Phase Space Quantum Mechanics
Canonical Regime
Part 1

Maciej Btaszak  Ziemowit Domanski

Adam Mickiewicz University, Faculty of Physics
Division of Mathematical Physics

June 7, 2010

Maciej Btaszak, Ziemowit Domariski Phase Space Quantum Mechanics Canonical Regime Part 1



Classical Hamiltonian mechanics
of observables

Classical Hamiltonian systems

Phase space

Phase space — a Poisson manifold, i.e. a smooth manifold M endowed
with a two times contravariant antisymmetric tensor field P (a Poisson
tensor) satisfying the below relation

L, P =0,
for every vector fields (¢ (Hamiltonian fields) defined as

Cri=Pdf, feC®(M).
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Classical Hamiltonian systems
Classical Hamiltonian mechanics
f observables

Classical Hamiltonian systems

Phase space

Phase space — a Poisson manifold, i.e. a smooth manifold M endowed
with a two times contravariant antisymmetric tensor field P (a Poisson
tensor) satisfying the below relation

L, P =0,
for every vector fields (¢ (Hamiltonian fields) defined as

Cri=Pdf, feC®(M).

Algebra of observables

Algebra of observables — an algebra Ac = C*°(M), with respect to a
point-wise product, of all (complex valued) smooth functions on M.
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lassical Hamiltonian systems
Classical Hamiltonian mechanics

Admissible observables

Admissible observables — real valued functions from Ac. They
constitute a real algebra denoted by O¢.
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Classical Hamiltonian mechanics

Admissible observables

Admissible observables — real valued functions from Ac. They
constitute a real algebra denoted by O¢.

Lie structure on C*°(M)

A Poisson bracket

{fvg}P = P(df7dg)7 fvg € COO(M)

introduces a structure of a Lie algebra on C°°(M). Indeed, the Poisson
bracket is a properly defined Lie bracket. In fact, it has the following
properties

{fag} = 7{g7 f} (antisymmetrY)a
{f,gh} = {f,g}th+ g{f, h} (Leibniz’s rule),
0={f,{g,h}}+{h{f,g}} +{g,{h,f}} (Jacobi’s identity).

The algebra C>°(M) endowed with the Poisson bracket is called a
Poisson algebra.
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Classical Hamiltonian systems
Classical Hamiltonian mechanics Ca al S

states and expectation values of observables
cal Hamiltonian systems

Classical Hamiltonian system

Classical Hamiltonian system — a triple (M, P, H), where H € Oc¢ is
some distinguished observable called a Hamiltonian.
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al Hamilt
Classical Hamiltonian mechanics

Canonical coordinates

Local coordinates g, p; (i =1,...,N) in which a Poisson tensor P have
(locally) a form

p_ 0,0 _ 0 0 0 ai_elp,j:(o,\, 11,\,)

“9q " op 0qg “op 0p " oq “Iy On

are called canonical coordinates.
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Classical Hamiltonian mechanics

Canonical coordinates

Local coordinates g, p; (i =1,...,N) in which a Poisson tensor P have
(locally) a form

0 0 0 0 0 0 . i Oy Iy
= AN = . — - .e. U=
o0 "o~ oq Cop op Cog o T ( Iy O )

P

are called canonical coordinates.

In the canonical coordinates a Hamiltonian field (¢ and a Poisson bracket
take a form

G = of 9 of 9
" Opag  9q opi’
of 9g  Of og

e} = g dp;  Op;i 0q""
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Classical Hamiltonian mechanics s
ates and expectation values of observables
H

amiltonia

Pure states, mixed states and expectation values of
observables

Lets restrict to the case of the Hamiltonian systems without any
constrains, i.e. the case when M = R2N,
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cal Hamiltonian
Classical Hamiltonian mechanics
s of observables

Pure states, mixed states and expectation values of
observables

Lets restrict to the case of the Hamiltonian systems without any
constrains, i.e. the case when M = R2N,

Pure states — points in the phase space M.
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Hamiltonian
Classical Hamiltonian mechanics

Pure states, mixed states and expectat ues of observables
i f iar ns

ime al Ham ms

Pure states, mixed states and expectation values of
observables

Lets restrict to the case of the Hamiltonian systems without any
constrains, i.e. the case when M = R2N,

Pure states

Pure states — points in the phase space M.

Mixed states

Mixed states — probability distribution functions defined on the phase
space, i.e. functions p € C°°(M) such that
0 0<p(§) <1lforeM,

o /M p(€)dE = 1.
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Classical Hamiltonian mechanics

Pure states, mlxed states and e\(pectatlon values of observables
ime evolution al Hamiltonian systems

Pure states, mixed states and expectation values of
observables

Lets restrict to the case of the Hamiltonian systems without any
constrains, i.e. the case when M = R2N,

Pure states — points in the phase space M.

Mixed states

Mixed states — probability distribution functions defined on the phase
space, i.e. functions p € C°°(M) such that
0 0<p(§) <1lforeM,

o /M p(€)dE = 1.

In this picture pure states can be defined as Dirac delta distributions, i.e.

§o € M —— (¢ — &).
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Hamiltonian systems
Classical Hamiltonian mechanics

tes and expectation values of observables
ssical Hamiltonian systems

Expectation values of observables

Expectation value of observable A € A¢ in a state p:

For a pure state p(§) = §(€ — &):

A, = [ A - &g = AGo)
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Classical Hamiltonian mechanics
re state d st | expectation values of observables
Time evolution of classical Hamiltonian systems

Time evolution of classical Hamiltonian systems

The Hamiltonian H governs the time evolution of the system:

H— (g — oF

_—
E(t + At) = dx,((1))
0 p(t) = (PR) "t + At)
§=CH T
0 _ o _ _
9= op;’ pi = " oq (Liouville equation)

(Hamilton equations)

For p(&) = 6(€ — &) the Liouville equation induces the Hamilton
equations.
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Hamiltonian systems
Classical Hamiltonian mechanics

and expectation values of obsen
Time evolution of classical Hamiltonian systems

Time dependent expectation value of observables

A time dependent expectation value of an observable A € A¢ in a state
p(t), i.e. (A), . fulfills the following equation of motion

d
(AL =0 < i (A) piey — A HY) iy = 0.
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ssical Hamiltonian systems
Classical Hamiltonian mechanics an oordina

Pure states, mixed states and expectation values of observables
Time evolution of classical Hamiltonian systems

Time development of observables

An automorphism of the algebra of observables Ac:

uf = (ol = et
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ical Hamiltoniar

Classical Hamiltonian mechanics

states and e ation values of obsen
Time evolution of classical Hamiltonian systems

Time development of observables

An automorphism of the algebra of observables Ac:
ut' = (o) = et
Time development of A € Ac:

A(t) = UM A(0) = et“<1 A(0) = e"HA(0) — %(t) — {A(t),H} = 0.
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Classical Hamiltonian mechanics

ctation values of observables
Time evolution of classical Hamiltonian systems

Time development of observables

An automorphism of the algebra of observables Ac:
UH (d)H) et[’CH .
Time development of A € Ac:

A(t) = UM A(0) = et“<1 A(0) = e"HA(0) — %(t) — {A(t),H} = 0.

Both presented approaches to the time development yield equal
predictions concerning the results of measurements:

(A(0)) () = (A1) (o) -
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Basics of deformation quantization

Quantization procedure on a phase space Pur s s ectation values o
Tim

Basics of deformation quantization

Let (M, P) be an arbitrary Poisson manifold.
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asics of deformation quantizati

Quantization procedure on a phase space

Basics of deformation quantization

Let (M, P) be an arbitrary Poisson manifold.

Quantization of the Poisson algebra of observables

Quantization of (M, P):
Deformation with respect to 7 of the classical algebra of observables Ac¢
to some noncommutative quantum algebra of observables Ay, i.e.

%k,

Loy =0 l= 50

where [-, -] is a x-commutator.
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Basics of deformation quantizati
c 4 -

Quantization procedure on a phase space

The deformed noncommutative multiplication on Ag should satisfy such
natural conditions
Q f x(g*h)=(f *g)*h (associativity),
Q fxg="fg+o(h),
Q [If,gl] = {f, g} + o(h),
Q@ fxl=1xf="f,
o0

Q@ fxg=> hBi(fg)

k=0
where f, g, h € Ag and By: Ag X Ag — Aq are bilinear operators.

Maciej Btaszak, Ziemowit Domariski Phase Space Quantum Mechanics Canonical Regime Part 1



Quantization procedure on a phase space

The deformed noncommutative multiplication on Ag should satisfy such
natural conditions
Q f x(g*h)=(f *g)*h (associativity),
Q fxg="fg+o(h),
Q [If,gl] = {f, g} + o(h),
Q@ fxl=1xf="f,
o0

Q@ fxg=> hBi(fg)
k=0
where f, g, h € Ag and By: Ag X Ag — Aq are bilinear operators.
From the construction of the x-product it can be immediately seen that

in the limit 4 — 0 the quantized algebra of observables reduces to the
classical algebra of observables.
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Quantization procedure on a phase space

The bracket [| -, -|] is a well-defined Lie bracket. In fact, it satisfies

[If.gll = —llg. fl] (antisymmetry),
[If, g % hl] = [If, gl * h+ g * [IF, hl] (Leibniz’s rule),
0 =1 llg hllll + [Ih,[If, glll1 + [l&. [[A f]]ll  (Jacobi’s identity).
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Basics of deformation quantization

of es and pro| canonical x ;. .,
Quantization procedure on a phase space mixed states and expectation observat

on of quantum Hamiltonian

Lets restrict to the case of the Hamiltonian systems without any
constrains, i.e. the case when M = R2N,
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Space of s

Quantization procedure on a phase space Pure states
Time ev

Lets restrict to the case of the Hamiltonian systems without any
constrains, i.e. the case when M = R2N,

In this case
N N
P=Y XAYi=) (Xi@Yi-Yi®X),
i=1 i=1

where X;, Y; (i=1,...,N) are some pair-wise commuting vector fields
on M.
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asics of deformation quantizati

Quantization procedure on a phase space

Lets restrict to the case of the Hamiltonian systems without any
constrains, i.e. the case when M = R2N,

In this case
N N
P=Y XAYi=) (Xi@Yi-Yi®X),
i=1 i=1

where X;, Y; (i=1,...,N) are some pair-wise commuting vector fields

on M.

Also
N N

{f.elp="F|D (Xi®Yi-YieX)|eg= Z(X, i~ YiX) e
i=1 =1

N
> (Xi(F)Yi(g) - Yi(F)Xi(g)).
i=1
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Basics of deformation quantization
Spa

Quantization procedure on a phase space Pur
Tim

Space of states and properties of canonical %, , g-products

In the rest of the presentation the case of x4 o g-products related to the
canonical Poisson tensor P = dx A 9, on a manifold M = R? will be
considered.
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ration quantization
and proper canonical *
ervables

Quantization procedure on a phase space

Space of states and properties of canonical x, , g-products

In the rest of the presentation the case of x4 o g-products related to the
canonical Poisson tensor P = dx A 9, on a manifold M = R? will be
considered.

Canonical *, o g-products

The %, o g-product takes the form

R = = — — — —
f 50,38 = Fexp (0 DD p— NG00+ 10D Dx+130,0,)8

= i (_1)"7(,'71)'7+'7771f+5&O‘rﬁs
=, n'm!r!s!

. (3Q+rag1+s f)(&?*’@,’,’*sg).
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Basics of deformation quantization
Space of states and properties of canonical +, o, 3-products

Quantization procedure on a phase space Pure states, mixed states and e tation values of observables
Time evolution of quantum Hamiltonian systems

Particular cases of the x4  g-product

The well-known particular cases of the x,  g-product are
Q for o=« :__ﬁ = 0, the Kupershmidt-Manin product,
Q for oV = %(5’1,04 = (=0, the Moyal (or Groenewold) product

1.« — — —
f*;g:fexp<2lh(8xap— 8,,8X)>g

= fexp (;ih@x A 6,,) g.

Q@ foro=3 a=2"1 3=w’awherew,AERandw >0

— — —— —
fxg="fexp (hAaaarmagaa)g,

where the new coordinates a(x, p) = (wx + ip)/v 2w,
a(x, p) = (wx — ip)/v/2w called holomorphic coordinates were used.
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Basics of deformation quantization
Space of states and properties of canonical *

Quantization procedure on a phase space Pu mixed states and e;
Time of quantum Hamil

Let f,g € Ag be such that f x5 38 and g x,,o 3 f are integrable
functions. Then there holds

J[(7 0 8 p1x b = [ (& 30008 ). pIxlp.

Moreover, for the Moyal x-product (the case of o = % anda=p0p=0)
there holds

//(f*% g)(x,p)dxdp = // f(x,p)g(x, p)dxdp.
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Basics of deformation quantization
Space of states and properties of canonical * .

Quantization procedure on a phase space re s, mixed states and e; on valu€s

Space of states — in the case a = 3 = 0 the Hilbert space L?(IR?).
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of deformation quantization
of states and properties of canonical

Quantization procedure on a phase space

Space of states

Space of states — in the case a = 3 = 0 the Hilbert space L?(IR?).

It is possible to extend the *,-product to the x,-product between
functions from L2(IR?), as to make from L?(R?) a Hilbert algebra with
respect to the *,-multiplication.
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Basics of deformation quantization
Space of states and properties of canonical * .
Quantization procedure on a phase space

Space of states for the general x, o g-multiplication

For oo # 0, 3 # 0 the space of states for the general %, o g-multiplication
can be defined by

H = S, 5(L*(R?)).

where for appropriate f € L?(IR?:

1 , )
Sa,pf(x, p) = 2nhal // F(x', p)e s =XV = ms PPV g5/ dp/ |
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Basics of deformation quantization
Space of states and properties of canonical * .
Quantization procedure on a phase space

Space of states for the general x, o g-multiplication

For oo # 0, 3 # 0 the space of states for the general %, o g-multiplication
can be defined by

H = S, 5(L*(R?)).

where for appropriate f € L?(IR?:

1 , )
Sa,pf(x, p) = 2nhal // F(x', p)e s =XV = ms PPV g5/ dp/ |
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Basics of deformation quantization
Space of states a

Quantization procedure on a phase space

The scalar product and the x,  g-product on H can be defined by
(V|d),, = (5;,16\I1|S;}3¢>L2 ., V. deH,
Vg ® =SV« S, 40, W, 0cH
Hence, H is also a Hilbert algebra.

Theorem

The scalar product on H can be written in a form

Wio),, = [[ Fote.m) Foemaute. ).

where o
dp(é,m) = em S en T dedy.
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Basics of deformation quantization
Space of states and properties of canonical *,, , 3-products

Quantization procedure on a phase space Pure states, mixed states and expectation valués of observables
Time evolution of quantum Hamiltonia ns

It is possible to define a left and right %, o g-product of a function
A € Ag with functions from some subspace of H receiving again a
function from H.
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Basics of deformation quantization

Quantization procedure on a phase space

It is possible to define a left and right %, o, g-product of a function
A € Ag with functions from some subspace of H receiving again a
function from H.

For any function A € Aq there holds

AL %008 = Aga,8(80,a, Po,p);
Ar *o,0,8 = Ao,aﬂ(ag,aa /3;75)7

where

Go,0 1= X+ iho0p + haOyx = XL %008
Po,s == p — ihGOx + hBOp = PL *0,0,5 »
and

G5 o =X — ih30, + halx = XR *0,0.8

g,

b5 5 = p+ ihoOx + R3O, = PR %005 -
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Basics of deformation quantization
Space of states and properties of canonical %, o, g-products
Pure states, mixed states and expectation observables

Quantization procedure on a phase space
Time evolution of quantum Hamiltonia

)-ordered operator functions
The symbol A, o 5(§, p) denotes a (o, «, 3)-ordered operator function
defined by

Av,0,3(8, B) = A(—ihdg, ihd,)er €a=mp+(b=o)tn)+3(a+om)
§=n=0
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Basics of deformation quantization
Space of states and properties of canonical *
Quantization procedure on a phase space X

Examples of operator functions

e For A(x, p) = x% + p?

(@ + B)oras = & + B° — ha — I

= +p* +i(a+B)gp— i(a+ B)pa.

Aa,a,ﬁ(a7 ﬁ)

In particular, the case when a = 3 = 0 gives

(82 + o0 = 4 + PP,
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Basics of deformation quantization
Space of states and properties

Quantization procedure on a phase space Pure sf mixed states and e
Time lution of quantum

Examples of operator functions

e For A(x, p) = x% + p?

AU,C%B(&? ﬁ) = (a2 + ﬁz)a,a,ﬁ - a2 + ﬁ2 — ha — hﬂ

= +p* +i(a+B)gp— i(a+ B)pa.
In particular, the case when a = 3 = 0 gives
(@ + P05 = 82+ B
e For A(x,p) = xp
Av.,3(8, B) = (@B)oar = 4P — iho = 58P + opg.

In particular, the case when o =0, 3,1 gives

(GP)o=0,a,8 = GP (normal ordering),
1

1
=-gp+ 5/“)?7 (Weyl ordering),

(4P)o=1,0.5 = PG (anti-normal ordering).

Phase Space Quantum Mechanics Canonical Regime Part 1
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Basics of deformation quantization
Space of states and properties of canonical *,, , 3-products
Pure states, mixed states and expectation valués of observables

Quantization procedure on a phase space
Time evolution of quantum Hamiltonian systems

Adjoint of %, o sg-multiplication
It is possible to introduce adjoint of left and right %, o g-multiplication in
a standard way

(AL *0,0,8 )T‘U1|W2>H = (V1AL %00, V2) 5y »
(AR *0,0,8 ) W1|W2) ), = (W1|AR K008 Wa),y -

Phase Space Quantum Mechanics Canonical Regime Part 1
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Basics of deformation quantization
Space of states and properties
Quantization procedure on a phase space Pur

Adjoint of %, o g-multiplication

It is possible to introduce adjoint of left and right %, o g-multiplication in
a standard way

(AL *0,0,8 )T‘U1|W2>H = (V1AL %00, V2) 5y »
(AR *0,0,8 ) W1|W2) ), = (W1|AR K008 Wa),y -
From this it then follows that

(AL *00,8) = Al L 5(80.0 o) = A 0 580,05 Pos);

(AR *0,0,8 )T = Al L 5(8% 0 P ) = A% 0 (85 a0 PE 5)-

Maciej Btaszak, Ziemowit Domariski Phase Space Quantum Mechanics Canonical Regime Part 1



ics of deformatic antization

Quantization procedure on a phase space Pure s s of observables

Time evolut uantum Hami

Pure states, mixed states and expectation values of
observables

Pure states are functions Wy, € H which satisfy the following
conditions

e \Upure *o,0,8 = (wpure *o,a,3 )T (hermiticity),

Q Viure *0,0,8 Vpure = —h\llpure (idempotence),

2m
Q || Vpurel[x =1 (normalization).
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eformation quantization
tates and prope of canonical * . 3-products

Quantization procedure on a phase space Pure states, mixed states and expectatlon values of observables
Time evolution of quantum Hamiltonian systems

Mixed states
Mixed states W ,;;, € H are defined as linear combinations of some
families of pure states \U&)re

le = Z PAWpurey

where 0 < py <1land ) , py =1
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nation qua
and pro . 3-Products
Quantization procedure on a phase space Puve states, mixed states and expectatlon va\ues of observables

of quantum Hamil

Quantum distribution functions

For an admissible quantum state W € H lets define a quantum
distribution function p on the phase space by the equation
1

0= Tt
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Quantum distribution fun

For an admissible quantum state W € H lets define a quantum
distribution function p on the phase space by the equation

1

P 21h

The function p is a quasi-probabilistic distribution function, i.e.

//p(x, p)dxdp = 1.
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Quantization procedure on a phase space

Quantum distribution functions

For an admissible quantum state W € H lets define a quantum
distribution function p on the phase space by the equation

= ——V.
P 21h

The function p is a quasi-probabilistic distribution function, i.e.

//p(x, p)dxdp = 1.

Marginal distributions

Marginal distributions

P = [olepdp,  P(p) = [ plx.p)ix.

are probabilistic distribution functions.
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eformation quantization
tates and prope of canonical * . 3-products

Quantization procedure on a phase space Pure states, mixed states and expectatlon values of observables
Time evolution of quantum Hamiltonian systems

Expectation value of observables
The expectation value of an observable A € Ag in an admissible state

Ve H:
Ay = [[Axeias D). plax o,

1
P= vV2mh

where

v,
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Quantization procedure on a phase space
Time evolution of quantum Hamiltonian systems

Time evolution of quantum Hamiltonian systems

The time evolution of a quantum Hamiltonian system is governed by a
Hamiltonian H. It will be assumed that H € Oq and that H is
self-adjoint in M, i.e. H=H* and H g *s.0,56 = (HLR *0,0,5 )"
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Quantization procedure on a phase space es
ime evolution of quantum Hamiltonian systems

Time evolution of quantum Hamiltonian systems

The time evolution of a quantum Hamiltonian system is governed by a
Hamiltonian H. It will be assumed that H € Oq and that H is
self-adjoint in M, i.e. H=H* and H g *s.0,56 = (HLR *0,0,5 )"

Time evolution equation

The time evolution of a quantum distribution function p:

L(H, )= 22— [IH,pl] = 0
4

.. Op .
Iha —[H,p] = 0.
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Basics of deformation quantization
and prop canonical * 3-produ

o,
Quantization procedure on a phase space re states, mixed states and expectation values of observable
Time evolution of quantum Hamiltonian systems

Stationary states

Stationary states W satisfy

[H,¥] = 0.
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Quantization procedure on a phase space

Time evolution of quantum Hamiltonian systems

Stationary states

Stationary states W satisfy

[H,¥] = 0.

For pure states the above equation is equivalent to a pair of
*q,0,8-genvalue equations

HxoapgWV=EV, Vx,,3H=EWV,

for some E € R.
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nonical 3-products

o,
Quantization procedure on a phase space xed states and expectation values of observables
Time evolution of quantum Hamiltonian systems

The formal solution of the time evolution equation takes the form

p(t) = U(t) %0,0,6 p(0) *0,0,6 U(=1),

where

o7} . k

_itH ]_ !

U(t) = e*:a,ﬁ = Z ﬁ _ﬁt H*o,aﬁ R XN H
k=0

k

is an unitary function in H as H is self-adjoint.

Maciej Btaszak, Ziemowit Domariski Phase Space Quantum Mechanics Canonical Regime Part 1



Quantization procedure on a phase space

Time evolution of quantum Hamiltonian systems

Time dependent expectation value

A time dependent expectation value of an observable A € Ag in a state
p(t), i.e. (A), . fulfills the following equation of motion

d
(A =0 = 5 Ay = (IA Al o) = 0.
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deformation quan

and prop: nonical * o o, g-produ

Quantization procedure on a phase space 2 mixed states and e; tion values of observables
Time evolution of quantum Hamiltonian systems

Time development of observables

The time development of A € Ag:

A(t) = U(=t) %0.0,5 A(0) 0,05 U(t) < %(t) — [IA(2), H|] = 0.
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Quantization procedure on a phase space

Time evolution of quantum Hamiltonian systems

Time development of observables

The time development of A € Ag:
0A
A(t) = U(=t) %00, A(0) %005 U(t) <= (1) — [IA(2), HI = 0.

Both presented approaches to the time development yield equal
predictions concerning the results of measurements:

(AQ0)) 51y = (A1) () -
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Basics of deformation quantization

Spa s and properties of canonical * ;. , -products

Quantization procedure on a phase space Pure states, mixed states and expectation 1és of observab
Time evolution of quantum Hamiltonian systems

The end
of

Part 1

Maciej Btaszak, Ziemowit Domariski Phase Space Quantum Mechanics Canonical Regime Part 1



	Classical Hamiltonian mechanics
	Classical Hamiltonian systems
	Canonical coordinates
	Pure states, mixed states and expectation values of observables
	Time evolution of classical Hamiltonian systems

	Quantization procedure on a phase space
	Basics of deformation quantization
	Space of states and properties of canonical ,,-products
	Pure states, mixed states and expectation values of observables
	Time evolution of quantum Hamiltonian systems


