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Abstract

It is shown that the quantization of the unphysical degrees of freedom, which leads to the
Mandelstam–Leibbrandt prescription for the infrared spurious singularities in the continuum
light cone gauge, does indeed suggest some quite natural recipe to treat the zero modes in the
Discretized Light Front Quantization of gauge theories.

1. Introduction

Light Front Dynamics (LFD) of field theories, in whichx+ = x0 + x3 plays the role of the
evolution parameter, has many appealing and useful features1. Among them, the maybe most
important one concerning the quantum theory, is the occurrence of a nonperturbative vacuum
simpler than in the ordinary time formulation. In the case of gauge theories, the LFD leads
to the light–cone gauge as the most convenient choice for the subsidiary condition. However,
owing to the need of defining the inverse of∂− ≡ ∂

∂x−
, x− = x0 − x3, the difficult problem

arises of a consistent handling for the infrared spurious singularities.
Since the very early attempts2,3 to deal with the above matter, the attitude was the following:

the zero modes, associated to∂−, are eliminated assuming suitable boundary conditions for all
the fields atx− = ±∞ and, consequently, the spurious infrared singularities are defined, in the
momentum space, through the Cauchy Principal Value (CPV) prescription (or some equivalent
to it). It turns out that the ensuing Feynman perturbation theory does not fulfil any power count-
ing criterion and eventually leads to inconsistent results, even at one loop4 as in the SUSY N=4
model. As a consequence, the above mentioned philosophy is ruled out by explicit perturbative
calculations.

In order to restore the agreement between light-cone gauge and covariant gauge perturbative
calculations, in the SUSY N=4 model, S. Mandelstam proposed to define5 the spurious infrared
singularities as follows:

1

[k−]
≡ lim

ε→0+

1

k− + iεsgnk+

, (1.1)

where the limit is understood in the sense of distribution (an alternative, but equivalent, form6

193



has been proposed by G. Leibbrandt). Shortly afterwards it has been shown that the Mandelstam–
Leibbrandt (ML) prescription (1.1) originates from canonicalequal time quantization7 and,
later on, that the corresponding Feynman perturbation theory lies on the same firm ground as
in the covariant gauges. As a matter of fact, the ML prescription fulfils generalized power
counting, it allows the Wick rotation in the Feynman integrals and, very remarkably, it leads to
perturbative renormalizability and unitarity7,8, once in the effective action some non-local and
non-covariant counterterms are introduced, which arecompletely determinedto all order in
the loop expansion.

2. The continuum Light Front formulation

As previously mentioned, the ML prescription naturally emerges from the ordinary equal
time canonical quantization. Very recently, it has been shown9 that actually the ML form of
the propagator can be obtained from a Light Front formulation, provided some zero modes are
properly taken into account and suitably quantized. Let me briefly recall the main points of the
derivation.

The lagrangean density of the free radiation field in the light–cone gauge is given by

L = −1

4
FµνF

µν + ∂kλ∂kA
+ , (2.1)

with x⊥ = (x1, x2), j, k, ... = 1, 2,A± = A0±A3, the evolution being alongx+. The subsidiary
conditionA+ = 0 immediately follows, if the boundary conditionA+(x±, x⊥) → 0, when
|x⊥| → 0, is assumed and the equations of motion read

∂2
−A+ + ∂−∂kA

k = 0 , (2.2a)

(4∂+∂− − ∂2
⊥)Ak − ∂k(∂−A+ + ∂jA

j) = 0 , (2.2b)

2∂+∂−A+ − ∂2
⊥A+ − 2∂+∂kA

k = 2∂2
⊥λ , (2.2c)

leading to∂−λ = 0. If we impose the boundary conditionλ→ 0 whenx− → ±∞, thenλ ≡ 0
and no zero modes are present. However, as previously emphasized, this eventually yields the
CPV prescription for the spurious singularity in the Feynman propagator and, therefore, to the
inconsistent perturbation theory. To be consistent we have to keepλ = λ(x+, x⊥) 6= 0, which
has to be correctly determined within the Light Front formalism. To this aim let us define

Ak(x) ≡ Tk(x) +
∂k

∂2
⊥
ϕ(x+, x⊥) ; (2.3)

from the equations of motion we obtain

(4∂−∂+ − ∂2
⊥)Tk = 0 , (2.4a)
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A+ = ∂−1
− ∂kTk − 2

(
λ+

∂+

∂2
⊥
ϕ

)
=

4∂+

∂2
⊥
∂kTk − 2

(
λ+

∂+

∂2
⊥
ϕ

)
, (2.4b)

since we are working withon shellfree fieldsTk.
Now, in order to find some Light Front operator algebraisomorphic to the canonical equal

time operator algebra, we have to impose (ṽ ≡ (v−, v⊥))

[T j(x), ∂+T k(y)]x+=y+ = iδjkδ(3)(x̃− ỹ) ; (2.5)

[ϕ(x̃), λ(ỹ)] = iδ(x+ − y+)δ(2)(x⊥ − y⊥) ; (2.6)

[T k(x), ϕ(ỹ)] = [T k(x), λ(ỹ)] = [ϕ(x̃), ϕ(ỹ)] = [λ(x̃), λ(ỹ)] = 0 . (2.7)

Some key remarks are in place concerning the above operator algebra: namely,
i) the commutator[ϕ(x̃), λ(ỹ)]x+=y+ does not make sense. This means that it is not pos-

sible to simultaneously specify all the fields on the same “initial” hyperplanex+ = constant,
but one has to specify the zero mode commutators for different (not coincident) Light Front
“times”. A related feature is that the canonical Light Front HamiltonianP+ does not provide
the evolution of the zero mode fields (see also below).

ii) The space of the state vectors is an indefinite metric linear space, as we already know
from canonical equal time quantization7.

iii) In the Light Front dynamics, we have to require3,7 that all the components ofTµ(x)
are operator valued distributions acting on the Besov spaceT (R3), at fixedx+; this is the space
of the rapidly decreasing functions, whose integral overx− does indeed vanish. Consequently
one might attempt to formulate the theory on a compact domain alongx− in the presence of
periodic boundary conditions.

3. Discretized Light Front Quantization

The Discretized Light Front Quantization (DLFQ) has been proposed10 to provide an in-
frared cut–off for the spurious singularities and some alternative non–perturbative computer
algorithm other than Euclidean lattice QCD; moreover one can easily appreciate the non trivial
features associated with the onset of the zero modes. Let us define our theory on the hyper-
cylinder Ω− = {xµ|x+ ∈ R, x⊥ ∈ R2;x− ∈ [−L,L]} and impose toAµ periodic boundary
conditions: namely,

Aµ(x) = A◦µ(x+, x⊥) +
∑
n6=0

An
µ(x+, x⊥) exp

{
i
πn

L
x−
}

, (3.1)

the zero modesAn=0
µ ≡ A◦µ being now independent fields in the LFD.

Let us first discuss the free radiation field. The normal mode sector,n 6= 0, can be treated
according to the usual Light Front formulation, since the derivative∂− can be inverted as

(∂−1
− ∗ Φ)(x) =

∑
n6=0

L

iπn
Φn(x+, x⊥) exp

{
i
πn

L
x−
}

, (3.2)
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whereΦ is any of the normal field components. Among the zero modes, the componentA◦−
is gauge invariant, since the infinitesimal gauge transformationδA+(x) = ∂−Λ(x) involves a
periodic functionΛ. The lagrangean density for the zero modes can be written as

LZM =
1

2
(∂A◦−)2 − 1

2
(F ◦12)

2 − F ◦+k∂kA
◦
− − A◦−∂

2
⊥λ , (3.3)

which is singular and leads to the primary first class constraints

π◦− ≈ 0 ; ρ◦k ≡ π◦k − ∂kA
◦
− ≈ 0 . (3.4)

It should be stressed that, since the constraintsρ◦k ≈ 0 are first class, at variance with the
corresponding ones in the normal mode sector which are second class, there is an additional
“transverse” gauge invariance in the zero mode sector. As a matter of fact, the equations of
motion for the zero modes: namely,

∂2
⊥A

◦
− = 0 =⇒ A◦− = 0 ; (3.5a)

∂2
⊥A

◦
+ − 2∂−∂kA

◦
k + 2∂2

⊥λ = 0 ; (3.5b)

(∂2
⊥δjk − ∂j∂k)A

◦
k = 0 , (3.5c)

do indeed explicitly exhibit the “transverse” gauge invariance (notice that the canonical Light
Front zero mode HamiltonianP ◦+ is weakly vanishing, thereby preventing the ordinaryx+ evo-
lution for the zero modes, as already mentioned). There are infinitely many ways, of course, to
remove the above residual local gauge freedom11 . However, at the quantum level, this entails
the pathological CPV propagator in the continuum limitL→∞. On the contrary, the require-
ment of a smooth transition to the consistent continuum formulation actually suggests to keep
that freedom and, instead of removing the gauge degrees of freedom, one is led to impose the
following zero mode commutation relations: namely,

[ϕ(x+, x⊥), λ(y+, y⊥)] = iδ(x+ − y+)δ(2)(x⊥ − y⊥) , (3.6)

whereA◦j(x
+, x⊥) = ∂j(∂

2
⊥)−1ϕ(x+, x⊥), in perfect analogy with eq. (2.6). The above recipe

ensures that, in the continuum limit, the correct ML quantization scheme is indeed recovered.
The interaction with spinorial matter requires the introduction of the two Light Front com-

ponents of the Dirac fieldψ± = 1
2
γ0γ±ψ, satisfying antiperiodic boundary conditions (i.e.

no fermion zero modes), in such a way to get a periodic fermion currentJµ(x). Among the
Maxwell equations for the zero modes we have

∂2
⊥A

◦
− + J◦− = 0 , (3.7)

involving the component of the potential to be gauged away. At first sight, eq. (3.7) seems
to prevent11 the usual light–cone subsidiary conditionA◦− = 0; nonetheless, one can fulfil
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the strong light–cone gauge, provided one requiresJ◦− = 0. This constraint on the fermion
field componentψ+, which is the independent one, is quite acceptable in the discretized (i.e.
regularized) formulation. As a matter of fact, the physical fermion current in the continuum can
not contain zero modes, if we ask the chargeQ− to be finite after the removal of the infrared
regularization alongx−. Once again, in order to solve the dynamics of the gauge potential
zero modes, we still do not eliminate the redundant degrees of freedom and, after settingA◦k =
T ◦k +∂k(∂

2
⊥)−1ϕ, we impose the commutation relations (3.6), the quantitiesT ◦k being determined

by equations of motion in the zero mode sector. In this way, step by step in perturbation theory,
the consistent formulation including the ML zero modesλ andϕ should be recovered in the
continuum limitL→∞.
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