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1. Preliminaries. Notation

Time scale T is any (non-empty) closed subset of R.
Forward jump operator o(t) =inf{seT:s>t} =:t°
Backward jump operator p(t) :==sup{seT:s <t}

Graininess w(t) ;= o(t) —t.



Rd-continuous function is continuous at right-dense points
(c(t) = t) and has a finite limit at left-dense points (p(t) = t).

Graininess p is always rd-continuous (but is not continuous
at points which are left-dense and right-scattered).

Delta derivative: FA@R) = lim f(a(’z; — f(s)
s —1 o — S

s = o(t)

Theorem (Hilger): Any rd-continuous function f has an anti-
derivative F (i.e., F& = ).

Nabla derivative: )= tim L) =F(s)
s — t p(t) — s

s 7 p()



Hilger’'s exponential function, denoted by e (¢, tg), is the unique
solution of the following initial value problem (¢ : T — C is given):

2 =at)z | x(tg) =1 .
Nabla exponential function, denoted by €y(t,tg), satisfies:
Y =a®)z, z(tg)=1.
Continuous case (T = R): ea(t,tg) = eal(t,tg) = exp /t:) a(t)At.
T=R, at) =2z = ea(t) =2éa(t) = e’

Discrete constant case (T = hZ, «a(t) =z € C):
2t A

e.(t) = <1+g)n, 5. (1) = (1——)_n, t=nh .

n
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2. Hyperbolic and trigonometric functions

T=R = cosz = % (e +e™) , e ™= (")t (1)

Unfortunatelly: e_ao(t,tg) £ egl(t,to).

ea(t) +eg1(t)
2

etc.

2.1. Hilger (1999): coshq(t) =

Advantages: cosh2(t) —sinh2(t) =1 ,
Disadvantages: cosh2(t) is not proportional to sinha(t),

cosh;,(t) ¢ R (for w € R) . How to define sine and cosine?

Hilger (1999): w(t) = const = cos,(t) := cos(wt) (?1)

Exact discretization!
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2.2. Bohner, Peterson (2001):

ea(t) + e—oz(t)
2 Y

coshq(t) = cosy(t) = cosh, (t) , etc.

Advantages: weR = cosy(t) eR, sing(t) € R,
NAN N AN
sinh5'(t) = acoshq(t) , sing'(t) = wcosy,(t), etc.

Disadvantages: in place of Pythagorean identities we have
qualitatively different equalities, i.e.,

cosh2(t) —sinh2(t) =e_ a2 (), cos2(t) +sin2(t) = €,2(t) -

Sine and cosine are not bounded.



3. New definition of the exponential function

The Cayley-exponential function Eq(t,tg) satisfies the fol-

lowing initial value problem:

A
2= (1) = a(t) (z(t)) , z(o) =1,
where « is regressive (i.e., ua = £2) and rd-continuous on T,

z(t) +x(a (1))
= .

J.L.Cieslinski (2010), “New definitions of exponential, hyperbolic and trigo-
nometric functions on time scales”, preprint arXiv: 1003.0697 [math.CA].

and  (x(t)) :=



Continuous case

2
T=R = Ea(t):exp/Ooz(T)dT.

Discrete case

n

1—|—%toz

T=hZ, a=const, = Fq(t) = i

Similar formulas (discrete case): Ferrand (1944), Duffin (1956),
Zeilberger, Dym (1977), Date, Jimbo, Miwa (1982), Nijhoff,
Quispel, Capel (1983), Iserles (2001), Mercat (2001).



Cayley-exponential (C-exponential) function E, is given by

t
Eo(t, tg) := exp </to CM(S)(a(s))As>, Eo(t) := Ea(t,0),

where o (a: T — C) is regressive (i.e., pa &= +2) and rd-continuous, and

114 3zp 2 K
Cu(z) y Od ~ %z,u , Co(z) z, (z htan 2)
1+ az

Classical Cayley transformation: 2z — cay(z,a) = . maps the
— az

imaginary axis into the unit circle.
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Properties of the Cayley-exponential function:

oo 14 du®alt)
1. Eq(t?,tg) = h _%M(t)a(t) Eq(t,tg)
2. Ea(t, tg) = Ez(t,to) , (Ea(t, tg)) 1 = E_a(t, to)

3. Ea(t,tg) Ea(to,t1) = Ea(t,t1)

4. Ea(t7t0) Eﬁ(tatO) — Ea@ﬁ(tatO)

a+ 3
1+ zp208

2
“Lorentz velocity transformation’, — is an analogue of the speed of light.
o

where t? =o(t) and a® (.=

11



4. C-hyperbolic and C-trigonometric functions.

Ea(t) + E—a(l)

Cosh,(t) = —
0 5 5

COSw(t) — Eiw(t) _|_2E—iw(t) 7 Sinw(t) — Eiw(t) _QiE—iw(t) .

C-exponential function satisfies;
(BEa(®)) ' =E_o(t) , Ez(t) = Ea(D).
Therefore, Rea(t) =0 = |Eq(t)| =1,

which implies good properties of C-trigonometric functions.
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Theorem.
Cosh2(t) — Sinh2(t) =1,
Cosh2 (t) = a(t) (Sinha(t)), Sinh5(t) = a(t) (Cosha(t)) ,
Cosi(t) -+ Sing(t) =1,
Cos2 (1) = —w(t) (Sinu(t)), SinS () = w(t) (Cosu(t)) ,
Theorem. If w(t) = const, then Cayley-sine and Cayley-

cosine functions satisfy the equation (“harmonic oscillator on
time scales” ):

228 4 2(e(6)) =0 ( (o)) = T T2 ) .
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5. T-analogues of ODE motivated by numerical schemes

We consider a general ODE:

= f(z,t), teT, z@)eCV, flz@),t)eCN
Standard time scales analogues:
Forward (explicit) Euler scheme z2(t) = f(z(t),t)
Backward (implicit) Euler scheme 2V (t) = f(z(t),t)

What about other numerical schemes? ...
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Trapezoidal rule (notation: z = z(t), z° = x(t?))
autonomous case:  z2 =3 (f(z) + f(2))

general case: z2 =" (f(m t)+ f(z%,t) + f(z,t7) + f(x7,t9))

Remark. f(z,t)=a(t)z = 2z2= (o) {x)
Yet more symmetric definition of the exponential function!

Implicit midpoint rule

x + x°
autonomous case z2 = f ( )

general case: z2 = % (f (m_l_xa,t) + f <x+xa,t“>> (?)




Discrete gradient method (a simplest case)

oT oV
Hamiltonian H(p,q) =T(p)+V(q) vields ¢ = —, p= ——.
Op dq
T-analogue:
AT AV
¢~ =", po ==
Ap Agq
where the ‘“discrete gradient” is defined as
AT T(p°) —T(P AV V(g’) -V
() — fim 1@ =T (@) = 1im V(@) = V(@)
Ap P—p  p?—P Agq Q—q  q7—Q

Theorem. On any time scale: T(p) + V(q) = const.
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Classical harmonic oscillator G+wiq =0, q(t) € R,

Implicit midpoint, trapezoidal and discrete gradient schemes
yvield the following T-analogue of harmonic oscillator:

AP +B (@) =0 (@) =T T2TTT

Solutions: C-sine and C-cosine functions (very good qualita-
tive properties: bounded, often oscillatory-like).

Of course, all these schemes vyield different results for other,
nonlinear, equations.

17



6.1. New g-exponential function &7 is defined as

R, B A G V)
g ‘=eqg g = ]] - <,
k=0 1 —q (1—Q)§

where eg, Eff are standard g-exponential functions

T heorem:
0. @) xn
EY = :
fmy = Lt T G [n]
30+ T 30+
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New g-trigonometric functions motivated by the Cayley trans-
formation

giaz . g—z’x 52’:13 + g—z’x
d 4 Cosqr = d 4
27 2

Singr =
Properties:

Cosga: + Sing:c =1,

DSingx = (Cosqx) ,

D Cosqxr = —(Singx) ,

flgx) — f (q)

qQr — T

where D, (g-derivative) is defined by Dyf(x) =

flx)+ f (qx)
2

and (f(z)) :=
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6.2. Padé-analogues of the exponential function on T
Pi(z)
Qr(x)’

4,k are given, which agrees with ¢* (at x = 0) to the highest possible order.

where orders

Padé approximant of e is a rational function R;(z) =

o To(t,to) = ea(t,to)  delta exponential function
o Eg1(t,to) = ea(t,to)  nabla exponential function

o 11(t,to) = Ea(t,to)  Cayley-exponential function

14+ Ltap+ L(ap)?
3 - 112( M)2 E35(t,to) , which satisfies:
1 —sou+ 5(ap)

A o A o
= = (z) , = = z, (x=FES,).
1+ 55(an)? 1 - Jap + f5(an)? >

[ Eg’Q(tO, t0> —

e Similarly: EZ.(t7,t0) (with “good” trigonometry for k = j).
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6.3. Exact analogues of elementary/special functions on T

Given f:R — C, we define its exact analogue f:T — C as
F=1
f(t) .= f(t) (forteT).

The path f — f is obvious and unique, but how to find f
corresponding to a given f? For example, which function
a: R — C corresponds to a given function o : T — C? The
answer is obvious if o = const. What about other cases?

T i.e.,

21



Exact exponential function on T

Assumption: a« = const € C.

Definition. FEf*(t,tg) = e(t—to)

Theorem. The exact exponential function ES*(t¢,tg) satisifies

2 (t) = a Ya(t) (x(t)) z(tg) =1,

where 1 (t) = 1 for right-dense points and

Ya(t) =

for right-scattered points.
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6.4. Dynamic systems on Lie groups

Natural generalizations of the Cayley transform:
e Lie algebra g — (“quadratic”) Lie group G,
e anti-Hermitean operators — unitary operators.

Lemma. Acg = ((-A)"1U+A)ea

The dynamic system &2 = A(P), ie., &7 = :

d
is a natural T-analogue of %CD = Ad (here Acg, ®c@G)

Another approach: J.L.Cieslinski (2007), “Pseudospherical surfaces on
time scales: a geometric definition and the spectral approach’”, J. Phys.
A: Math. Theor. 40 (2007) 12525-12538.
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6.5. Sine-Gordon equation on time scales
Si”(%lﬁxlﬁyq’AxAy)

Discrete case: T
aHxly

= sin (P) ,

B HOz0y + DOz + Dy + b
p— ) .

<CD> : Extension on any T: soon.

Lax pair: WS =yUw , wvS=Vwv
where U is linear in A, V is linear in A1

J.L.Cieslinski, “Pseudospherical surfaces on time scales...",
J. Phys. A: Math. Theor. 40 (2007) 12525-12538.

Open problem: to extend the Ablowitz-Ladik spectral prob-
lem on time scales.
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7. Conclusions and future directions

Differential equations have no unique ‘natural’ time scales
analogues. It is worthwhile to consider different numerical
schemes in this context.

Dynamic systems preserving integrals of motion and Lya-
punov functions (discrete gradient method).

Inequalities of Gronwall type.

New developments in the g-calculus (e.g., modifications of
g-gamma function and of the Jackson integral).

LLaplace and Fourier transformations.
Locally exact T-analogues of elementary functions.
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Exponential function

29



Exponential function on T (Hilger, 1990)

calt,to) 1= exp ([} €,()(a(s)) As) |

ea(t) == eal(t,0) ,
where

£u(2) 2=;log(1+zu) (for 1> 0)

§o(2) ==z .

Assumption: « is pu-regressive (i.e., pa 7= —1) and rd-continuous.
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Properties of Hilger’s exponential function:
1. eq(t?,tg) = (1 4+ pu(t)a(t)) ealt, to)

2. (ea(t,t0)) ™t = ecualt, to)

3. ealt, tg) ealto,t1) = ealt,t1)

4. ealt,to) eg(t, to) = eqqup(t,to) .

where «, 8 rd-continuous and u-regressive, t° = o(t),

a®Pt B =a+ 684+ puaB and oSta = 1_;%&.
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Theorem: FE,(t,tg) = eg(t, tg), if

_ 8@
1+ 2u(t)B()

a(t) |
1 — u(t)a(t)

a(t) B(t) =

Proof (sketch). We denote z(t) = E.(t,tg) and consider

a right-scattered ¢ (i.e., t9 #1t). Then:
:c(t;)f : z:(t) — a(t) z(t%) ;- x(t)
_ 14 3u®a®
=T Lawemn
a_z@?)—z@®) _  a®x() N
S0 1-Laa OO

22 (t) = a(t)(z(t)) <+

Hence (using u(t) =t —t): xz(t%)

Therefore, x

which means that z(t) = eg(t, o).
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Numerical advantages of E,

141 1 1
Balt7.) = T2 o1 ot Dam? 4 a4
1 —5pa

Ga(tg,t) =1 _I_ o,

ea(t?,t) = =14 au+ (ap)?+...

Continuous case:
1 1
exp(ap) =1+ ap+ E(au)z + g(au)3 +...
T herefore, for u # 0,

Eq(t%,t) is a second-order approximation of exp(au), while
ea(t?,t) and eq(t?,t) are of the first order only.
33



g-Calculus
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Standard g¢-exponential functions e EfL’

(definitions and notation are much older than the time scales!)

i [x— IO_O[ (1- 1 —-qqg=)1,
;=0 k=0

fﬁ==§2¢“31f}——IIu+41—qm%o=<g¢rl=e@q
7=0 k=0

where [jI' =[1][2]...[5]], l=14+q+...+¢ 7 ie,

Gl'=1-(14+q¢) - (1+q+¢*)-...-QA+g+...+¢7Y),

éﬂP”Mh:r<1+1> <1+ +. +——ﬁ
q q q’
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g-Exponentials in terms of exponential functions on T = ¢No

g<1 = e¥=2¢,(1,0), ET=ey(1,0),

T

qg>1 = e;=e(1,0), Ej

éx(l,O),

gngx(]-aO)a %/qux(lao):

r _ ox r _— T
Note that 1/q_SQ’ Eq_el/q'

Let T=¢Y (0<qg<1) ,and «a(t) =z. Then

e.(t) = [](1+ Q=) , t=d"

=k
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Standard g-trigonometric functions

1T —X 1T —X
et —e EY — FH
21 21
1 —X 10 —
et + e EY 4+ FE
cosgr = 2 5 T Cosqzx =1 > €
Properties:

CoSqx COSqx + Singx Singz =1
Dgsingxz = cosqx , DgCOSqx = —Singx ,

DySingr = Cosq(qx) , DgCosqx = —Sing(qx) .
_ flez) - fla)

where Dy (g-derivative) is defined by Dyf(z) 1=
qr — x
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Positively regressive functions
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Definition. Function o« : T — R is called positively regressive,
if for all t € T® we have |a(t)u(t)| < 2.

Theorem. If o : T — R is rd-continuous and positively
regressive, then the Cayley-exponential function E is positive
(i.e., Eq(t) >0 for all teT).

Theorem. The set of real positively regressive functions is an
abelian group with respect to the addition &.

Attention. The set of all regressive functions is not closed with respect
to the addition &. In order to show this fact it is enough to take «, 8 such
that p2afB = —4. Then a @ B is infinite.
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Exact discretization
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Modified delta derivative

A £(1%) — 2(s)
rre() = M e o
s#=o(t)

2
where §4(p) := —tanh ala
«

Lemma. z2(t) = o (t)zPe(t).

Lemma. Exact exponential function ES*(t,tg) satisfies

22a(t) = alz(t)) 2(tg) = 1 .

This is the exact discretization of the equation = = ax.
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Exact analogues of hyperbolic and trigonometric functions
on T.

cosh&*(t) = Eg‘x(t)_;Eixa(t) — cosh at |
Sinh&%(t) = Ba™(1) ;Eixa(t) — sinh at .
CcosEE(t) = i (t)zE%’(t) —= coswt ,
sing () = Bio () — B2, () = sinwt .

27
T he last two definitions coincide with Hilger’'s definitions.

These functions satisfy rather complicated dynamic equations which sim-
plify greatly in the case u = const.
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Exact harmonic oscillator on T.

If w(t) = const, w(t) = const, then cosf’ and sing' satisfy

22 (1) + w2 (wp) ((x(1))) =0,

or, equivalently,

2
DA (1) 4 w2 <sinc%> 2(t7) =0 |

where  sinc(x) := Sigx (for x#%=0), sinc(0):=1.

Another equivalent form of this equation reads

2 DUAL (1) + w2z (t) = 0.
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acAi'J is another modification of the delta derivative.

A _ x(t%) — x(s) cos(wt? — ws)
w(t) = |
ze () sint w—Llsin(wt? — ws)
s7#=o(t)

In order to avoid infinite values of z®: we assume |wu(t)| < 7. All posi-
tively regressive constant functions w obviously satisfy this requirement.

Lemma. If z = z(t) solves the equation #4w?z = 0 (defined
for t € R), then

(@()er)™ = () lser -
Lemma.
VA Al 1 i
22 (1) = sinc(wp) w250 — S <S|nc )x(t)
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