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Abstract

We report on recent advances in the understanding of hadrons containing one heavy quark,
providing a general introduction to the main ideas behind the heavy quark symmetry. We con-
centrate on the synthesis of heavy quark and chiral symmetries, describing recent calculations
of heavy meson and baryon decays through processes involving strong, electromagnetic and
semileptonic weak interactions.

1. Introduction

There is very little direct connection between what will be described here and the main
topics of this conference, such as the determination of quark confinement and chiral symmetry
breaking in QCD. On the other hand, it will be shown below that by simply accepting these
ideas, along with some general properties of QCD, one can make some very precise statements
and also extract a lot of physics from a class of hadrons which contain a single heavy quark, even
though one does not know the exact solutions of QCD. So perhaps in this connection we can
say that once the goal of this conference is achieved, we will be able to remove the assumptions
of confinement and chiral symmetry breaking, and everything that will be described here will
then be derivable from first principles.

Because of the fact that the fields which enter the QCD Lagrangian are current quarks and
gluons, but what we see in the laboratory are hadrons — that is,qq̄ andqqq bound states — and
that the connection between the field quanta and hadrons is still not completely understood, it
is fair to say that all the consequences of QCD which can be demonstrated at present are those
which follow from the symmetries. For example, one of the exact symmetries is the gauge
symmetry, which because of its nonabelian nature leads to asymptotic freedom, and this in turn
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allows us to do calculations at short distance and make a lot of predictions for high-energy
phenomena. The other two symmetries are approximate; one is chiral symmetry and is a main
topic of this conference. We all know this symmetry comes from the fact that the light quarks
have masses which are very small compared withΛQCD, the typical energy scale of QCD. But
recently there has also been a new development in the understanding of a second approximate
symmetry of QCD — namely, the heavy quark symmetry — which is manifest in systems
containing a heavy quark and light quarks. In this case the symmetry comes from the fact that
the heavy quark has mass much greater thanΛQCD. So there are two classes of quarks, one very
light qi = (u, d, s) and one very heavyQi = (c, b, t). Because of the light quarks there is an
approximateSU(3)L × SU(3)R chiral symmetry and because of the heavy quarks there is an
approximate heavy quark symmetry. So we are very fortunate that there is a division between
light quarks and heavy quarks and that there exist systems in which the theoretical predictions
derived from the two corresponding approximate symmetries can be tested experimentally.

In this paper we give a general introduction to the ideas behind the heavy quark symmetry
and present some example calculations which illustrate their use. The work that will be de-
scribed here is contained in a set of papers by H.Y Cheng, C.Y. Cheung, W. Dimm, G.L. Lin,
Y.C. Lin, T.M. Yan and H.L. Yu1−4. There are many other groups which work on similar topics;
an incomplete set of references is given in Refs. [5-7]. These are simply meant as pointers to
the wide literature on the topic of heavy quark symmetry.

The outline of the paper is as follows. In Section 2 the semileptonic weak decay of the heavy
quark system will be used as an example to introduce the ideas of the heavy quark symmetry.
Then in Section 3 the heavy quark symmetry will be combined with the chiral symmetry of
light quarks, and some examples of heavy quark systems involving strong interactions, elec-
tromagnetic interactions, and semileptonic decays will be given and the results compared with
experimental data when possible. Some final comments will be made in Section 4.

2. Heavy Quark Symmetry

The ideas behind the heavy quark symmetry have long been known to the practitioners in
the field, but for some reason for many years they were not clearly formulated. It was due
to Isgur and Wise8, Voloshin and Shifman9, and many others, that the physics of the heavy
quark symmetry was given a very precise formulation. The idea is actually very simple; in
fact, all that will be described here is so embarrasingly simple in comparison with the other
contributions to this conference that most of the physics can be understood by analogy with
the simple hydrogen atom. The basic idea, then, is that aQq̄ heavy meson is similar to the
hydrogen atom, with the heavy quark playing the role of the nucleus and the light quark playing
the role of the electron. Of course, the theory is different: we have QCD instead of QED, but
we can proceed by analogy. We know that in QED, as the mass of the protonmP becomes
infinite compared with the electron mass, we have the following exact consequences: (1) The
energy spectrum, wave function, and transition matrix elements, etc. are independent ofmP . In
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a Qq̄ system this is translated into the independence of all these quantities with respect tomQ

— this is known as flavor symmetry. (2) In the hydrogen atom, the spin interaction is inversely
proportional tomP , so that in the limitmP → ∞, spin dependence disappears. Thus there
is a spin symmetry, which is translated into independence of the spin ofQ in the QCD case.
(3) QED allows us to include systematic corrections in1/mP . In QCD, in principle we can
include corrections in1/mQ, but in practice this is not always possible because this involves
matrix elements which we cannot yet determine. (4) A final idea which should be mentioned is
that in these heavy-light systems, velocity is a much better variable than momentum. This we
can understand in the rest frame of the hydrogen atom, for example, if we replace the proton
by another nucleus with the same charge but a very different mass (such as the deuteron), for
then the electron will not know any difference. Thus if we boost the whole system to a velocity
v, the wave function does not change, even though the momenta of the two systems are very
different. Therefore, velocity is a more convenient variable than momentum.

We can summarize all this physics with a very simple picture of a heavy meson as a heavy
quarkQ surrounded by a light quark cloud̄q. Flavor symmetry then means the structure of the
light quark clouds inQiq̄ andQj q̄ are the same. The light quark does not know the difference.
Spin symmetry means that the light quark clouds are the same for a heavy quark with spin up
as that for a heavy quark with spin down. These are very simple statements about the spin and
flavor symmetries.

Let us now look a little more quantitatively at the case of QCD. Suppose a heavy a quark
moves with a large momentumPQ, and a lightq̄ goes with it. Then because the massmQ is so
heavy, the velocity is hard to change, and we can parameterize the momentum as

PQ = mQv + k, mQ →∞.

Here,v2 = 1 and the residual momentumk is of the orderΛQCD. In the limit mQ → ∞, this
parametrization greatly simplifies the Feynman rules in QCD. For example, the propagator of
the heavy fermion becomes

6PQ + mQ

P 2
Q −m2

Q

=
6v + 1

2v · k
,

and the vertex when sandwiched between the projection operators(6v + 1)/2 becomes

6v + 1

2
γµ
6v + 1

2
=
6v + 1

2
vµ
6v + 1

2
.

Moreover,(6 v + 1)/2 gives 1 when acting on an external leg. So in the effective theory, the
quark-gluon vertex is−igvµTa and the heavy quark propagator is(v · k)−1. Thus the spin and
mass of the heavy quark disappear, which are expressions of the spin and flavor symmetries of
the system. Of course, there are1/mQ corrections which are well-defined and can in princi-
ple be systematically taken into account; perhaps we will be able to compute them after this
conference.
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Now let us discuss the ground states of theQq̄ system. First of all, there are the pseudoscalar
P = 0−, theD mesons (cq̄) and the B mesons (bq̄). Then there are the spin oneP ∗ = 1−, the
D∗ and theB∗ mesons. These are assumed to be the ground states. At rest, the spin content of
the pseudoscalar and spin projectionλ = 0 spin-one heavy meson wavefunctions can be written

|P 〉 =
1√
2

(
|Q ↑ q̄ ↓〉 − |Q ↑ q̄ ↓〉

)
,

|P ∗, λ = 0〉 =
1√
2

(
|Q ↑ q̄ ↓〉+ |Q ↑ q̄ ↓〉

)
.

The two wavefunctions can be easily seen to be related by the spin operatorSz
Q, namely,

Sz
Q|P ∗, λ = 0〉 =

1

2
|P 〉,

which is just a statement of the spin symmetry.
There is a very simple application of these ideas to semileptonic weak decays of heavy

mesons. Suppose we have a bottom mesonPi or P ∗
i with velocity v decaying into a charm

mesonPj or P ∗
j with velocity v′ and leptons. The decay can involve the vector currentV ij

µ or
the axial currentAij

µ , and we need form factors for the vertices. Using Lorentz covariance we
may write

〈D(v′)|Vµ|B(v)〉 = h+(v + v′)µ + h−(v − v′)µ;

〈D∗(v′, ε′)|Vµ|B(v)〉 = ihV εµναβε′∗νv′αvβ;

〈D∗(v′, ε′)|Aµ|B(v)〉 = hA1ε
′∗
µ − hA2(ε

′∗ · v)vµ − hA3(ε
′∗ · v)v′µ;

and so on. There are a total of 17 form factorshN needed to describe this process. However,
we can use the spin and flavor symmetries to reduce this number.

First, flavor symmetry tells us that the form factorshN are proportional to√mPj
mPj

. Then
from the spin symmetry, one can relate〈D∗|Vµ|B〉 and〈D|Vµ|B〉, for example, using the rela-
tion between theJ = 0 andJ = 1 states obtained by applying the spin operator as above:

〈D∗|V1|B〉 = 2〈D|Sz
c V1|B〉 = 2〈D|[Sz

c , V1]|B〉 = i〈D|V2|B〉,

and so forth. By using these symmetries, then, we can relate all 17 form factors such that only
one form factor needs to be computed. This is the Isgur-Wise functionξ(v · v′). Now ξ(v · v′)
involves a lot of complicated dynamics about which we know nothing generally. But ifv = v′,
then one can boost to a system where everything is at rest, and so the static approximation is
good, the wave functions overlap completely, and thus we knowξ(1) = 1. So the application
of heavy quark symmetry tells us two things: first, that the number of form factors necessary to
compute is reduced from 17 to 1, and futhermore that this one form factor is normalized to one
at a certain kinematical condition.
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Now, it is more interesting to look at heavy baryons — that is, one heavy quark plus two light
quarks (Qq1q2) — because the two light quarks can form a diquark system. This subsystem can
be in the flavorSU(3) representation6 or 3̄ since the heavy quarks areSU(3) flavor singlets —
that is,3×3 = 6+ 3̄. 6 is symmetric under interchange ofq1 andq2, 3̄ is antisymmetric; and so
from Fermi statistics, we know that the former is spin1+ and the latter is spin0+. The parity is
even because the parity of the heavy baryons is always even. For the6 representation, we write
(q1q2)1+ = φµ, which is an axial vector1+ object. From here we can combine this with the
heavy quark to form spin1

2
and 3

2
baryons, which we denoteB6 andB∗

6 , respectively. For thē3,
we write(q1q2)0+ = φ, which is a0+ Lorentz scalar, and we can only form spin1

2
baryonsB3̄

when combiningφ with a heavy quark. Now one may go through a similar although somewhat
more complicated argument as above for the heavy mesons. The basic idea is the same, and it
turns out that in semileptonic decays of heavy baryons there will be more than 30 form factors
needed (including vector and axial vector form factors), but this number can be reduced to
three universal Isgur-Wise functions10. Furthermore, here too we know something about these
functions in the limit whenv = v′.

This has been a very brief introduction to heavy quark symmetry, so let us take the oppor-
tunity here to summarize why the idea of heavy quark symmetry is so interesting. The main
point is that one can develop a precise formulation which allows one to deal with the quantum
field theory for a light and heavy quark system. So one can make very precise statements in the
limit mQ → ∞, such asξ(v · v′ = 1) = 1 and relations among the form factors, and then the
corrections can be formulated systematically. This provides a new and very intuitive language
for describing heavy mesons and baryons — a language which is very useful for understand-
ing physics and for communicating with experimentalists. Furthermore, when one combines
the heavy quark symmetry with the chiral symmetry of the light quarks, one can determine the
low energy dynamics of ground states of heavy mesons and baryons interacting with Goldstone
bosons and also photons. This will be shown next.

3. Synthesis with Chiral Symmetry

We will not dwell on the details of chiral symmetry, since they will be discussed in detail
elsewhere in these proceedings. Here we would like only to remind the reader of one relation
which will be needed later: namely, that one can use the partial conservation of axial vector
current, a consequence of approximate chiral symmetry, and a smoothness assumption, in order
to relate the strong coupling constantgπNN and the beta decay axial vector coupling constant
gA. This is the Goldberger-Treiman relation

gπNN =
mN

fπ

gA.

The axial vector coupling constant is defined as the matrix element of the axial vector current
between neutron and proton as

gA = 〈p ↑ |A1+i2
3 |n ↑〉.
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Now one can get a prediction for this matrix element from the constituent quark model. This
is evidently then not part of the precise statements made above. In the quark model,gA is
computed as a sum of the elementary contributions from the quark transitionsddu → duu:

gA = 〈p ↑ |u†σ3d|n ↑〉.
A naive calculation then findsgA = 5

3
. We know from experiment, however, thatgA = 1.25.

Georgi, Peris, and Weinberg11,12, among others, attempted to explain the discrepancy by appeal-
ing to a renormalization effect of the couplinggud

A , because theud vertex can in principle be
renormalized by QCD. One does not know how big such an effect is, but in any case Georgi and
Manohar11 just dictate that in order to get the rightgA we must assign a quark-quark coupling
gud

A = 0.75. So this value will be used later in the applications, but it will be made clear where
precise statements are being made and where the quark model is being used to get the numbers.

Now, a heavy meson isQq̄, and a heavy baryon isQq1q2. We know that for heavy quarks
we have the heavy quark symmetry and for light quarks we have chiral symmetry. For these
heavy-light systems, then, one should be able to extract a lot of physics from just these two
symmetries. The reason this synthesis is useful is because as a consequence of the heavy quark
symmetry, the mass difference between different spin multiplets is very small. For example,
MD∗ − MD ∼ 145 MeV, MB∗ − MB ∼ 47 MeV, andMΣc − MΛc ∼ 170 MeV (where the
Σc is c(ud)S=1 and theΛc is c(ud)S=0). So the pions and photons are very soft in the decays
D∗ → Dπ,Dγ, B∗ → Bγ, andΣc → Λcπ, Λcγ; and low energy theorems can be used to get
these matrix elements. The combination of the heavy quark and chiral symmetries thus has very
useful applications in these decays.

3.1. Strong Interactions.The pion, the Goldstone boson, because of its quantum numbers,
is only coupled to the light quarks. It does not couple to the heavy quark spin, and therefore
the matrix elements forD∗ → Dπ, andD∗ → D∗π for example, are related. This is just
the spin symmetry of the system. Flavor and chiral symmetries then determine the remaining
structure of the matrix elements for soft pion emission for the processesD∗(v, ε) → D(v′)π(q)
andD∗(v, ε) → D′∗(v′, ε′)π(q):

f

fπ

√
MDMD∗ε · q and

f

fπ

MD∗iεµναβqµε′νvαεβ,

respectively. They have the same overall coefficient, the couplingf , to be determined somehow.
There is thus only one independent coupling constant for all ground state heavy quarks; and
this is a reflection of the fact all these couplings can be thought of as due to the coupling of the
elementary light quark to the pion (this is the chiral quark model of Georgi and Manohar11).

Now above we wrote only the couplingf of the heavy meson to a single pion, but of course
by chiral symmetry the couplings to any odd number of pions will be related tof . Similarly,
there will be another class of couplings involving an even number of pions, but those couplings
will not have any new unknown parameters: the only parameter that will come in isfπ, accord-
ing to the usual chiral symmetry arguments. So there is only one unknown coupling constant
needed to describe the coupling of heavy mesons to soft pions.
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How about heavy baryonsQq1q2? It has already been mentioned that the baryon case is
more interesting because the two light quarks can form a1+ objectφµ or a0+ objectφ, where
φµ leads to spin1

2
(B6) or 3

2
(B∗

6) baryons andφ leads to only spin1
2

(B3̄) baryons when coupled
to a heavy quarkQ. Now one can again use the idea that in terms of quantum numbers the pion
will couple only to the light quarks. There will be one couplingg1 for the vertexφµ → φ′

µ + π,
and it will show up in the decays

B6 → B′
6 + π; B∗

6 → B6 + π; B6 → B∗′
6 + π;

and there will be another couplingg2 for the vertexφµ → φ + π, which will show up in the
decays

B6 → B3̄ + π; B∗
6 → B3̄ + π.

A consequence of parity conservation is that the spin zero diquark coupling to the pionφ →
φ′+π is not allowed since theφ is 0+ and theπ is 0−. So we have a prediction that the coupling
constant describing the transitionB3̄ → B′

3̄ + π will vanish at this order.
3.2. Electromagnetic Interactions.One can use similar ideas to describe the electromag-

netic interactions. There will be two types of couplings, the minimal (charge) couplings and
M1 transitions. Only the M1 transitions will be discussed here. The photon can come from two
sources: if it comes from the light quarks, again the spin symmetry tells us that the coupling is
independent of the heavy quark spin; if the photon comes from the heavy quark, then the cou-
pling constant can actually be computed exactly in the soft photon limit, because the light quark
cloud is not disturbed. The coupling constant is then related to the Dirac magnetic moment
µQ =

eQ

2mQ
.

So by similar arguments as for the strong interactions, only one coupling constantd is
needed to describe heavy meson transitionsP ∗ → P + γ andP ∗ → P ∗′ + γ. And then for the
baryons, we can use the same arguments to conclude that there will be one coupling constant
a1 for φµ → φ′

µ + γ, which will show up in the decays

B6 → B′
6 + γ; B∗

6 → B6 + γ; B6 → B∗′
6 + γ;

and there will be another couplinga2 for the vertexφµ → φ + γ, which will show up in the
decays

B6 → B3̄ + γ; B∗
6 → B3̄ + γ.

Once again by parity arguments, there is no transitionφ → φ′ + γ since theγ is 1−, and thus
there will be no M1 couplingB3̄ → B′

3̄ + γ.
So the physics is pretty simple in these pictures, and by using the spin symmetry one can

substantially reduce the number of independent parameters. For the strong interactions involv-
ing the heavy mesons there is a reduction from 2 to 1 and for baryons from 6 to 2 couplings.
For the electromagnetic M1 transitions there is the same reduction in the number of couplings.
Up to now all these have been general statements, independent of any model, just consequences
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of symmetries of QCD. Now we shall describe how these coupling constants can be computed
in the constituent quark model, and this will be in the same spirit as in the calculation ofgA

described above. Here, of course, we arrive at the subject of this conference, namely, how to
determine whether these quark model calculations are valid or not.

Thus, if one uses the same technique as for computing the axial couplinggA for beta decay
in the nucleon, one finds thatf — the coupling of pions to heavy mesons — is related togud

A of
the light quarks, namely,f = −2gud

A . Then for the two heavy baryon coupling constants, one
can use the analogue of the Goldberger-Treiman relation to expressg1 andg2 in terms of this
single coupling constant:g1 = 1

3
gud

A andg1 = −
√

2
3
gud

A . Now as mentioned before, naively we
havegud

A = 1, but because of the discrepancy with experiment Georgi and Manohar suggest that
we should assigngud

A = 0.75. We shall just adopt this assumption here. The electromagnetic
coupling constantsd, a1, anda2 can also be computed in the constituent quark model, and they
will be related to the magnetic moments of the light quarks. So using the heavy quark symmetry
we have reduced the number of coupling constants to a small number, and we can then compute
these in the constituent quark model.

With this combination of first principle calculations and the quark model results for the
coupling constants, then, one can get some numbers. Taking the quark constituent masses from
the particle data book13: mu = 338 MeV, md = 322 MeV, ms = 510 MeV,mc = 1.6 GeV, and
mb = 5 GeV, and usinggud

A = 0.75, one can make predictions for these decays. Unfortunately,
the experiments cannot measure the absolute widths because they are too small. But one can
compute and compare the branching ratios.

These results for strong and electromagnetic interactions with heavy mesons are given in
Table??. CLEO14 re-measured the branching ratios just recently for the charm mesons, and they
came up with the numbers given in the fourth column. Now if you look at the 1992 Particle
Data book15 (fifth column), you will find that there is a discrepancy with the recent CLEO
measurements. The theory agrees very well with the CLEO measurements. Most interesting is
the decayD∗0 → D0γ, whose branching ratio is not small; it agrees very well with the CLEO
measurement. So there is an indication that something is working here. It is important to test
experimentally the validity of our predictions for the absolute widths.

One can also compute widths and branching ratios forD∗+
s , B∗+

u andB∗0
d decays, but there

are no experimental data yet with which to compare these numbers. Note that in Table?? the
charm meson mass is kept finite. In fact, ifmc →∞, one finds

D∗+ → D+γ 6keV (1)

D∗0 → D0γ 23keV (2)

D∗+
s → D+

s γ 2.4keV (3)

as compared with the decay widths for finitemc above. The difference is substiantial, because
mc = 1.6GeV is not very heavy, and also since the charm quark has charge2

3
. So one can

see that it is quite important to keep the charm quark mass finite. Of course, this is not quite
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Table 1: Heavy meson decay widths and branching ratios
Decay Mode Γ (keV) BR(Th) (%) BR(CLEO) BR(PDG)
D∗+ → D0π+ 102 68 68.1±1.0±1.3 55±4
D∗+ → D+π0 46 31 30.8±0.4±0.8 27.2±2.5
D∗+ → D+γ 2 1.3 1.1±1.4±1.6 18±4
D∗+ → all 150 100

D∗0 → D0π0 70 66.7 63.6±2.3±3.3 55±6
D∗0 → D0γ 34 33.3 36.4±2.3±3.3 45±6
D∗0 → all 104 100

D∗+
s → D+

s γ 0.3 100
B∗+

u → B+
u γ 0.84 100

B∗0
d → B0

dγ 0.28 100

Table 2: Heavy baryon decay widths and branching ratios
Decay Mode Γ (keV) BR(Th) (%)
Σ+

c → Λ+
c π0 2430 96.2

Σ+
c → Λ+

c γ 93 3.8
Σ+

c → all 2540
Ξ′+

c → Ξ+
c γ 16 100

Ξ′0
c → Ξ0

cγ 0.3 100

consistent, since we have included only one source of1/mQ corrections. Recall that the quark
masses are used for determining the magnetic moments for the electromagnetic M1 transitions.

Calculations have also been performed for the heavy baryons, as shown in Table??. Unfor-
tunately, there are no experimental data yet with which we can compare these numbers. In the
table, the baryons not yet introduced in the text areΞ′+

c = c(us)S=1, Ξ+
c = c(us)S=0, Ξ′0

c =
c(ds)S=1, andΞ0

c = c(ds)S=0.
3.3. Semileptonic Decays.The previous predictions actually have little to do with heavy

quark symmetry. They follow just from combining the quark model with chiral symmetry. Now
we shall show one example where, at least theoretically, one has to use both chiral and heavy
quark symmetries. This is the semileptonic decay of a heavy meson including a soft pion.
Some motivation for doing this analysis comes from the existing experimental data, which
give the branching ratios forB0 → D−l+ν to be(1.8 ± 0.5)% and forB0 → D∗−l+ν to be
(4.9 ± 0.8)%, and similar results forB+ decay, whereas the branching ratio for the inclusive
decayB → hadrons e±νe is (10.7 ± 0.5)%. Since the first two do not add up to 10.7%, this
indicates that there will be other states besidesD andD∗ important for this decay. We want to
find out if soft pions could be important.

Theoretically, the problem is quite interesting. As an example, consider the decayB(v) →
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Table 3: Semileptonic decay integrated rates and branching ratios
Frame cutoff (MeV) Rate (MeV) BR L0 (%) L (%) R (%)

B 100 3.20× 10−15 0.63× 10−5 26 57 17
B 200 1.84× 10−14 0.36× 10−4 30 52 18

B andD∗ 100 9.62× 10−16 0.19× 10−5 27 54 19
B andD∗ 200 1.04× 10−14 0.20× 10−4 33 48 19

D∗(v′)π(q)lν. This decay may proceed in three ways: (i)B → B∗(∼v)π → D∗πlν, (ii)
B → D∗(∼v′)lν → D∗πlν, or (iii) B → D(∼v′)lν → D∗πlν. As discussed before, we
can use the heavy quark symmetry to relate the different weak decays, so that there is just one
unknown form factorξ(v · v′). And for soft pions the different strong interaction vertices all
depend on just the one couplingf because of chiral symmetry, as described before. Therefore,
even though these amplitudes are in principle independent, we can use spin, flavor, and chiral
symmetries to detemine their relative phases and magnitudes for soft pions, and thus there is
only an overall normalization which we do not know. One then just needs a model for the form
factorξ(v · v′), and so Burdman’s fit16 was used for the numerical calculation.

If the invariant mass of theDπ system is less than three widths from theD∗ invariant mass
— that is,|M(Dπ)−M(D∗)| < 3ΓD∗ — then we call it a part of theD∗ resonance. Everything
else is non-resonance, and it turns out that the non-resonant part is very small compared with
the resonant part. In Table??, we list the integrated decay rates and branching ratios forB̄0 →
D∗+π0e−ν̄e. We also give contributions from different polarizations of theD∗ (longitudinal,
left-handed, and right-handed polarization are labelledL0, L, andR, respectively). The relative
magnitudes of these can be understood from the fact that the underlying weak interaction is
V − A. It turns out that the branching ratio is not very big. For theD it is ∼(0.5−1)%, and
for theD∗ only∼ 10−4 − 10−5. So the difference between the inclusive and exclusiveB decay
cannot be explained by soft pion contributions. It must be due to something else, perhaps an
excited state.

4. Concluding Remarks

This has been a very short summary of work contained in Ref. [1-4] that has been done
on heavy quark systems involving strong and electromagnetic interactions and semileptonic
weak decays with soft pion emission. But besides the particular calculations which have been
described here, this work has also included some other computations which we would like to
at least mention. This includes work on1/mQ corrections17, which however could not produce
reliable numerical estimates because the coefficients involve matrix elements of light quark
operators which will require the success of this conference to be worked out. There is also work
on chiral symmetry breaking17 due to the fact that the light quark masses are non-zero. This has
been more successful: it is possible to compute non-analytic contributions (depending on the
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square root and logarithm of the mass, and so on). Some heavy flavor conserving weak decays
— for example,Ξc → Λcπ — have also been studied. And recently work on weak radiative
decays17 — flavor changing electromagnetic decays — has been completed. This calculation
was motivated by the observation at CLEO of the so-called penguin decayB → K∗γ. The
question is then whether the decayB → D∗γ is as small or bigger than this. This calculation
can be done in a similar framework to those described here, and it turns out that the branching
ratio forB → B∗γ is only10−6, and so the dominant decay isB → K∗γ.

To summarize, then, it has been shown that by combining the heavy quark and chiral sym-
metries, one can reduce the number of unknown parameters for low energy dynamics of heavy
mesons and baryons with Goldstone bosons and photons. Furthermore, if one applies the con-
stituent quark model, then everything is determined. Now there is a curious fact which should
be mentioned: namely, suppose one does not assume any heavy quark symmetry and just goes
ahead and computes all coupling constants and so forth using the quark model, then one finds
that the coupling constants all satisfy the heavy quark and spin symmetry relations. So the con-
stituent quark model is consistent with the heavy quark symmetry. We leave it to the reader to
judge the relative profundity or triviality of this result.

Finally, we remark that just as the hydrogen atom is a simple system whose study allows us
to begin to understand QED, we have long searched for a similar relatively simple starting point
for understanding QCD. When charmonium was discovered, it was said by some that theQQ̄
system, the heavy quark quarkonium, could be the hydrogen atom of QCD. But it seems that the
Qq̄ system provides a better analogy with the hydrogen atom because asmQ → ∞ the system
is essentially reduced by one degree of freedom, and one only has to deal with the light quark.
So in the sense of providing a simple starting point for understanding the difficult aspects of the
theory, then, we may say that the heavy meson is the hydrogen atom of QCD.
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