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Abstract

I discuss the construction of the effective action for QCD suitable for the description
of high-energy and small momentum transfer diffractive processes.

1. Introduction

In my talk I discuss the results obtained in collaboration with Roland Kirschner and
Lev Lipatov which are the subject of Ref. 1 and Ref. 2.

As we learned from the talk by J. Bartels3 in new experiments at HERA on electron-
proton deep inelastic scattering one can probe the region of very small values of the
Bjorken variable x = −Q2

s
∼ 10−4, where s is the scattering energy squared and Qµ being

the momentum transferred by the photon. The results of the experiments show that the
gluonic structure functions increase fairly strong for small x. Such a behaviour seems
to be in agreement with the theoretical predictions based on the BFKL equation4. This
equation is obtained in the leading logarithm approximation (LLA) which corresponds
to the sum of perturbative contributions being series in the effective coupling constant
g2 ln 1

x
� 1( g is the QCD coupling constant).

It is known that LLA violates unitarity so the growth of the number of gluons in the
nucleon cannot continue forever. This means that one should apply the unitarization
procedure which restores the unitarity by taking into account the screening effects and
which goes beyond LLA.

The method of unitarization proposed by L. Lipatov5 is based on the use of the effective
lagrangian for QCD at high-energies and small momenta transfer i.e. in the multi-Regge
kinematics (MRK). This lagrangian being simpler than original QCD lagrangian contains
all important physical modes which are present in MRK. Its form reflects also the re-
lationship of the four-dimensional QCD at high-energies with two-dimensional theories
related to two-dimensional space of transverse momenta and the two-dimensional space
of longitudinal momenta.
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One can derive the effective lagrangian for QCD in several ways. Using the diagram-
matic method (see Ref. 2) we derive from tree graphs in MRK the effective vertices for
scattering and production of gluons and quarks. Then by an appropriate choice of the
quark wave function and the gluon polarization vectors these vertices can be represented
in a simple form.
One can also start directly from the original QCD lagrangian and try to eliminate modes
of gluons and quarks which are not present in MRK. This elimination procedure can be
performed either in the framework of the path integral formalism (see Ref. 2) or by means
of the equations of motion (see Ref. 1). Below I shall describe the last method and for
the simplicity of presentation we consider only the gluonic part of the QCD lagrangian.

2. Sketch of construction of the effective lagrangian

Because of the MRK it is natural to work in the light-cone gauge defined by one of
the momenta pA or pB of the initial massless scattering particles. In the c.m.s. where

p0
A = p0

B = p3
A = −p3

B =

√
s

2
, pA⊥ = pB⊥ = 0 (1)

we choose for the definiteness the light-cone gauge

A− ≡ A0 − A3 = pµ
BAµ = 0 . (2)

The gluonic part of the QCD lagrangian

L = −1

4
Ga

µνG
aµν , Ga

µν = ∂µA
a
ν − ∂νA

a
µ + gfabcAb

µA
c
ν (3)

depends quadratically on Aa
+ = Aa

0 + Aa
3 so one can eliminate this variable by means of

the equations of motion.
In such a way we arrive to the lagrangian which depends only on transverse components
Aa

%, % = 1, 2 of the four-potential

L =
1

2
Aa

σ2Aaσ − ig(∂−Aσ)T aAσ(
1

∂−
∂%A

a%)

−g2

2
(∂−Aσ)T aAσ 1

∂2
−

(∂−A%)T
aA% − ig(∂%A

a
σ)A%T aAσ

+
g2

4
A%T

aAσA
%T aAσ (4)

where x∓ = x0 ∓ x3 , ∂∓ = ∂
∂x∓

, 2 = 4∂−∂+ + ∂%∂
% and T a denotes the generators of

gauge group in the adjoint representation.
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In Eq. (4) as it stays the fields contain all modes. On the other hand in the MRK the
strongly virtual (heavy) modes of the fields A(s)

%

k2 ' k2
‖ � |k2

⊥| (5)

are not present since they are already integrated out and we left with the moderately
virtual fields A(m)

% . This elimination of the heavy modes is performed within perturbation
theory and in the following analysis we shall restrict ourselves to the first perturbative
order.

Let us decompose A% as the sum of strongly and moderately virtual fields

A% = A(s)
% + A(m)

% . (6)

Substituting the decomposition (6) to the lagrangian (4) and neglecting the interference
contribution between s- and m- fields we obtain as a kinetic part

Lkin ∼= 2A(s)
σ ∂+∂−A(s)σ +

1

2
A(m)

σ 2A(m)σ . (7)

As an interaction lagrangian for s-fields L(s) we take those terms from the lagrangian
(4) (after inserting (6)) which contain the enhancement factor in the MRK being the
operator 1

∂−
acting on the field with the smallest k− momentum component. The resulting

lagrangian has the form

L(s) = 2A(s)a
% ∂+∂−A(s)a%

+ig[A(m)
σ T a∂−A(s)σ + A(s)

σ T a∂−A(m)σ](
1

∂−
∂%A

(m)a%) . (8)

The integration over A(s)
% fields in Eq.(8) leads to the expression

∆L =
g2

4
A(m)

% T a(∂−A(m)%)(
1

∂+∂−
∂σA

(m)σ)T a(
1

∂−
∂ηA

(m)η) . (9)

The sum of lagrangian (4) involving only m-fields and formula (9) leads to the modified
lagrangian Lmod

Lmod = L|A→A(m) + ∆L . (10)

We should never forget about the underlying MRK in which the k− momentum compo-
nents of the particles are ordered. In the case of Eq.(9), the k− momentum components
of the first two fields A(m)

% are much bigger than the corresponding ones of the two last

A(m)’s .
After removing the heavy modes we separate the modes of A(m)

% into a part involving
Coulombic modes A′

% obeying | k+k− |�| k2
⊥ | and the part describing the produced
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particles A% with momenta satisfying | k+k− |≈| k2
⊥ | (for which we keep the original

notation). The kinetic term of the Coulombic modes involves only transverse derivatives
so these modes describe the instantaneus Coulomb interaction.

With the help of the Coulombic modes A′
% we can rewrite ∆L from Eq.(9) as a product

of the triple vertex from L (Eq.(4))

−ig(∂−A(m)
σ )T aA(m)σ(

1

∂−
∂%A

′a%) (11)

and the induced vertex ∆Lind

∆Lind =
ig

4
(∂−∂%A

′a%)

(
1

∂+∂−
∂σA

(m)σ

)
T a

(
1

∂−
∂ηA

(m)η

)
(12)

connected by the Coulombic propagators resulting from the kinetic part Lkin
Coul

Lkin
Coul =

1

2
A

′a
% ∂σ∂

σA
′a% . (13)

Let us also note that the remaining terms resulting from the integration over A′
% fields in

Eqs. (11),(12) and (13) cancel the third term in L(A(m)) given by Eq. (4).
If we neglect the last nonsingular term in Eq.(4) we can write the effective lagrangian in
the form

Leff =
1

2
A(m)a

% 2A(m)a% − ig(∂−A(m)
σ )T aA(m)σ(

1

∂−
∂%A

′a%) (14)

−ig(∂%A
(m)a
σ )A(m)%T aA(m)σ +

ig

4
(∂−∂σA

′aσ)(
1

∂+∂−
∂%A

(m)%)T a(
1

∂−
∂ηA

(m)η) .

It is convenient now to introduce the following notation for the Coulombic fields

A+ = − 1

∂−
∂σA

′σ A− = −2
∂−∂σ

∂%∂%
A′σ . (15)

According to the above definitions the fields A± are dependent. Nevertheless we declare
them in the following as being independent ones. This is needed in order to put effectively
to zero the term arising from the integration over A′

% discussed above and which cancels
the corresponding term of the order g2 from Eq.(4). In such a way we arrive to the
following kinetic part of the gluonic effective lagrangian

Lkin =
1

2
Aa

+∂σ∂
σAa

− +
1

2
Aa

σ2Aaσ . (16)

Let us emphasize that the coefficient in the front of Coulombic part differs from the one
obtained by the substitution of Eq. (15) to Eq. (13). It is fixed by requirement that the
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amplitudes obtained with the help of A′
% fields coincide with the amplitudes calculated

with the use of A± fields.
From the effective lagrangian (14) one can also read off the interaction terms. We

substitute in Eq. (14) the decomposition A(m)
ρ = A′

ρ + Aρ supplemented by introduction
of the definitions (15). It is convenient to represent the result in the complex coordinates
and using the analogous notation for the produced fields

% = x1 + ix2, %∗ = x1 − ix2, ∂ = ∂
∂%

, ∂∗ = ∂
∂%∗

A = A1 + iA2 A∗ = A1 − iA2 .
(17)

Moreover, we describe the produced particles in terms of the complex scalar fields φa (see
Ref.5)

A = i∂∗φ , A∗ = −i∂φ∗ . (18)

After that the gluonic effective lagrangian is given as the sum

Leff = Lkin + L(R)
scat + L(L)

scat + Lprod + LCoul . (19)

In the sum (19) the term Lkin is obtained from Eq. (16)

Lkin = −2Aa
+∂∂∗Aa

− −
1

2
(∂∗φa)2(∂φa∗) . (20)

The term L(R)
scat describes the scattering off right particles i.e. on the A+ field

L(R)
scat = −ig

2
Aa

+ [(∂−∂∗φ)T a(∂φ∗) + (∂−∂φ∗)T a(∂∗φ)] . (21)

The analogous expression corresponding to the scattering on the A− field L(L)
scat reads

L(L)
scat = −ig

2
Aa
−[(∂+∂∗φ∗)T a(∂φ) + (∂+∂φ)T a(∂∗φ∗)] . (22)

The term Lprod describes the production of φ and φ∗

Lprod = g[φa(∂A−)T a(∂∗A+)− φa∗(∂∗A−)T a(∂A+)] . (23)

Finally, the part LCoul contains the interaction vertices involving the Coulombic fields

LCoul =
ig

2
[(∂∂∗Aa

−)(
1

∂+

A+)T aA+ + (∂∂∗Aa
+)(

1

∂−
A−)T aA−] . (24)

Summarizing, we constructed the effective lagrangian for QCD from which one can re-
produce in a very economic way the known results about the asymptotics of scattering
amplitudes in the MRK and in the LLA. The lagrangian (19) posses many remarkable
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properties. In particular, if we approximate the operator 2 in (20) by 4∂+∂− then the
scattering amplitudes resulting from the lagrangian (19) are given as the product of two
scattering amplitudes related to the two-dimensional theories acting in the longitudinal
space and in the transverse space.
We expect that the effective lagrangian (19) is a convenient starting point towards con-
struction of a method which goes beyond the LLA.
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