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Abstract

The light front Hamiltonian approach to QCD advocated by Wilson and collaborators shows
great promise, but the feasibility of the scheme still needs to be demonstrated. An invariant
light front formulation of the approach, which provides an excellent framework for dealing
with interactions in the light-front angular momenta, may greatly facilitate the determination of
counterterms corresponding to light-front divergences and will also provide a clear signal of the
restoration in observables of rotational symmetry, which is manifestly broken by cutoffs.

1. Introduction

Lest a reminder be necessary, I was part of the group that produced the lengthy but con-
cise tome Wilson,et al.1 (hereafter, WWHZPG). So while I believe that in the mountains of
QCD all trails of approach toward the summits of confinement and chiral symmetry breaking
(χSB) should be kept under intensive use, my bias is that the approach of WWHZPG will be
the quickest and easiest for calculating low energy QCD bound state properties; and what fol-
lows — although perhaps having applications to other light front (LF) approaches — is written
specifically from this point of view.

The LF Hamiltonian approach of WWHZPG (see also the contributions of Wi, H, P, and
G in this volume, as well as Refs. 2 and 3) differs from other approaches to the rough QCD
terrain in that it does not start from the canonical valley of first principles and carefully move up
into the mountains along a restricted path that maintains all symmetries, faithful that this will
lead to the desired destination. Rather, WWHZPG inverts the metaphor, speaks of the valleys
of confinement andχSB and the peak of a well-defined fundamental theory, and notes that
a formulation of QCD on the light front with severe momentum space cutoffs provides clear
mechanisms for confinement andχSB effects. The constituent quark model (CQM) that results
from this truncation of full QCD should lie near the physical valleys of interest; what remains
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is to connect this simple picture to the full theory. This is a job for Wilson’s Renormalization
Group.

To summarize WWHZPG, then, (1) breaking symmetries allows a quick and easy CQM to
appear; and (2) restoring symmetries connects this picture to QCD. Under (1), LF quantization
allows the identification of all vacuum degrees of freedom as zero modes, and the use of se-
vere cutoffs and the choice of nonzeroq andg masses eliminates these zero modes. Thus the
vacuum is trivial, and all effects associated with a nontrivial vacuum in equal time must now
arise through effective interactions. In particular, choosing a momentum-dependent gluon mass
m2

g = µ2 + k+∆, with µ small, one finds a simple confinement mechanism3 already at order
g2. Under (2), the similarity renormalization scheme4, which eliminates explicit interactions
between states well-separated in energy, is used to bring in order by order from the full the-
ory corrections to this simple starting point. Such corrections include finite terms necessary to
counter the elimination of zero modes. At each level of approximation, the low-energy bound
states can be found nonperturbatively from familiar Hamiltonian methods, and the couplings in
the various counterterms may then be determined phenomenologically. Well, at least in princi-
ple one can do this: in fact, it is not yet clear how these counterterms may best be handled.

2. Renormalization Counterterms on the Light Front

We have seen time and again at this workshop that light-front physics has a very different de-
pendence upon the transverse and longitudinal coordinates. Here one finds that the structure of
counterterms needed to eliminate LF divergences includes entire functions of momenta because
k+ andk⊥ scale separately. Comparing the LF and equal time (ET) free particle energies,

k− =
k2
⊥ +m2

k+
and k0 =

√
~k2 +m2 =

√
k2
⊥ + k2

z +m2,

one sees that ask⊥ → ∞, for example, thekz dependence in the ET free energy is negligible,
whereas the diverging LF free energy is multiplied by a function ofk+. Thus the finite parts
of counterterms which eliminate transverse divergences may include functions of longitudinal
momenta, and the counterterms to longitudinal divergences and the removal of zero modes may
include functions of transverse momenta. These functions should be completely determined
by requiring that the correct physics comes out from the diagonalization of the Hamiltonian,
buta priori they are unknown. Fitting unknown functions in a Hamiltonian to produce physical
results which obey symmetries manifestly broken by the cutoffs seems quite tedious; one would
like to at least have some systematic guide for this process, a guide that is not necessarily limited
to perturbation theory. The basic question at hand is: given the different behavior with respect
to the transverse and longitudinal directions, how can Lorentz covariance be maintained?

As first shown by Karmanov, one can in fact develop a light front formulation that is explic-
itly Lorentz invariant5,6. The idea is to quantize on an arbitrary light frontω · x = 0, where
ω2 = 0. The operators and wave functions of the theory will then have an explicit dependence
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onω. In fact, if we writeω = ω+(1,−n̂), ω+ > 0, it turns out that operators and wave functions
in this formulation depend only on the two angles definingn̂. Lorentzcovariance, however, is
only recovered if no physical quantities depend onn̂. This may be formulated as constraint
equations to be satisfied by the wave functions, for by allowing them to depend onω we are
making our basis overcomplete. The constraint equations merely stipulate that a rotation of the
vectorω — which is kinematical in appearance — has the same effect upon the wave functions
as operating with the (dynamical) angular momentaJ⊥. The breaking of Lorenz covariance
by our light-front cutoffs manifests itself in this formulation, then, as an explicitn̂ dependence
in physical quantities. Finite parts of counterterms which eliminate divergent dependence on
the cutoffs must then eliminate anŷn dependence in physical quantities, which will signal the
restoration of rotational invariance.

3. Invariant Light Front Picture

Let me make all this a little more explicit. Fuda6 has shown that the invariant LF formulation
of Karmanov may be obtained from a unitary transformation of the usual LF operators and
states. These may thus be thought of as expressed in a new picture, which I shall call the
Invariant Light Front Picture (ILFP)∗. Thus if we write the non-interacting unitary Lorentz
transform operator asU0(a) and the interacting unitary Lorentz transform operator asU(a),
wherex′µ = aµνx

ν is a Lorentz transform of coordinate systems, and define the transform to the
standard LF as(1, 0, 0,−1) = ã(ω) · ω, then the unitary operator which transforms to the ILFP
is

C(ω) = U−1
0 (ã(ω))U(ã(ω)).

Defining the rotationR such thatR(n̂)·n̂ = ê3, one sees that̃a(ω) = KL(ω+)·R(n̂), withKL a
horizontal boost which leaves the light front unchanged (that is, it does not contain interactions).
Thus, in fact,

C(ω) = U−1
0 (KL ·R(n̂))U(KL ·R(n̂)) = U−1

0 (R(n̂))U(R(n̂)) = C(n̂).

Now one may define the ILFP states and operators:

|Ψ(ω)〉 = C(ω)|Ψ〉 = |Ψ(n̂)〉; O(ω) = C(ω)OC−1(ω) = O(n̂).

This is analogous to the interaction picture, for example,|ΨI〉 = e−iH0teiHt|Ψ〉. Under an
arbitrary Lorentz transformx′ = a · x, then,

U0(a)|Ψ(ω)〉 = |Ψ′(ω′)〉 where |Ψ′〉 = U(a)|Ψ〉,

U0(a)O(ω)U−1
0 (a) = O′(ω′) where O′ = U(a)OU−1(a).

∗Fuda writesξ instead ofω and calls this theξ-Picture, but I prefer to use Karmanov’sω.
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So ILFP states transform like free states under rotations, and likewise for operators. It is easy,
therefore, to construct states that transform correctly under rotations. These are the eigenstates
of the operator

S(n̂) ≡ J0 + L(n̂) with L(n̂) = −in̂× ∂

∂n̂
The price to be paid for giving rotations a kinematical appearance is that we now have an
overcomplete set of states. There are extra states present which are degenerate in energy and
classified by their eigenvalues corresponding to the operator[n̂ ·S(n̂)]2. These extra states may
be eliminated by the constraint equations:

J(n̂)|Ψ(n̂)〉 = S(n̂)|Ψ(n̂)〉 with J(n̂) = C(ω)JC−1(ω),

which stipulate that rotations of the LF caused by changingω are equivalent to dynamical
rotations of the states performed by the angular momentum operators.

The states|Ψ(n̂)〉 may be expressed in terms of the free states|N〉 ≡ |p1, ..., pN〉 as

|Ψ(n̂)〉 =
∑
N

{
N∏

i=1

∫
[dpi]

}
ψ(p1, ..., pN ; n̂)|N〉 with [dpi] =

d4pi

(2π)3
δ(p2

i −m2
i ).

Now consider the hamiltonianH = P−. In the ILFP, this becomes

P µ(n̂) = C(n̂)P µC−1(n̂) = P µ
0 + ωµU−1

0 (ω)HintU0(ω).

The matrix elements necessary for implementing the similarity renormalization scheme are then

〈M |P µ
int(n̂)|N〉 = ωµ〈p1ω, ..., pMω|Hint|p1ω, ..., pNω〉,

wherepiω = ã(ω)·pi = KL(ω+)·R(n̂)·pi ≡ KL(ω+)· p̃i. Sop̃+
i = p0

i +pi ·n̂, p̃0
i =

√
p2

i +m2
i ,

andp̃⊥i = p− n̂(p · n̂). We can thus express the above matrix elements in terms of the(p̃+
i , p̃

⊥
i )

or thepi andn̂. The latter are more convenient for exhibiting rotational invariance, since the
matrix elements will be functions ofpi · pj andpi · n̂.

Now we are ready to discuss counterterms. We need cutoffs. LetK be some reference state
K2 = M2. We may then introduce momentum cutoffs inHint such that(pi ·K)/M < Λ. In the
rest frame ofK, which is denoted by a subscript (that is,Kµ

K = Mδµ0), this becomes

p0
iK =

√
p2

iK +m2
i < Λ or p̃+

iK +
p̃2

iK⊥ +m2
i

p̃+
iK

< Λ,

depending on which set of variables we choose. For determining the structure of counterterms,
which are added to the Hamiltonian to eliminate divergent dependence onΛ when the above
matrix elements are summed over, if we use the variablespiK and n̂, then the momentum
dependence of the counterterms is entirely fixed by the form of the divergence and no unknown
functions of momentum arise in the finite pieces.
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Conclusion

I have barely had space here to set up the formalism for this invariant LF approach, so
in way of conclusion let me just hint at some of the possible benefits of this formulation of
LFQCD. Clearly, the main advantage is that the structure of counterterms will be more restricted
from the outset. These counterterms will not have unknown functions of momenta but will
include functions of̂n. These functions must be adjusted so that no observables depend on
n̂, which signals the restoration of broken symmetries. Thus one might be able to develop
a nonperturbative scheme where in first approximation one averages over or minimizes with
respect to the angleŝn. Finally, note that the ILFP Hamiltonian should be independent ofω+,
which may provide a means of determining the counterterms necessary to restore longitudinal
boost invariance lost by the removal of states with smallk+.
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