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Classical Hamiltonian systems

Phase space

Phase space — a Poisson manifold, i.e. a smooth manifold M endowed
with a two times contravariant antisymmetric tensor field P (a Poisson
tensor) satisfying the below relation

Lζf
P = 0,

for every vector fields ζf (Hamiltonian fields) defined as

ζf := Pdf , f ∈ C∞(M).

Algebra of observables

Algebra of observables — an algebra AC = C∞(M), with respect to a
point-wise product, of all (complex valued) smooth functions on M.
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Admissible observables

Admissible observables — real valued functions from AC . They
constitute a real algebra denoted by OC .

Lie structure on C∞(M)

A Poisson bracket

{f , g}P := P(df ,dg ), f , g ∈ C∞(M)

introduces a structure of a Lie algebra on C∞(M). Indeed, the Poisson
bracket is a properly defined Lie bracket. In fact, it has the following
properties

{f , g} = −{g , f } (antisymmetry),
{f , gh} = {f , g}h + g{f , h} (Leibniz’s rule),

0 = {f , {g , h}}+ {h, {f , g}}+ {g , {h, f }} (Jacobi’s identity).

The algebra C∞(M) endowed with the Poisson bracket is called a
Poisson algebra.

Maciej B laszak, Ziemowit Domański Phase Space Quantum Mechanics Canonical Regime Part 1



Classical Hamiltonian mechanics
Quantization procedure on a phase space

Classical Hamiltonian systems
Canonical coordinates
Pure states, mixed states and expectation values of observables
Time evolution of classical Hamiltonian systems

Admissible observables

Admissible observables — real valued functions from AC . They
constitute a real algebra denoted by OC .

Lie structure on C∞(M)

A Poisson bracket

{f , g}P := P(df ,dg ), f , g ∈ C∞(M)

introduces a structure of a Lie algebra on C∞(M). Indeed, the Poisson
bracket is a properly defined Lie bracket. In fact, it has the following
properties

{f , g} = −{g , f } (antisymmetry),
{f , gh} = {f , g}h + g{f , h} (Leibniz’s rule),

0 = {f , {g , h}}+ {h, {f , g}}+ {g , {h, f }} (Jacobi’s identity).

The algebra C∞(M) endowed with the Poisson bracket is called a
Poisson algebra.
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Classical Hamiltonian system

Classical Hamiltonian system — a triple (M,P,H), where H ∈ OC is
some distinguished observable called a Hamiltonian.
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Canonical coordinates

Local coordinates qi , pi (i = 1, . . . ,N) in which a Poisson tensor P have
(locally) a form

P =
∂

∂qi
∧ ∂

∂pi
=

∂

∂qi
⊗ ∂

∂pi
− ∂

∂pi
⊗ ∂

∂qi
i.e. P ij =

(
0N IN

−IN 0N

)
are called canonical coordinates.

In the canonical coordinates a Hamiltonian field ζf and a Poisson bracket
take a form

ζf =
∂f

∂pi

∂

∂qi
− ∂f

∂qi

∂

∂pi
,

{f , g} =
∂f

∂qi

∂g

∂pi
− ∂f

∂pi

∂g

∂qi
.
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Pure states, mixed states and expectation values of
observables

Lets restrict to the case of the Hamiltonian systems without any
constrains, i.e. the case when M = R2N .

Pure states

Pure states — points in the phase space M.

Mixed states

Mixed states — probability distribution functions defined on the phase
space, i.e. functions ρ ∈ C∞(M) such that

0 ≤ ρ(ξ) ≤ 1 for ξ ∈ M,∫
M

ρ(ξ)dξ = 1.

In this picture pure states can be defined as Dirac delta distributions, i.e.

ξ0 ∈ M ←→ δ(ξ − ξ0).
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Expectation values of observables

Expectation value of observable A ∈ AC in a state ρ:

〈A〉ρ :=

∫
M

A(ξ)ρ(ξ)dξ .

For a pure state ρ(ξ) = δ(ξ − ξ0):

〈A〉ρ =

∫
M

A(ξ)δ(ξ − ξ0)dξ = A(ξ0).
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Time evolution of classical Hamiltonian systems

The Hamiltonian H governs the time evolution of the system:

H −→ ζH −→ ΦH
t

=⇒

ξ(t + ∆t) = ΦH
∆t(ξ(t))

m
ξ̇ = ζH

m

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi

(Hamilton equations)

ρ(t) = (ΦH
∆t)∗ρ(t + ∆t)

m

L(H, ρ) :=
∂ρ

∂t
− {H, ρ} = 0

(Liouville equation)

For ρ(ξ) = δ(ξ − ξ0) the Liouville equation induces the Hamilton
equations.
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Time dependent expectation value of observables

A time dependent expectation value of an observable A ∈ AC in a state
ρ(t), i.e. 〈A〉ρ(t), fulfills the following equation of motion

〈A〉L(H,ρ) = 0 ⇐⇒ d
dt
〈A〉ρ(t) − 〈{A,H}〉ρ(t) = 0.
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Time development of observables

An automorphism of the algebra of observables AC :

UH
t = (ΦH

t )∗ = etLζH .

Time development of A ∈ AC :

A(t) = UH
t A(0) = etLζH A(0) = etζH A(0) ⇐⇒ ∂A

∂t
(t)− {A(t),H} = 0.

Both presented approaches to the time development yield equal
predictions concerning the results of measurements:

〈A(0)〉ρ(t) = 〈A(t)〉ρ(0) .
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Basics of deformation quantization

Let (M,P) be an arbitrary Poisson manifold.

Quantization of the Poisson algebra of observables

Quantization of (M,P):
Deformation with respect to ~ of the classical algebra of observables AC

to some noncommutative quantum algebra of observables AQ , i.e.

· −→ ?,

{ · , · } −→ [| · , · |] =
1

i~
[ · , · ],

where [ · , · ] is a ?-commutator.
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?-product

The deformed noncommutative multiplication on AQ should satisfy such
natural conditions

1 f ? (g ? h) = (f ? g) ? h (associativity),
2 f ? g = fg + o(~),
3 [|f , g |] = {f , g}+ o(~),
4 f ? 1 = 1 ? f = f ,

5 f ? g =
∞∑

k=0

~kBk(f , g),

where f , g , h ∈ AQ and Bk : AQ ×AQ → AQ are bilinear operators.

From the construction of the ?-product it can be immediately seen that
in the limit ~→ 0 the quantized algebra of observables reduces to the
classical algebra of observables.
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The bracket [| · , · |] is a well-defined Lie bracket. In fact, it satisfies

[|f , g |] = −[|g , f |] (antisymmetry),
[|f , g ? h|] = [|f , g |] ? h + g ? [|f , h|] (Leibniz’s rule),

0 = [|f , [|g , h|]|] + [|h, [|f , g |]|] + [|g , [|h, f |]|] (Jacobi’s identity).
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Lets restrict to the case of the Hamiltonian systems without any
constrains, i.e. the case when M = R2N .

In this case

P =
N∑

i=1

Xi ∧ Yi =
N∑

i=1

(Xi ⊗ Yi − Yi ⊗ Xi ),

where Xi ,Yi (i = 1, . . . ,N) are some pair-wise commuting vector fields
on M.

Also

{f , g}P = f

(
N∑

i=1

(Xi ⊗ Yi − Yi ⊗ Xi )

)
g = f

(
N∑

i=1

(
←−
X i
−→
Y i −

←−
Y i
−→
X i )

)
g

=
N∑

i=1

(Xi (f )Yi (g)− Yi (f )Xi (g)).
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Space of states and properties of canonical ?σ,α,β-products

In the rest of the presentation the case of ?σ,α,β-products related to the
canonical Poisson tensor P = ∂x ∧ ∂p on a manifold M = R2 will be
considered.

Canonical ?σ,α,β-products

The ?σ,α,β-product takes the form

f ?σ,α,β g = f exp
(

i~σ
←−
∂ x
−→
∂ p − i~σ̄

←−
∂ p
−→
∂ x + ~α

←−
∂ x
−→
∂ x + ~β

←−
∂ p
−→
∂ p

)
g

=
∞∑

n,m,r ,s=0

(−1)m(i~)n+m~r+s σ
nσ̄mαrβs

n!m!r !s!

· (∂n+r
x ∂m+s

p f )(∂m+r
x ∂n+s

p g).
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Particular cases of the ?σ,α,β-product

The well-known particular cases of the ?σ,α,β-product are
1 for σ = α = β = 0, the Kupershmidt-Manin product,
2 for σij = 1

2δ
ij , α = β = 0, the Moyal (or Groenewold) product

f ? 1
2

g = f exp

(
1

2
i~(
←−
∂ x
−→
∂ p −

←−
∂ p
−→
∂ x)

)
g

= f exp

(
1

2
i~∂x ∧ ∂p

)
g .

3 for σ = 1
2 , α = 2λ−1

2ω , β = ω2α where ω, λ ∈ R and ω > 0

f ? g = f exp
(
~λ
←−
∂ a
−→
∂ ā − ~λ̄

←−
∂ ā
−→
∂ a

)
g ,

where the new coordinates a(x , p) = (ωx + ip)/
√

2ω,
ā(x , p) = (ωx − ip)/

√
2ω called holomorphic coordinates were used.
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Theorem

Let f , g ∈ AQ be such that f ?σ,α,β g and g ?σ,α,β f are integrable
functions. Then there holds∫∫

(f ?σ,α,β g)(x , p)dx dp =

∫∫
(g ?σ,α,β f )(x , p)dx dp .

Moreover, for the Moyal ?-product (the case of σ = 1
2 and α = β = 0)

there holds∫∫
(f ? 1

2
g)(x , p)dx dp =

∫∫
f (x , p)g(x , p)dx dp .
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Space of states

Space of states — in the case α = β = 0 the Hilbert space L2(R2).

It is possible to extend the ?σ-product to the ?σ-product between
functions from L2(R2), as to make from L2(R2) a Hilbert algebra with
respect to the ?σ-multiplication.
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Space of states for the general ?σ,α,β-multiplication

For α 6= 0, β 6= 0 the space of states for the general ?σ,α,β-multiplication
can be defined by

H = Sα,β(L2(R2)).

where for appropriate f ∈ L2(R2:

Sα,βf (x , p) =
1

2π~
√
αβ

∫∫
f (x ′, p′)e−

1
2~α (x−x′)2

e−
1

2~β (p−p′)2

dx ′ dp′ .
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The scalar product and the ?σ,α,β-product on H can be defined by

〈Ψ|Φ〉H = 〈S−1
α,βΨ|S−1

α,βΦ〉
L2
, Ψ,Φ ∈ H,

Ψ ?σ,α,β Φ = S−1
α,βΨ ?σ S−1

α,βΦ, Ψ,Φ ∈ H.

Hence, H is also a Hilbert algebra.

Theorem

The scalar product on H can be written in a form

〈Ψ|Φ〉H =

∫∫
(FΨ(ξ, η))∗ FΦ(ξ, η)dµ(ξ, η) ,

where
dµ(ξ, η) = e

1
~αξ

2

e
1
~βη

2

dξ dη .
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It is possible to define a left and right ?σ,α,β-product of a function
A ∈ AQ with functions from some subspace of H receiving again a
function from H.

Theorem

For any function A ∈ AQ there holds

AL ?σ,α,β = Aσ,α,β(q̂σ,α, p̂σ,β),

AR ?σ,α,β = Aσ,α,β(q̂∗σ̄,α, p̂
∗
σ̄,β),

where

q̂σ,α := x + i~σ∂p + ~α∂x = xL ?σ,α,β ,

p̂σ,β := p − i~σ̄∂x + ~β∂p = pL ?σ,α,β ,

and

q̂∗σ̄,α := x − i~σ̄∂p + ~α∂x = xR ?σ,α,β ,

p̂∗σ̄,β := p + i~σ∂x + ~β∂p = pR ?σ,α,β .
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(σ, α, β)-ordered operator functions

The symbol Aσ,α,β(q̂, p̂) denotes a (σ, α, β)-ordered operator function
defined by

Aσ,α,β(q̂, p̂) := A(−i~∂ξ, i~∂η)e
i
~ (ξq̂−ηp̂+( 1

2−σ)ξη)+ 1
2~ (αξ2+βη2)

∣∣∣∣
ξ=η=0

.
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Examples of operator functions

For A(x , p) = x2 + p2

Aσ,α,β(q̂, p̂) = (q̂2 + p̂2)σ,α,β = q̂2 + p̂2 − ~α− ~β
= q̂2 + p̂2 + i(α + β)q̂p̂ − i(α + β)p̂q̂.

In particular, the case when α = β = 0 gives

(q̂2 + p̂2)σ,α,β = q̂2 + p̂2.

For A(x , p) = xp

Aσ,α,β(q̂, p̂) = (q̂p̂)σ,α,β = q̂p̂ − i~σ = σ̄q̂p̂ + σp̂q̂.

In particular, the case when σ = 0, 1
2 , 1 gives

(q̂p̂)σ=0,α,β = q̂p̂ (normal ordering),

(q̂p̂)σ= 1
2 ,α,β

=
1

2
q̂p̂ +

1

2
p̂q̂ (Weyl ordering),

(q̂p̂)σ=1,α,β = p̂q̂ (anti-normal ordering).
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Maciej B laszak, Ziemowit Domański Phase Space Quantum Mechanics Canonical Regime Part 1



Classical Hamiltonian mechanics
Quantization procedure on a phase space

Basics of deformation quantization
Space of states and properties of canonical ?σ,α,β -products
Pure states, mixed states and expectation values of observables
Time evolution of quantum Hamiltonian systems

Adjoint of ?σ,α,β-multiplication

It is possible to introduce adjoint of left and right ?σ,α,β-multiplication in
a standard way

〈(AL ?σ,α,β )†Ψ1|Ψ2〉H = 〈Ψ1|AL ?σ,α,β Ψ2〉H ,
〈(AR ?σ,α,β )†Ψ1|Ψ2〉H = 〈Ψ1|AR ?σ,α,β Ψ2〉H .

From this it then follows that

(AL ?σ,α,β )† = A†σ,α,β(q̂σ,α, p̂σ,β) = A∗σ̄,α,β(q̂σ,α, p̂σ,β),

(AR ?σ,α,β )† = A†σ,α,β(q̂∗σ̄,α, p̂
∗
σ̄,β) = A∗σ̄,α,β(q̂∗σ̄,α, p̂

∗
σ̄,β).
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Pure states, mixed states and expectation values of
observables

Pure states

Pure states are functions Ψpure ∈ H which satisfy the following
conditions

1 Ψpure ?σ,α,β = (Ψpure ?σ,α,β )† (hermiticity),

2 Ψpure ?σ,α,β Ψpure =
1√
2π~

Ψpure (idempotence),

3 ‖Ψpure‖H = 1 (normalization).
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Mixed states

Mixed states Ψmix ∈ H are defined as linear combinations of some
families of pure states Ψ

(λ)
pure

Ψmix :=
∑
λ

pλΨ(λ)
pure,

where 0 ≤ pλ ≤ 1 and
∑
λ pλ = 1.
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Quantum distribution functions

For an admissible quantum state Ψ ∈ H lets define a quantum
distribution function ρ on the phase space by the equation

ρ :=
1√
2π~

Ψ.

The function ρ is a quasi-probabilistic distribution function, i.e.∫∫
ρ(x , p)dx dp = 1.

Marginal distributions

Marginal distributions

P(x) :=

∫
ρ(x , p)dp , P(p) :=

∫
ρ(x , p)dx ,

are probabilistic distribution functions.
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Expectation value of observables

The expectation value of an observable A ∈ AQ in an admissible state
Ψ ∈ H:

〈A〉Ψ =

∫∫
(A ?σ,α,β ρ)(x , p)dx dp ,

where

ρ =
1√
2π~

Ψ.
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Time evolution of quantum Hamiltonian systems

The time evolution of a quantum Hamiltonian system is governed by a
Hamiltonian H. It will be assumed that H ∈ OQ and that H is
self-adjoint in H, i.e. H = H∗ and HL,R ?σ,α,β = (HL,R ?σ,α,β )†.

Time evolution equation

The time evolution of a quantum distribution function ρ:

L(H, ρ) :=
∂ρ

∂t
− [|H, ρ|] = 0

m

i~
∂ρ

∂t
− [H, ρ] = 0.
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Stationary states

Stationary states Ψ satisfy

[H,Ψ] = 0.

For pure states the above equation is equivalent to a pair of
?σ,α,β-genvalue equations

H ?σ,α,β Ψ = E Ψ, Ψ ?σ,α,β H = E Ψ,

for some E ∈ R.
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The formal solution of the time evolution equation takes the form

ρ(t) = U(t) ?σ,α,β ρ(0) ?σ,α,β U(−t),

where

U(t) = e
− i

~ tH
?σ,α,β :=

∞∑
k=0

1

k!

(
− i

~
t

)k

H ?σ,α,β . . . ?σ,α,β H︸ ︷︷ ︸
k

is an unitary function in H as H is self-adjoint.
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Time dependent expectation value

A time dependent expectation value of an observable A ∈ AQ in a state
ρ(t), i.e. 〈A〉ρ(t), fulfills the following equation of motion

〈A〉L(H,ρ) = 0 ⇐⇒ d
dt
〈A〉ρ(t) − 〈[|A,H|]〉ρ(t) = 0.
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Time development of observables

The time development of A ∈ AQ :

A(t) = U(−t) ?σ,α,β A(0) ?σ,α,β U(t) ⇐⇒ ∂A

∂t
(t)− [|A(t),H|] = 0.

Both presented approaches to the time development yield equal
predictions concerning the results of measurements:

〈A(0)〉ρ(t) = 〈A(t)〉ρ(0) .
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The end
of

Part 1
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