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Abstract

Spontaneous breaking of chiral symmetry is discussed in the light-cone framework. The
essential ingredient is an infinite number of constituents near zero light-cone momentum. These
high (light-cone) energy degrees of freedom freeze out and leave behind some explicit symmetry
breaking in the low (light-cone) energy effective Hamiltonian. Connections with Regge theory
and soft pion theorems are discussed. Taking the order parameter to be the 4-th component of
a chiral 4-vector, the effect of the spontaneous symmetry breaking on meson masses and decay
width is calculated and compared with experimental data.

1. Introduction

Long before QCD, when I started thinking about field theory in the light-cone (LC) frame
[1], I was attracted by the fact that in the LC frame the vacuum is just empty space and there
is no confusion between vacuum and particles. Since I was trying to understand hadrons, it
seemed unnecessary to spend time understanding the vacuum — and getting out “absolutely
nothing”. Of course, I was wrong and the vacuum is very interesting, but it still sounds like a
nice idea to calculate hadrons in theinfinite momentum frame[2], where everything moves so
fast relative to the vacuum that it would decouple from it in some sense.

Around 1972, i.e. when QCD was considered as a candidate for the strong interactions but
before QCD became the standard understanding of what the strong interaction was, it became
fairly clear that the basic problems of strong interaction was twofold: the confinement problem
and the chiral symmetry breaking problem. Since I was more interested in confinement, and
since the LC frame does not seem to be an especially helpful way to think about confinement,
I abandoned the LC and started thinking about lattice gauge theory. But I also felt that chiral
symmetry breaking (χSB) is a problem that could very well be understood in the LC frame.
First it seems a bit of a puzzle how a symmetry breaking can occur in the LC frame because,
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after all, in the LC frame the vacuum is just the structureless Fock space vacuum. In this lecture,
I will provide a picture of howχSB can occur in the LC framework and I will work out some
of the consequences.

The parton model is an interesting way to think about hadrons. In the naive parton model,
one simply pictures a fast moving particle as being some collection of constituents with rela-
tively large momentum, such that when one boosts the system, doubles its momentum, all these
partons double their momenta and so forth. Upon boosting the system to infinite momentum
the partons would all become very far fromη = 0, whereη is the fraction of the particle’s lon-
gitudinal momentum carried by the parton. Since all the vacuum activity takes place atη = 0,
it seems very curious how these partons (at finiteη) could “feel” what is going on atη = 0.

Chiral symmetry is the symmetry generated byQα
5 , whereα is some isospin index. In the

LC frame, this is just the sum over all partons of the parton’s helicity times its isospin times
a plus or a minus — depending on whether it is a quark or an antiquark [5]. Therefore the
conservation of chiral symmetry in the LC frame is a very simple thing: it just says that some
kind of “generalized helicity” is conserved and it does not appear to have to do with quark
masses. Since quark masses can be introduced into the LC frame without causing problems
about helicity conservation, one encounters the next puzzle: how come that if one gives a mass
to a quark, chiral symmetry is broken in an ordinary frame of reference but in the LC frame it is
not? Besides being confusing this is also a nuisance because obviously one cannot break chiral
symmetry by simply adding an “induced mass term” to the LC Hamiltonian.

The right way to think about spontaneous breaking of chiral symmetry on the LC is that
it somehow manifests itself through interactions between partons at finiteη andη = 0 (the
vacuum). The problem or puzzle with this is that matrixelements connecting states which are
separated by a large distance in rapidity1 are suppressed. So ho how could the valence quarks
possibly feel what is going on atη = 0? After QCD was invented, there seemed to be a
mechanism by which things at finiteη can connect toη = 0, namely by emitting a soft gluon.
Since the spin of gluons is larger than that of quarks they can more easily connect regions that
are widely separated in rapidity. However, the emission of a soft gluon does not flip the helicity
of the quark and therefore it does not seem that gluons being emitted into theη = 0 region has
much to do with theχSB.

Before we embark on constructing a model for spontaneous symmetry breaking, I should
emphasize some very fundamental property of LC Hamiltonians: under a rescaling of the LC
momentum,η → λη, the LC-Hamiltonian scales likeH → H/λ. This looks like a dilatation
symmetry if we think of theη-axis as a spatial axis. Of course, it is not a spatial axis, but if
we assume that things are short range coupled on theη-axis we can consider it as if it were a
spatial axis and formulate a field theory on this axis. The dilatation symmetry then reflects some
underlying scale invariance of this field theory and the right tool for studying such a system is
the renormalization group.

1Rapidity is the logarithm of the LC-momentumη.
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2. The Long Arm of the Vacuum2

A particle or hadron is not just a collection of partons at finiteη. In fact, partons fill the
η-axis in a way which gets denser and denser as one goes to smallerη: according to Feynman
and Bjorken, the number of constituents per unitη is given bydη/η. The resulting accumulation
of partons at lowη is usually called thewee partons. The question here is: can one imagine
a process that would allow to transmit the information about theχSB fromη = 0 through the
chain of wee partons to finiteη; one at a time, so that at no place large momentum is transferred.

At first this seems impossible: if one thinks of theη-axis as being more or less short range
coupled (short “range” inη space) then one can regard the wee partons as some kind of1 + 1
dimensional system. Since one cannot have spontaneous symmetry breaking of a continuous
symmetry in a1 + 1 dimensional system, this seems forbidden right away. However, as the
following model demonstrates, there is in fact no problem about the1 + 1 dimensionality. Let
us consider a collection of constituents which are distributed along theη-axis according todη/η.
Each constituent is assumed to have a LC momentumηi and some internal degree of freedom.
For simplicity, we will consider aU(1) symmetry here, which will not be specified any further.
The U(1) phase of each parton will be denoted byφi with conjugate momentumΠφi

. The
Hamiltonian is assumed to consist of a kinetic term,Π2

φi
/ηi, for each constituent plus a nearest

neighbor (inη-space) coupling of the form(φi − φi−1)
2/η̄, whereη̄ can be chosen to be the

averageη of the two constituents. Theη-dependence of these terms has been chosen such that
the LC-Hamiltonian scales like LC-momentum−1. One obtains

H =
∑

i

(
Π2

φi

ηi

+ g
(φi − φi−1)

2

ηi + ηi+1

)
. (1)

The dη/η distribution of partons can be built into this model by furthermore assuming that
∆η, the distance between neighboring partons, goes likeεη, whereε is some small parameter,
characterizing the density of partons on the rapidity axis. This Hamiltonian can be solved by
a simple mathematical trick. For smallε, one can make a continuum approximation, and the
Hamiltonian becomes

H =
∫ 1

0
dη
(
Π2

φη
+ g (∇ηφη)

2
)
, (2)

where we have arbitrarily pickedη = 1 as the endpoint of the axis. A nice order parameter
for theU(1) symmetry of this system iscosφ. Since Eq.(??) is just the Hamiltonian for a free
massive field, one finds that〈0| cosφ|0〉 is essentially given byexp (−〈0|φ2|0〉) (this result is
obtained by expandingcosφ and calculating all the contractions). Usually in quantum field
theory, the expectation value of the square of a field is infinite (in this case it would be loga-
rithmically infinite). Therefore this kind of matrix element usually vanishes. Of course this is
an UV-divergence and the theory should be cut off. A natural cutoff is provided by∆η = εη,

2There is an expression in Englishthe long arm of the lawwhich means you cannot get away from the police,
no matter how hard you try.
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the spacing between neighboring constituents before we made a continuum approximation of
the system and henceε plays the role of some kind of UV-regulator here. With such a cutoff in
place one obtains

〈0|φ2
η|0〉 ∼ log

η

∆η
= log

1

ε
, (3)

and as long asε is finite, i.e. as long as the density of partons on the rapidity axis is not infinite,
one gets a finite nonvanishing matrix element for the order parameter〈0| cosφ|0〉. Why does
this violate the usual rules about1+1 dimensions? Usually, what happens is1+1 dimensional
systems fluctuate too strongly such that there is no order left. Here the coupling, i.e. the spring
constant between neighboring partons, gets stronger and stronger as one approachesη = 0 so
rapidly that the system is able to hold itself together — despite the fact that there is an infinite
number of steps betweenη = 0 and finiteη. It thus becomes possible to have spontaneous
symmetry breaking.

3. Regge Theory

Let us consider now the spatial distribution of the partons in the transverse directions. In
principle, there is some wavefunction from which one can calculate this distribution. However,
many qualitative features can be understood on the basis of very simple arguments. First let
us order the partons in sequence of rapidity. We will again assume that things are short range
coupled in rapidity. Therefore, if we go down the chain inη, the transverse position behaves on
average like a random walk, i.e. its square grows like the number of partons down the chain

r2
⊥ ∝ − log η. (4)

Assuming that the transverse spatial distribution at positionη is Gaussian,ρ(~r2
⊥, η) ∼ exp(−~r2

⊥/ log η),
one can compute the Fourier transform

F (~q⊥) ∼ exp(−~q2
⊥ log η) = η−~q2

⊥ . (5)

Of course, there are all kinds of dimensionful constants which have been left out in these equa-
tions.

This formula (??) is a special case of a very general feature, namely that many quantities
have power law dependence onη. The reason power laws keep reoccuring is because of the
abovementioned scale invariance. The formal machinery which is usually being used to describe
this behavior is Regge pole theory.

As I have indicated already, other quantities are also likely to be power law distributed. Let
us consider the average charge per parton. For smallη it has to vanish — otherwise the total
charge carried by the partons is infinite. Experimentally, one obtains for the average charge per
parton at positionη approximately

e(η) ≈ êη0.5. (6)
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ê is called theresidue. Now let us combine this result with the transverse distribution of the
partons to calculate the electromagnetic form factor of the hadron. One obtains

FEM(~q⊥) =
∫ 1

0

dη

η
e(η)η−~q2

⊥ =
ê

~q2
⊥ + 1/2

, (7)

which represents a particle pole atm2 = 1/2 and couplinĝe. Very generally, there is a connec-
tion between these power laws and the spectrum of particles coupling to the hadron. So the two
elements of the theory are

• that one can think of theη-axis as an axis on which one can do field theory and talk about
distributions

• that the spatial distribution of partons satisfy certain assumptions, which allow one to
compute particle masses and couplings in terms of these distributions.

It should be emphasized that the exponents usually do in general not depend on the hadron
under consideration (the residues do very well). Furthermore, the above discussion can be
repeated for off-diagonal matrix elements (i.e. transition amplitudes) in which case the residues
assume some kind of matrix structure, i.e. they can be considered as operators acting between
hadronic states.

4. χSB and the Pion

As long as the rapidity axis is sufficiently short range coupled, one can, in addition to den-
sities on theη-axis (above we have already discussed the charge density), also introducecur-
rentsand, at least in the case of conserved charges, there should also be continuity equations,
ρ̇ + dj/dη = 0. In the following we will apply these results to the axial current, which can
flow up and down theη-axis, but which is more or less locally conserved. For this purpose, let
me introduce a chiral 4-vectorφα on theη-axis. Note thatα is NOT a space time index but
is related to(~π, σ). The 4-th component ofφα, basicallyσ, represents an order parameter for
χSB. These chiral 4-vectors tend to line up exactly as if they were a ferromagnet. Therefore
they will be called chiral magnets in the following. The point is that the couplings between all
these chiral magnets goes like1/η, i.e. the lowη degrees of freedom are extremely frozen. That
is characteristic of the LC-frame. Therefore, if we bring in one “external” magnet, it will not
be able to upset this order. It will precess, like a spin in an external magnetic field, and chiral
charge will flow in and out from the region near the external probe.

So let us assume now that there is a nonvanishing axial charge densityj5 at smallη and
demonstrate that this implies a massless pion. Furthermore, we will see that this massless pion
couples to the axial current in a particular way which allow one to make models in which one
can calculate properties of the pion and of the hadron spectrum. First let us take the chirally
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symmetric Hamiltonian and add some small term which explicitly breaks the chiral symmetry

H = Hsymm + c
∫ 1

0

dη

η
φ4(η), (8)

wherec is some small constant. A straightforward calculation yields

−iQ̇α5 = [H,Qα5] = c
∫ 1

0

dη

η2
φα(η), (9)

whereα runs from 1 to 3.
In order to derive some observable consequences of the above picture, let us assume that the

matrix elements ofφα are also power law behaved, i.e.

φα(η) ∼ φ̂αη
1+µ, (10)

whereµ is some number. This yields

−iQ̇α5 = cφ̂
∫ 1

0

dη

η2
η1+µ =

cφ̂

µ
. (11)

The only way to keeṗQα5 from vanishing whenc→ 0, is to letµ→ 0 linearly at the same time.
In order to avoid having too many constants in this discussion, let me just assumeµ = c. The
next step is to use the knowledge of howφ has to behave to compute a formfactor for something
which couples toφα. The calculation more or less parallels the calculation of the electromag-
netic case above except that the1/2 gets replaced byc and one obtains a formfactor which goes
like φ̂/(~q2

⊥ + c), indicating a particle pole atc. Due to the (small) explicit symmetry breaking,
the pion has a massc and it becomes massless in the “chiral” limit (c → 0). Furthermore we
found that the matrix element oḟQα5 is, up to some numerical constants, equal to the emission
amplitude of a pion.

So far we have established that within a parton model with short range couplings on the
rapidity axis one can define, chiral charges and order parameter. We have furthermore obtained
a basic equation for the on shell pion emission amplitude3

T π
AB =

2

ifπ

〈A|Q̇α5|B〉 = − 2

fπ

(
M2

A −M2
B

)
〈A|Qα5|B〉, (12)

which is a generalization of the Goldberger-Treiman relation.

5. Effective Hamiltonians
3Here we put in some numbers which have been omitted above.
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On theη-axis we have degrees of freedom, which get more and more strongly coupled as go
down towardsη = 0. Usually in physics when we encounter problems with higher and higher
energy scales, we cut off the theory and make an effective theory. Instead of studying the whole
chain, we will try cut off the highest frequency parts, by introducing a cutoffε on η. In the
presence of the cutoff, the scale invariance mentioned in section 2 is broken. However, we still
want the physics to be independent of the artificial parameterε. Therefore, when we construct
the effective Hamiltonian, we have to look for a consistency of descriptions as we move the
cutoff further and further away, while keeping the physics fixed. In other words, what we have
to look for is an UV fixed point for the renormalization group transformations of this system.

The Hamiltonian evidently consists of three pieces in general. One of them,H>ε, will
have to do with the degrees of freedom above the cutoff. The of course there will be a part
H<ε. Furthermore, there will be a termHε which couples the degrees of freedom in these
two regions. First of all, the degrees of freedom governed byH<ε are high energy degrees of
freedom and it costs a large amount of energy to disrupt them.4 ThereforeH<ε is effectively
just a number. Similarly,Hε, to the extend that it depends on degrees of freedom in the frozen
region, one can also use vacuum expectation values (VEVs). Of course for modes withη > ε
one must keep the full operator structure inHε. Now since this system is frozen into a chirally
asymmetric configuration, it is very natural to assume that in replacing theη < ε modes by
their VEV in Hε, one breaks the chiral symmetry of the rest of the chain. For example, since
the order parameter is a chiral 4-vector, the entrance of the chiral 4-vector into the Hamiltonian
should be times another chiral 4-vector. Therefore we might expect thatHε should be replaced
by something which is just the 4-th component of a chiral 4-vector associated with the degrees
of freedom at the new end of the chain, i.e. atη = ε. Although the whole chain is chirally
symmetric, in the process of integrating out the degrees of freedom in the smallη region, an
explicit chiral symmetry breaking for the rest of the chain has been introduced. The situation
is very similar to an atomic impurity introduced into a ferromagnet. As a whole, the system
is still rotationally symmetric. However, for most practical purposes the ferromagnet (without
the impurity) can be regarded as frozen and the effective Hamiltonian for the impurity is not
rotationally symmetric. The rotational multiplets are split and the spin of the atom precesses
in the “external” field provided by the ferromagnet, thereby radiating off magnons. The time
derivative of the angular momentum of the atom is equal to the amplitude for emitting a spin
wave.

Now let us consider a specific scheme. What objects can one make out of quarks which
transform like a chiral 4-vector. In order to simplify search for appropriate operators, it is
useful to introduce theSU2 × SU2 “gamma” matrices (which have nothing to do with the true
gamma matrices in the spin sense).

γα =

(
0 τα
τα 0

)
γ0 =

(
0 i
−i 0

)
(13)

4Note that they are UV only in the sense that in the LC frame it costs a lot of energy to disrupt them.
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andγ5 = ±σz, where the plus (minus) applies to quarks (antiquarks). The spin-flavor spinor
of a quark in this basis has components(u ↑, d ↑, u ↓, d ↓). These gamma matrices have the
advantage that the indices here are chiral 4-vector indices. The point is that possible objects for
a one body operator, which transform like a chiral 4-vector, such asψ†γ4γαψ do not commute
with σz and of course the chiral order parameter should commute with angular momentum. It
is thus not sufficient to build the operator out of spin and isospin operators only, but one has to
introduce some spin orbit coupling as well.5 One strange and peculiar fact when one goes to the
LC frame is that chiral 4-vectors cannot be made out of one body operators. In the following,
we will explicitly construct such an operator for the case of a two body system — a meson
consisting of a quark and an antiquark (with LC momentaηq andηq̄ respectively). The most
simple chiral 4-vector one can write for this system involves at least four angular momentum
states:|+〉, |−〉, |S〉 and|A〉 which have the properties:Lz|+〉 = +|+〉, Lz|−〉 = −|−〉 and
Lz|S〉 = Lz|A〉 = 0. |S〉 and|A〉 are symmetric and antisymmetric under interchange ofηq and
ηq̄. Out of these operator one can now construct the 4-th component of a chiral four vector

φ4 ≡
[
(~σq − ~σq̄)× ~B

]
z
, (14)

where

B− = |S〉〈+| + |−〉〈S|
B+ = |S〉〈−| + |+〉〈S|. (15)

The point is, Eq.(??) has spin orbit couplings between the quarks. Even though one can write
down other candidates for a the 4-th component of a chiral 4-vector, all other candidates are
more complicated.

A number of physical consequences can be derived on the basis of these results (see Ref.[3]
for a detailed discussion). For example, the (bare) pion should, together with its friend the (bare)
σ, form a chiral 4-vector. Therefore they cannot be in an orbital angular momentum zero state!
They are in an orbital angular momentum one state. This is quite surprising because one expects
from the nonrelativistic quark model that the pion is in an s-wave — but that is simply not true
in a LC frame. The (bare)ρ and the (bare)a1 form a chiral tensor. They can be in an s-wave. If
one now addsφ4 from above (??), one discovers that theπ and thea1 mix, while not affecting
theρ and theσ. In a phenomenological model one can then calculate the wavefunctions of these
hadrons by adjusting the symmetry breaking term to fit the hadron masses and one can then, in
terms of these wavefunctions, calculate transition amplitudes. This has been done in Ref.[3] for
the matrix elements of the chiral charge, which can then be used to calculate decay amplitudes
involving the emission of pions.

The calculations were done in a very simple scheme in which one takes just 2 partons into
account. Everything else is frozen. And the 2 partons simply interact with the rest of the frozen

5See also Ref.[4] for a more detailed discussion of this point.
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Table 1: Decay width for various meson decays involvingπ-emission.
Decay Computed width (MeV) [3] Expt. width (MeV) [6]
a1(1260) → σπ 47 < 28

a1(1260) → ρπ 185 <∼ 400
ρ→ ππ 130 125
a2(1320) → ρπ 24 16
a0(980) → ηπ 75 ?
f1(1285) → a0(980)π 18 11

[
ignoringa0 → KK̄

]
σ → ππ 475 ∼ 500
f2(1270) → ππ 108 157
b1(1235) → a0(980)π 23 ?

system. As the results in Table 1 show, with a few exceptions, one does pretty well — even
with a minimal structure for the operators. In fact, considering that two quarks is a rather crude
approximation, it is rather surprising how well the results fit the data. One can also use this
scheme to understand some hadron masses.

The basic upshot one should get from these results is that one should think of these systems
in a renormalization group way, where one first truncates the system to a small number of de-
grees of freedom and introduces an explicit breaking. Then one calculates physical observables
and moves the cutoff back in a sequence of approximations — requiring that the physics re-
mains invariant. This can also be translated into the statement that one must be looking for a
fixed point of the renormalization group.

13



References

1. L. Susskind, Phys. Rev.165, 1535 (1968); see also J. Kogut and L. Susskind, Phys.
Rep.8C, 75 (1973), and references therein.

2. S. Weinberg, Phys. Rev.150, 1313 (1966).
3. A. Casher and L. Susskind, Phys. Lett.44B, 171 (1973).
4. A. Casher and L. Susskind, Phys. Rev. D9, 436 (1974).
5. K. Wilson et. al., Phys. Rev. D49, 6720 (1994).
6. Particle data group, Phys. Rev. D50, 1173 (1994).

14


