

(ǎ(q)eiqy + h.c.), (8)

φ̂(x) ≡ (φ(x))|p|≤Λ; (9)
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(. . .)|p|≤Λ means that only the modes with|p| ≤ Λ are included.
Now we apply the perturbation theory with respect toη:

H|f〉 = E|f〉, |f〉 =
∞∑

n=0

ηn|fn〉, E =
1

η

∞∑
n=0

ηnEn, (10)

or

(H0 − E0)|f0〉 = 0, (11)

(H1 − E1)|f0〉+ (H0 − E0)|f1〉 = 0, (12)

(H2 − E2)|f0〉+ (H1 − E1)|f1〉+ (H0 − E0)|f2〉 = 0, (13)

The light-front “energies”are equal tolimη→0(η
−1E(η)). So the proper solution corresponds

to E0 = E1 = 0. We assume thata(p)|physical vacuum〉 = 0 if |p| ≥ η−1δ, η → 0 because at
large|p| theH0 part ofH dominate. Then each solution of eq.(11) atE0 = 0 is a superposition
of states

a†(p1) . . . a†(pn)φ̂ . . . φ̂Π̂ . . . Π̂|physical vacuum〉, (14)

wherep1, . . . , pn ≥ η−1δ, φ̂ ≡ (φ)|p|≤Λ, Π̂ ≡ (Π)|p|≤Λ.
LetP0 be a projector onto the subspace of all such superpositions, so thatP0|f0〉 = |f0〉,P0H0 =

0. Then atE0 = E1 = 0 it follows from eq.(12) that

P0H1P0|f0〉 = 0. (15)

The operatorH1 depends only on “soft” fieldŝφ, Π̂. Between soft states we haveH1 = H,
which is positive definite. Hence the eq.(15) can be fulfiled only under absence ofφ̂, Π̂ in the
states (14). Thus each solution|f0〉 of eqs (11) and (15) is a superposition of states

a†(p1) . . . a†(pn)|physical vacuum〉 = 0, p1, . . . , pn ≥ η−1δ. (16)

According to eq.(12) atE0 = E1 = 0 we can than put|f1〉 = 0 without destroying the
generality.

LetP ′0 be the projector onto the subspace of all superpositions of states (16), so thatP ′0H0 =
0,P ′0|f0〉 = |f0〉. Then from eq.(13) one gets

P ′0H2P ′0|f0〉 = E2|f0〉. (17)

The eq.(17) permits to findE2. Some terms ofH2 contains, beside hard fields, also products of
“soft” fields φ̂. Between states|f0〉 this products reduce to vacuum averages of them, because
φ̂ comute with hard fields. Puting

√
2 q ≡ q+, (

1√
2
)y ≡ x−,
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φ̌+(y) ≡
∫ ∞

δ>0

dq√
4πq

(ǎ(q)exp(iqy) + h.c.) ≡ Φ(x+ = 0, x−), (18)

we reduce the operator1√
2
P ′0H2P ′0 to the form

(P−)x+=0 ≡
1√
2
P ′0H2P ′0 =:

∫
dx−{1

2
(m2 + 12λ〈φ̂2〉v)Φ2 + 4λ〈φ〉vΦ3 + λΦ4} : . (19)

This operator is the light-front Hamiltonian which differs from the naive one by terms with
unknown “condensate” parameters〈φ̂2〉v, 〈φ〉v. The same form is obtained in a better approxi-
mation, when one uses the “Gauss” vacuum and corresponding operatorsa, a† instead of bare
ones2.

To apply this procedure to ( 3+1 ) - dimensionalλφ4 - model we need only to introduce a
transversal cutoff|p⊥| ≤ Λ⊥, wherep⊥ ≡ (p1, p2). In ( 3+1 ) - models containing fermions,
scalar and vector particles we can also introduce the transversal cutoff|p⊥| ≤ Λ⊥. Then only
logarithmic divergences of bosonic masses remain. In general they cannot be removed by nor-
mal ordering. So, infinite mass counterterms must be added to the Hamiltonian from the begin-
ning. No divergences specific to Hamiltonian approach and absent in the Feynman formalism
arise at this stage because the counterterms do not contain time derivatives4. To make the analy-
sis rigorous one has to transform the Hamiltonian contaning counterterms to a finite form before
the transitionη → 0. ( by “similarity transformation”3). Here we describe shortly only the for-
mal result for Yukawa model, using as before the approximate decomposition for fields, which
formally escapes the ultraviolet divergences (at fixedΛ⊥).

The model contains one scalar fieldφ(x) and one bispinor fermionic field

Ψ(x) ≡
(

Ψ+,α(x)
Ψ−,α(x)

)
,

α = 1, 2. The “Hamiltonian”H ≡ (P 0 − P 3)x0=0 is

H = Hφ + i
∫

d3xΨ†γ0
(
(γ0 − γ3)∂3 − γ⊥∂⊥ − i(M + gφ)

)
Ψ. (20)

As before one obtains the decomposition

H =
1

η

(
H0 + ηH1 + η3/2H3/2 + η2H2

)
+ O(η3/2). (21)

Theη3/2 appears because terms with three field operators exist inH. Consequently the pertur-
bation parameter isη1/2. It must beE0 = E1/2 = E1 = E3/2 = 0. TheE2 is connected with
light-front Lagrangian. The result is

(P−)x+=0 = :
∫

dx−
∫

d2x⊥{1

2
(m2 + 12λ〈φ̂2〉v)Φ2 + 4λ〈φ〉vΦ3 + λΦ4 +
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+
i√
2
Ψ̌†

+[ 6 ∂⊥ + M + gΦ + g〈φ〉v]∂−1
− [6 ∂⊥ −M − gΦ− g〈φ〉v]Ψ̌+ −

− ig2

√
2
(〈φ̂2〉v − 〈φ〉2v)Ψ̌

†
+∂−1

− Ψ̌+ −

− g2
∫

dx′−
∫

d2x′⊥Ψ̌†
+(~x′)F (x′⊥ − x⊥)Ψ̌+(~x)Φ(~x′)Φ(~x)−

− g2
∫

dx′−[∆1(x
′− − x−)Φ(x⊥, x′−)Φ(x⊥, x−) +

+ ∆2(x
′− − x−)Ψ̌†

+(x⊥, x′−)F (0)Ψ̌+(x⊥, x−)]− (4π
√

2)−1Λ2
⊥ ×

×
∫

dx′−∆3(x
′− − x−)(M + g〈φ〉v + gΦ)x′− (M + g〈φ〉v + gΦ)x−} :,

whereΦ is defined as before,Ψ̌± are hard components of spinors (defined as for scalar field ),
∆i(x

′− − x−) ( with i = 1, 2, 3 ) andF (x′⊥ − x⊥) are some functions depending on vacuum
averages of products of soft fieldŝφ, Ψ̂±,α, Ψ̂†

±,α taken at different points of space. The ap-
pearence of such functions can be compared with the approach of the work3 where also entire
functions are introduced into the light-front Hamiltonian from other reasons. The described
considerations may help to reduce the arbitrarines contained in these functions.
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