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Abstract

Elements of the similarity renormalization scheme are illustrated by a second order
calculation of the effective light-front QCD Hamiltonian matrix elements between one-
gluon states.

1. Introduction

Our discussions indicate a need for a presentation of the similarity renormalization
scheme for Hamiltonians. I have chosen an example of an application to gluons in light-
front QCD. I describe all steps from a Lagrangian to the gluon mass counterterm in the
Hamiltonian. The similarity renormalization scheme is defined in Ref. 1.

2. Formulation of the problem

Our construction of a light-front quantum Hamiltonian for quarks and gluons draws on
the classical Lagrangian of chromodynamics. The Lagrangian depends on the space-time
coordinates through the fields ψ and A only. Therefore, it defines a conserved energy-
momentum tensor, T µν . The T+− component defines a light-front energy density that
produces a candidate for the light-front Hamiltonian by integration over the light front
space-time hyperplane. Using equations of motion for the fields and partial integrations
(neglecting terms at infinity) one can blindly express the Hamiltonian in terms of fields
ψ+ and A⊥ and one or two inverse powers of the operator i∂+ acting on some products
of these fields. The fields are then expanded into creation and annihilation operators to
obtain the quantum theory. For example, for x+ = 0,

A⊥(x) =
∑
σc

∫
[dk] exp [−Eν(k)/Λ]

[
akσc ε

⊥
σ T

c e−ikx + a†kσc ε
⊥∗
σ T c eikx

]
.

[dk] = dk+d2k⊥(2k+)−1(2π)−3. The Boltzmann factor cuts off large energies, 2Eν =
k++k−(ν), k−(ν) = (k⊥2+ν2)/k+, when they are much larger than the cutoff parameter Λ.
A similar expansion is written for ψ+ with, possibly, a different parameter ν. For inverse

powers of i∂+, the rule is (i∂+)−n → (i∂+)−n exp
{
−
[
|i∂+|+ (−∂⊥2 + ν2)/|i∂+|

]
/2Λ

}
for seagulls associated with gluon fields, with a similar rule for seagulls associated with
fermions. The parameters ν may be equal to bare masses in the free part of the Hamilto-
nian, they may depend on Λ but, generally, they need to be different from zero in order
to cut off divergences for small k+. The resulting Hamiltonian is finite. We normal or-
der it and we throw away all terms resulting from commuting creation and annihilation
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operators until only normal-ordered terms are left. This procedure may look naive. But,
if we apply it to electrodynamics and then calculate some tree diagrams for scattering
processes using the Hamiltonian, we reproduce Feynman results in the limit Λ → ∞.
Similar things happen in QCD. This is a wonderful Hamiltonian, HΛQCD. The problem
is that when we try to solve for its eigenvalues using various methods, any method you
want, our answers depend on Λ and we need to think about it. In perturbation theory,
the problem appears when we calculate a loop. In QCD, we need a strategy to define
the Hamiltonian in a way that will allow for solving the relativistic hadronic bound state
problem, not only order by order loop diagram problems.

The key simplifying property of the Boltzmann regulating factor that we will use in
the example is that exp(−E1/Λ) · exp(−E2/Λ) = exp[−(E1 + E2)/Λ], and the sum of
free light-front energies of two particles can be written in terms of the free invariant mass
of both particles together and their total + and ⊥ momenta. Therefore, the Boltzmann
regulating factor in the field expansions will imply the invariant mass regularization in
second order corrections to the gluon matrix elements in the effective Hamiltonian. We
will not need to consider more than two particles in the example. It is important that
exp is an analytic function, for simplicity of the counterterms.

3. Similarity

We introduce a giant cutoff Ω � Λ and we totally discard all Fock states that have
total free energies larger than Ω. This introduces no error for finite Λ and we can always
keep Ω arbitrarily larger than Λ. In the Fock space of states with energies smaller than
Ω, our Hamiltonian is now a giant matrix with matrix elements approaching quickly zero
for energies larger than Λ. The question is why results of diagonalization of this matrix
depend on Λ. The answer is that we have suppressed states with energies much bigger
than Λ. Including effects of coupling to those states would produce additional terms in the
Hamiltonian with the cutoff Λ if it were to be equivalent to the initial Hamiltonian with
no such cutoff. Without including those terms, the spectrum and most other observables
do not have a limit when Λ →∞. The similarity renormalization scheme tells us how to
find the missing terms. Then, our results will not depend on the arbitrary Λ any more, no
matter how large it is (although always infinitely smaller than Ω), by construction. The
similarity output is, (1) the missing terms (counterterms) in the initial Hamiltonian with
very large Λ and, (2) another equivalent Hamiltonian with a finite and arbitrarily chosen
cutoff, λ, that can be used for calculations. I shall consider only perturbative analysis;
for examples of nonperturbative iterative procedures see Ref. 1. The counterterms are
important because we cannot restore symmetries violated by the cutoff without including
counterterms. One of the most important examples is the special relativity symmetry that
is initially included in the Lagrangian through the abstract notions of local objects and
events. In Dirac’s program from Ref. 2 the relevance of renormalization to the problem
of constructing relativistic quantum theory is not mentioned.
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The QCD Hamiltonian is equal HQCD = HΛQCD + XΛ in the limit Λ →∞. XΛ does
not vanish in the limit. We find XΛ by making the following steps. HQCD is transformed
by a similarity transformation, S, to H ′

QCD(λ). λ defines a width of H ′
QCD(λ), for example,

as a width of the band-diagonal Hamiltonian matrix in the Fock basis. The width says
how large free energy jumps can be produced by the Hamiltonian. The small width λ
excludes a possibility that the cutoff Λ may appear in perturbative calculations to orders
smaller than ∼ Λ/λ if the matrix elements of H ′

QCD(λ) are independent of Λ. Therefore,
the only potential source of Λ-dependence in the spectrum of H ′

QCD(λ) in perturbation
theory is the explicit Λ-dependence of its matrix elements in the narrow band. We find
XΛ by demanding that this explicit Λ-dependence of the matrix elements disappears for
Λ →∞. The resulting effective Hamiltonian, H ′

QCD(λ), has the same cutoff-independent
spectrum as HQCD because S is unitary. The free part of H ′

QCD(λ) is the same as in
HQCD. Now, S = 1+T = 1+a+h, where h = (a2 +h2)/2 and a† = −a and h† = h. This
notation is used to explain the method of defining S by a recursion. a and h must vanish
when HI vanishes, because H0 is already diagonal. Note that h is of higher order in HI

than a. We find S by expanding a and h in power serieses in the interactions so that the
lowest order terms in a induce higher order terms in a and h. Algebraic manipulations on
the relation H ′ = S†HS produce the following equation with the lowest-order unknown
terms on its left-hand side,

H ′
I + [a,H0] = HI + {H0, h}+ T †HI +HIT + T †HT = Q.

We define H ′
I = uλ[Q] and [a,H0] = (1 − uλ)[Q]. This is only one out of many possible

ways of splitting the right-hand side into two parts on the left-hand side in order to define
H ′ and S. The operation uλ makes H ′ have the width λ. This is explained by an example
of the action of uλ on a generic Hamiltonian term containing products of creation and
annihilation operators:

uλ

∏
i∈I

a†i
∏
j∈J

aj

 = u(I, J, λ)
∏
i∈I

a†i
∏
j∈J

aj.

The function u(I, J, λ) can be chosen, for our example, in the form u(I, J, λ) = θ[λ2 −
(EI − EJ)2], where EK =

∑
k∈K Ek and Ek’s denote free energies of particles created by

the correspodning a†k’s. It is clear that matrix elements of H ′ equal zero for states that
differ in energies by more than λ. At the same time, the matrix elements of a vanish near
the diagonal and one can solve for a knowing the commutator because matrix elements
of a equal 0 when θ[λ2 − (EI − EJ)2] = 1. Thus, there is no small-denominator prob-
lems in our perturbative example despite the presence of degenerate states. In general,
one needs smooth, analytic functions u(I, J, λ) in order to avoid complicated theoretical
analysis. Physically, the diagonal proximity condition means that the effective Hamilto-
nian describes interactions of soft, composite constituent quarks and gluons that cannot
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suddenly change their momenta by arbitrary amounts in local interactions. This point
and the related theory will be described elsewhere.

Expanding in power serieses in the coupling constant, H ′
I 1 = uλ[HI 1], a1 = (1− uλ)[HI 1]

(the line denotes the energy denominator), one obtains (λ is dropped for brevity)

H ′
QCD2 = u

{
HQCD2 −

[
(1− u)[HQCD1], u[HQCD1]

]
+

1

2

[
(1− u)[HQCD1], (1− u)[HQCD1]

]}
.

4. Calculation of XΛ2

The last equation above defines the effective light-front Hamiltonian for QCD in second
order perturbation theory. We shall describe its matrix elements in one gluon states, |g〉 =
|p+ p⊥ εσ c〉 = a†pσc|0〉. The Hamiltonian conserves momenta p+ and p⊥ and, therefore, the
left and right free energies of the one-gluon states are equal. The second term does not
contribute because of the u(1 − u)-factor in the commutator. It would contribute a Λ-
independent term for a smooth u. The gluon part of the second-order counterterm XΛ2

in HQCD2, which we denote by XgΛ2, is determined from the condition that

lim
Λ→∞

〈g′|
{
XgΛ2 +HQCD1(p

−
g −H0)

−1θ[(p−g −H0)
2 − λ2]HQCD1

}
|g〉

exists. The above expression results from a number of simplifications that occur due
to the same left and right free energies in the matrix element and properties of the θ-
function. Note that the intermediate states with free energies that are close to p−g do
not contribute and the main contribution comes from states with free energies that are
bigger than p−g +λ. The Λ-dependence comes from high energy states. The effective gluon
Hamiltonian term that has the same matrix elements in the one gluon states is (the outer
u = 1 in this case and the same ν is used for quarks and gluons)

H ′
g2 =

∑
σc

∫
[dp] exp [−2Eν(p)/Λ] a†pσc apσc[xg2(p,Λ, λ) + fg2(p,Λ, λ)],

where

fg2(p,Λ, λ) = − α

4πp+
exp {−(p+ + p−)/Λ}

∫ 1

0
dx
∫ ∞

λp+
dz exp

{
−{z +

ν2

x(1− x)
}/Λp+

}
·

· {Nf [1− 2x(1− x)] +Nc[(1− x)/x+ x(1− x)/2]} .

The bare masses from the initial Hamiltonian are put equal zero for simplicity. A smooth
u would produce a different result. For example, u(I, J, λ) = λ2[(EI −EJ)2 + λ2]−1 leads
to the factor z4[λ2p+2 + z2]−2 instead of θ(z − λp+) above. The first term in the bracket,
∼ Nf , is the quark-loop contribution to the gluon self-energy and the second term, ∼ Nc,
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is the gluon-loop contribution. The gluon part is singular for ν = 0. In the limit ν → 0
we have

fg2(p,Λ, λ) = − α

4π

[
Λ− λ− p+ − p⊥2

p+

] [
2

3
Nf +Nc

(
log

Λp+

ν2
− γ − 11

12

)]
.

The existence of limΛ→∞H
′
g2 requires that

xg2(p,Λ, λ) =
α

4π

{
Λ

[
2

3
Nf +Nc

(
log

Λp+

ν2
− γ − 11

12

)]
−
[
λ+ p+ +

p⊥2

p+

]
log

Λ

ν
+ cg2

}
.

cg2 = cg2(p
+, p⊥2, λ, ν) is a finite (i.e. Λ-indpendent) and unknown term. However, the

finite term should exactly cancel terms that depend on the ratio p+/ν and violate Lorentz
symmetry, and other terms that scale under Lorentz boosts like a constant or like p+

(unless some other cancellation mechanism for those terms is present). Note that the
most divergent parts of the counterterm are of the form of a chemical-potential operator
∼ ΛN̂g, not a mass operator. A gluon mass term arises but it is proportional to ν2 and
it is not displayed in the limiting expression above. Thus,

H ′
g2 =

∑
σc

∫
[dp] exp [−2Eν(p)/Λ] a†pσc apσc

α

4π

[
d1
p⊥2

p+
+ d2

ν2

p+

]
.

The constants d1 and d2 must be determined from physical conditions, such as current
conservation, and “coupling coherence” may constrain their values and dependence on λ.3

We wish to add a few comments. The Boltzmann regularization factor leads to more
complicated structures for overlapping divergences. For example, we could not exclude
appearance of the term ∂iAi∂jAj. The similarity transformation can be performed in a
variety of ways. For example, the unitarity condition can be satisfied by writing S =
eT , where T is antihermitean. Splitting of Q can be arranged in more convenient ways
for specific calculations. An exciting calculation of qq̄ matrix elements of H ′

QCD2 using
coupling coherence to obtain confinement potential has been done by Robert Perry.3

Finally, but certainly not the least importantly, the similarity can be defined in terms of
operators without using Fock space restrictions of the Tamm-Dancoff type.
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