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Abstract

I discuss briefly the importance of hadronic matrix elements and the existing methods to
calculate them.

Since weak interactions are essentially a short distance effect (compared to the QCD scale
of about1GeV ), their low energy manifestations can be described by matrix elements of an
effective Hamiltonian of the form

H =
GF√

2

∑
j

Cj(µ) Oj(µ) , (1)

where theOj(µ) are a set of quark operators, likeO1 = (s̄γµLb) (c̄γµLc) andµ is a renor-
malization scale. The short distance coefficientsCj(µ) contain the information about the fun-
damental parameters (like CKM matrix angles,CP violating phases and couplings and masses
of new particles) and account for the perturbative QCD corrections. They can be calculated
reliably, at least if the physics of the heavy quarksc, b are considered (the major problem being
the choice of the scale). On the other hand, the hadronic matrix elements

Mfi = 〈f |H|i〉 (2)

must be calculated to all orders in the strong interactions and to the desired order in the elec-
tromagnetic ones. This clearly requires non-perturbative techniques1, since the matrix elements
involve physical hadrons in the confinement regime of QCD. Only when we know these lat-
ter matrix elements, we can really relate the experimentally measured matrix elements of the
effective Hamiltonian to fundamental parameters.

At present, there are several phenomenological methods to estimate the matrix elements;
furthermore, lattice QCD2 provides in principle a rigorous aproach for calculating them. These
calculations are almost exclusively done in the so called quenched approximation and are lim-
ited to one- or two-particle matrix elements. It is rather difficult to asses totally the correspond-
ing systematical errors, and the recent changes in some of the quantities, most notablyfB, the
B-meson decay constant, indicate that there remains room for improvement.
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Many interesting matrix elements contain an operator of a heavy quarkc or b, but also those
with ans quark are important for studies of the weak force and interactions beyond the standard
model. Among the most burning ones are

one-particle matrix elements (decay constants)
〈0|J |M〉

two-particle matrix elements (form factors or mixings)
〈m|O|M〉

three or more matrix elements (decay amplitudes)
〈mM ′|O|M〉.

In all cases,J or O denotes a bilinear or quadrilinear operator in the light and heavy quark
fields, andM, M ′, m,.. are heavy and light mesons. In principle, also baryonic matrix elements
are useful, but they are usually even more difficult to calculate.

The decay constants and form factors are needed to extract the CKM matrix elements from
semileptonic decays of B-mesons while the mixings are essential for determining various new
physicis parameters (including the mass of the top quark) andCP violating angles from meson
mixing (B0 − B̄0 mixing, etc). The decay amplitudes are used to obtain prediction for certain
couplings (for instance theBB∗π coupling), the rates of non-leptonic decays, their CP violating
asymmetries and for complementary determinations of the fundamental parameters.

The phenomenological techniques include:
QCD sum rules3

Wave functions (including light cone input)4

1/Nc approximation5.
The sum rule approach is based on the duality between QCD (as a basic theory of quarks

and gluons) and hadrons. It allows to relate matrix elements to correlation functions calculated
in terms of various QCD parameters which can be fixed from a restricted number of experi-
ments. Mainly two versions have been used for calculating the matrix elements of heavy quark
operators; in the first, the vacuum correlation functions of certain currents are considered and
mesons are generally taken into account by suitable interpolating currents. In the second variant,
vacuum-meson correlators are investigated, where mesons are represented by light-cone wave
functions6. These methods apply to different regimes and have been used to calculate decay
constants, certain two-particle matrix elements and most recently also decay amplitudes. The
two versions give rather different results as exemplified by two recent calculations of the decay
B → K∗γ7 ; it appears that light-cone based methods are more suitable for heavy quarks. The
uncertainties of both methods are determined mainly by the accuracy of the values of the con-
densates or the shape of the wave functions. The QCD sum rule method may shed some light
on open questions, like the validity of factorization8 which is often used to simplify calculations
of decay amplitudes. Evidently, this question is out of reach for lattice calculations.

Wave function approaches are mostly used for two particle matrix elements, but can be
applied also to decays. Light-cone techniques allow to calculate form factors in certain regions
of the kinematical variables (where certain diagrams vanish). It is then a question of how to
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continue to the desired (physical) regions and which truncations (in the spirit of Tamm-Dancoff)
are reasonable. The existing work forB-meson decays indicate that a perturbative treatment,
relying on asymptotic light-cone wave functions is insufficient.

The 1/N approach is based on the fact that QCD becomes more simple if the number of
colours is sent to infinity. Much work has been done in the Kaon sector5 , where the approx-
imate validity of chiral perturbation theory9 yields important additional information. The1/N
approximation was also applied toB-Mesons10. Although chiral perturbation techniques can
also be used11, the situation is less clear than in Kaon physics.

A very promising approach to matrix elements of theb quark is the observation that several
simplifications occur if the quark mass becomes very large12. This method is particularly useful
for inclusive decay processes, but gives also important conditions for all other methods dis-
cussed above. For instance, the discrepancies in ref. 7 may be resolved within the heavy quark
limit. Furthermore, as mentioned above, it can be combined with chiral perturbation theory.

Although I have stressed the heavy quark operator matrix elements, there are of course
various other important situations where a good matrix element is highly desirable. For instance,
the (electric) form factor of the pion at high energies has received much attention13, but also
various "long distance effects" in Kaon- orD-Meson physics are of interest. For instance, the
mixing between the neutral Kaons receives contributions from two local weak vertices; inD-
meson decays, where purely short distance effects are often small due to unfavorable CKM
matrix elements, non-local contributions are dominant. A good example is the decayD → ργ.

As is obvious from this rudimentary discussion, there exist various technologies which have
been applied to several problems. All of them contain certain assumptions; moreover, often
simplifications (like factorization) are often made in order to arrive at a result. Since the as-
sumptions inherent to the different pictures are likely to be different, it may be possible to
combine the methods in order to understand their respective systematic uncertainties better and
to establish a fruitful connection between them.
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