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General purposes

Physics: Scattering and electronic multi-center prob-

lems; classic and generalized Zero-Range potentials

configurations, symmetry group account.

Math.: Generation of ZRP via gauge-Matveev trans-

formations, development of the generalized ZRP tech-

nique to nonzero orbital moment, multi-center prob-

lem applications. Group theory aspect. ZRP as dis-

tributions and Hermitian operator extensions
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E. Doktorov, S. Leble, Dressing method in mathematical

physics. Springer, 2007.

55 udir convienmi ancor come l’essemplo

56 e l’essemplare non vanno d’un modo,

57 ché io per me indarno a ciò contemplo.

Dante Alighieri, Divina Commedia

Paradiso, Canto XXVIII

55 then I still have to hear just how the model

56 and copy do not share in one same plan

57 for by myself I think on this in vain.

Translated by A. Mandelbaum
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Source publications: Leble, S. Yalunin, S.: (2003) Gener-

alized zero-range potentials and multi-channel electron-molecule

scattering, Rad. Phys. Chem. 68, 181-186. Phys. lett.2005,

Multiple scattering and electron-uracil collisions

at low energies EPJ v.144, 115-122,2007. E. Doktorov, S.

Leble, Dressing method in mathematical physics. Springer,

2007. S. leble D. Ponomarev, Electronic states in zero-range

potential models of nanostructures with a cyclic symmetry,

ArXive 2010.
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Introduction. On ZRP potentials.

• History

F e r m i E. Sopra lo spostamento per pressione delle

righe elevante delle serie spettrali//Nuovo Cimento.—

1934.— V. 11.— P. 157—166. F e r m i E. Sul moto

dei neutroni nelle sostanze idrogenante//Ric. ScL—

1936.— V. 7.— P. 13-52.

• General remarks and bibliography:

B S Pavlov, ”The theory of extensions and explicitly-

soluble models”, RUSS MATH SURV, 1987, 42 (6),

127–168.

Demkov Yu N, Ostrovsky V N (1988) Zero-Range Po-

tentials and their Applications in Atomic Physics, Plenum,

New York

Albeverio S, Gesztesy F, Høegh-Krohn R and Holden H

(1988) Solvable Models in Quantum Mechanics, Springer-

Verlag, New York.
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• Pseudopotential method

F. Stampfer and P. Wagner. A mathematically rigor-

ous formulation of the pseudopotential method. Journal

of Mathematical Analysis and Applications, 342 (2008)

202-212. Recent applications examples: Analytical so-

lutions for the system of two ultracold spin-polarized

fermions interacting in p wave and confined in an axi-

ally symmetric harmonic trap.

Zbigniew Idziaszek Phys. Rev. A 79, 062701 (2009)

Atomistic pseudopotential simulation of nanometer sized

CMOS (Complementary Metal Oxide Semiconductor)

devices —. Lin-Wang Wang ...

Parameter Modelling for High Order Transport Mod-

els Computational methods L.W. Wang, ”Novel compu-

tational methods for nanostructure electronic structure

calculations”, Ann. Rev. Phys. Chem. 61, 19, (2010).



• Radial equation, s - states. Demkov, Ostrovskij,

etc. s-wave dominates in low energy range

• l 6= 0 problem discussion.

Discrepancy noted first by Roth, Feldmeyer 2001 Phys.

Rev.

Corrected in: A. Derevianko, Phys. Rev. A 67 (2003)

033607. Phys. Rev. A 72, 039901(E) (2005) [2 pages]

Erratum: Anisotropic pseudopotential for polarized di-

lute quantum gases [Phys. Rev. A 67, 033607 (2003)]

arXiv:0807.3111v1.

• Darboux transformations Schnizer W.A., Leeb H., Gen-

eralized Darboux transformations: classification of in-

verse scattering methods for the radial Schrödinger equa-

tion (1994) J.Phys. A: Math. Gen. 27:2605-2614.,
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Radial equation

The main point of our interest will be the radial Schroedinger

equation

−~
2

2µ

(
ψ′′ + 2

r
ψ′

)
+

l (l + 1) ~2

2µr2
ψ = Eψ

A standard procedure of separation of variables is

ψ(r, θ, φ) = ψ(r)Y m
l (θ, φ)

denote the radial wave function as ψ(r), l=0 - s-wave, l=1

- p-wave, etc. This yields for ψ(r)

−
(
ψ′′ + 2

r
ψ′

)

︸ ︷︷ ︸
=∆rψ

+
l (l + 1)

r2
ψ

︸ ︷︷ ︸
=−∆ψ

= k2ψ (1)

where k2 = 2µE
~2 .
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To demonstrate idea the most easily, we consider for now only

partial s-waves, setting l = 0, generalization will be given

later. Since for rψ(r) (1) is just one-dimensional Helmholtz

equation, write general solution in the conventional form

ψ(r) =
C0

kr
(sin kr − tan η0 cos kr) , (2)

constants η0, C0 are determined by the form of potential

and normalization condition, respectively. alternatively, one

can write the last equation as

ψ(r) =
C̃0

kr
(s0 exp (ikr)− exp (−ikr)) , (3)

with s0 = exp (2iη0) terming a scattering matrix.
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Next step is to introduce a point-potential that gives the

same behavior far from the center as this free space solution.

Since the solution is irregular in r = 0, the potential should

also be singular.

For finite energies the solution at r = 0 behaves as

ψ(r) ≈ C0

(
1− tan η0

kr

)
≈ C0

tan η0

kr
(4)

we can employ the identity (which validity can be easily ver-

ified by means of integration over a SPHERE and applying

the Gauss’ theorem)

−∆
1

r
= 4πδ(~r)

and calculate

−∆ψ = 4πC0
tan η0

k
δ(~r).
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Taking into account that the term k2ψ is less singular than

∆ψ at r = 0, we can introduce into the Schrodinger equa-

tion a source term leading to the desired behavior of solution

(characterized by the parameter η0) at the origin. Hence,

the equation valid for the whole space should be

−∆ψ − k2ψ = 4πC0
tan η0

k
δ(~r). (5)

It remains only to eliminate normalization constant C0 from

the asymptotic behavior of the solution at the center (4).

This can be done by applying the appropriate operator

C0 =
d

dr
(rψ)

∣∣∣∣
r=0

. (6)

That leads to the Statement
(
−∆− 4π

tan η0

k
δ(~r)

d

dr
r

)
ψ = k2ψ. (7)

that fix form of the potential.
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Remark. Denoting

a0 = −tan η0

k
(8)

(that is an independent of k quantity for small energies, as

it will be shown later), we bring the equation (7) back to the

form of the original Schrodinger equation


−~

2

2µ
∆ + 2π

a0~2

µ
δ(~r)

d

dr
r

︸ ︷︷ ︸
=U0




ψ = Eψ. (9)

Thus, we can conclude that given the scattering characteristic

of a potential, we can introduce singular point-center pseu-

dopotential as operator U0 = 2πa0~2
µ δ(~r) d

drr into the

Schrodinger equation that is valid now in the whole space.

Alternatively, we can consider free-space solution having an

appropriate asymptotic behavior at the origin, that can be

formulated as a boundary condition.
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Indeed, to eliminate the normalization constant C0 and ex-

press the potential parameter η0, we can form a combination

d
dr (rψ)

rψ

∣∣∣∣∣∣
r=0

= − k

tan η0
= 1/a0. (10)

This is consistent with the fact that interaction between par-

ticles can be described by the only parameter - the value of

the logarithmic derivative d log(rψ)
dr = 1

rψ
d(rψ)

dr .

For bounded states a0 < 0, so we can write

d
dr (rψ)

rψ

∣∣∣∣∣∣
r=0

= −β, (11)

where β ≡ −1/a0.
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It can be seen as a sewing condition on the boundary of some

infinitely deep and narrow potential well with the admissible

(decaying, for a bounded state) solution at infinity.

Next we will give overview of more general potentials with

possibilities of their extensions, however, taking into account

that the partial s-wave gives the most contribution, it is usu-

ally enough to use spherically symmetric zero-range poten-

tials described by the ZRP condition (11), and this is what

we are going to employ onwards.
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Generalized zero-range potentials

The same idea for the case l > 0 yields so-called generalized

zero-range potentials. Although, this case was treated quite

a long time ago (Huang-Yang, Huang), recently started to

become clear as the mistakes in Huang’s works were corrected

and different approaches were proposed (Derevianko,Stock,Idziaszek).

To avoid possible ambiguity, the final expressions for pseu-

dopotential given in those works still should be understood

in an appropriate mathematical sense (Stampfer).

General solution of the radial equation (1) formed via spher-

ical Bessel and Neumann functions - jl(kr) and yl(kr),

,

ψ(r) = Cl (jl(kr)− tan ηlyl(kr)) , (12)

or as a combination of spherical Hankel functions

ψ(r) = C̃l

(
slh

(1)
l (kr)− h

(2)
l (kr)

)
, (13)

with sl = exp (2iηl) being a scattering matrix.
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Taking into account the following asymptotes at kr → 0

jl(kr) ≈ (kr)l

(2l + 1)!!
, (14)

yl(kr) ≈ −(2l − 1)!!

(kr)l+1
, (15)

written with notion of the odd factorial (2l + 1)!! = (2l + 1)·
(2l− 1)·. . .·3·1, we obtain asymptotic behavior of finite-

energy solution at the origin

ψ(r) ≈ Cl

(
(kr)l

(2l+1)!! + tan ηl
(2l−1)!!

(kr)l+1

)
≈

Cl tan ηl
(2l−1)!!

(kr)l+1 .
(16)

From here, the constant Cl can be expressed as

Cl =
(2l + 1)!!

kl (2l + 1)!

d2l+1

dr2l+1

(
rl+1ψ

)∣∣∣∣∣
r=0

. (17)
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Following the same approach as for the case of l = 0, we

define pseudopotential as

Ul =
~2

2µ
lim
r→0

(
∆ + k2

)
ψ. (18)

Since for finite energies the term with k2 is obviously smaller

than exacerbated by the differential operator

∆ =
1

r2
∂

∂r
r2

∂

∂r︸ ︷︷ ︸
=∆r

− l (l + 1)

r2

singular behavior of the solution (16) at the origin, it remains

to obtain properly an effect of ∆
1

rl+1
.
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We form a combination rl∆
1

rl+1
and consider it sepa-

rately in a sense that multiplication by a spherical harmonic

Ylm(θ, φ) is not implied, and integrate it over a small

(such that asymptotic expressions are valid) ball in coordi-

nates
(
r′ = r, θ′, φ′

)
(where we have ∆′ = ∆r due to

absence of dependencies on angular variables marked with

prime and chosen volume of integration, that is a ball)

∫
Vε

rl∆
1

rl+1
dV ′ =

∫
Vε

rl

(
∆′ 1

rl+1
− l (l + 1)

r2
· 1

rl+1

)
dV ′ =

∫
Vε

(
rl∆′ 1

rl+1
− 1

rl+1
∆′rl

)
=

∫
Sε

(
rl∇ 1

rl+1
− 1

rl+1
∇rl

)
d~S′ =

[− (l + 1)− l]
∫
Sε

1
r2

dS′ =
−4π (2l + 1)

(19)

we employed Green identity and calculation

∆′rl =
1

r2
∂

∂r

(
r2

∂

∂r
rl

)
= l (l + 1) rl−2.
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Therefore, we conclude that

∆
1

rl+1
= −4π

2l + 1

rl
δ(~r′) = −4π

2l + 1

rl+2
δ(r),

where the last part of the equality should be understood

in a proper distributional sense (cf. chain of discussions

(Huang,Stock,Derevianko,Idziaszek,Stampfer).

Combining this result with the previous expressions (18),

(17), we obtain

STATEMENT

Ulψ = −2π(2l + 1) (2l − 1)!!︸ ︷︷ ︸
=(2l+1)!!

(2l + 1)!!

(2l + 1)!︸ ︷︷ ︸
=

1

2ll!

~2

µ

tan ηl

k2l+1

1

rl+2
δ(r)

∂2l+1

∂r2l+1

(
rl+1ψ

)
.

(20)



As before, an alternative to pseudopotential approach (less

ambiguous) is to impose boundary condition similar to (10)

that can be readily found from the asymptotic of the solution

(16). The desired combination allowing to eliminate Cl yields

1
rl+1ψ

∂2l+1

∂r2l+1

(
rl+1ψ

)∣∣∣∣
r=0

=
(2l + 1)!

(2l + 1)!!︸ ︷︷ ︸
=2ll!

· 1
(2l−1)!! · k2l+1

tan ηl
= − 2ll!

(2l−1)!!a
2l+1
l ,

(21)

where we introduced

a2l+1
l = −k2l+1

tan ηl
. (22)

Before when writing (8) we have already stated that this

quantity does not depend on k at its low values.

Let us analyze this more general combination and give post-

poned justification for the particular case of l = 0.
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At the zero energy (i.e. k = 0) the radial Schrodinger

equation (1) admits the following general solution

ψ = A1rl + A2
1

rl+1
. (23)

On the other hand, we can consider solutions (12) for non-

zero but small energies such that the small argument spherical

function expansions (14), (15) can be used. Thus, by impos-

ing requirement of matching (12) and (23), we conclude

A1 ≈ C0
l

kl

(2l + 1)!!
,

A2 ≈ −C0
l tan ηl

(2l− 1)!!

kl+1
.

Therefore

tan ηl ≈ −A2

A1

1

(2l + 1)!! (2l − 1)!!︸ ︷︷ ︸
=const

k2l+1.



The quantity (22) is termed as the Wigner’s threshold scat-

tering length.

This allows to rewrite the expression (20) once again, hence

the resulting pseudopotential to be introduced into the radial

Schrodinger equation is

Ul = 2π
(2l + 1)!!

2ll!

a2l+1
l ~2

µ

δ(r)

rl+2

∂2l+1

∂r2l+1
rl+1. (24)
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Even more general potentials obtained by dressing.

First of all, we notice that the radial Schrodinger equation

(1) can be brought to the form eligible for direct application

of obtained formulas. Performing substitution ψ = χ/r, we

readily obtain

− χ′′ + l (l + 1)

r2︸ ︷︷ ︸
=ul(r)

χ = k2χ. (25)

That is to say, that we can apply Darboux transformation to

the equation (1) meaning that all original wave functions ψ

should be multiplied by r whereas the potential term

ul(r) =
l (l + 1)

r2
(26)

remains unchanged.

We start by choosing a spherical Bessel function as the seed

solution

ψl(r) = Cjl (kr) (27)
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and apply N -th order Darboux transformation by taking spher-

ical Hankel functions with specific parameters κm as prop

functions

φm(r) = Cym(κmr), m = 1, . . . , N. (28)



We denote here and later on C as generic constant with-

out specific value, so that it can absorb constant multipliers

(where their meaning is not important) without changing no-

tations.

We employ Crum’s formula and write the transformed solu-

tion

ψ
[N ]
l (r) = C

W (rφ1, . . . , rφN , rψl)

rW (rφ1, . . . , rφN)
. (29)

The Wronskians can be computed if we consider asymptotic

behavior of spherical functions at r →∞

jl(kr) ≈ sin (kr − lπ/2)

kr
, (30)
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yl(kr) ≈ −cos (kr − lπ/2)

kr
, (31)

h
(1)
l (kr) = jl(kr) + iyl(kr) ≈ (−i)l+1 exp (ikr)

kr
,

(32)

h
(2)
l (kr) = jl(kr)− iyl(kr) ≈ il+1exp (−ikr)

kr
.

(33)

Then the Wronskians turn into Vandermond determinants,

hence,

ψ
[N ]
l (r) = C[(−i)l exp(ikr)

kr
∆(κ1, ..., κN , ik)
∆(κ1, ..., κN) −

ilexp(−ikr)
kr

∆(κ1, ..., κN ,−ik)
∆(κ1, ..., κN) ].

(34)
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The Vandermond determinant can be computed by noticing

that k = −iκm (for m = 1, . . . , N) are the roots of

polynomial with respect to k equation that is obvious from

the form of the matrix (replacement ik → κm yields its zero

determinant due to linear dependencies of the rows), thereby

allowing the following factorization

∆(κ1, . . . , κN , ik) =

∣∣∣∣∣∣∣∣∣∣∣∣

1 κ1 κ2
1 . . . κN

1
1 κ2 κ2 . . . κN

2
. . . . . . . . . . . . . . .

1 κN κ2
N . . . κN

N
1 ik (ik)2 . . . (ik)N

∣∣∣∣∣∣∣∣∣∣∣∣

=

C
N∏

m=1

(κm − ik) .
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Denoting

sl =
N∏

m=1

(κm − ik)

(κm + ik)
, (35)

we recognize in (34) the asymptotes of spherical Hankel func-

tions, hence

ψ
[N ]
l (r) = C

[
slh

(1)
l (kr)− h

(2)
l (kr)

]
. (36)

Corresponding to this solution effective potential is trans-

formed from (26) into

u
[N ]
l =

l (l + 1)

r2
−2

d2

dr2
logW

(
rh

(1)
l (κ1r), . . . , rh

(1)
l (κNr)

)

︸ ︷︷ ︸
≡W

.

(37)
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Due to the asymptotes (32), (33), we can observe that the

Darboux transformation does not change the behavior of the

potential at r →∞

u
[N ]
l ≈ l (l + 1)

r2
= ul,

whereas singular behavior at the origin is changed.
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Main result for a potential V(x)

Indeed, using the asymptotic at r → 0

h
(1)
l (κr) = −i

(2l− 1)!!

(κr)l+1
, (38)

we compute the Wronskian at the right hand side of the

equation (37)

W ≈

−i (2l − 1)!!




(κ1r)−l − l

r
(κ1r)−l . . . (−1)N−1 l (l + 1) · . . . · (l + N − 2)

rN−1 (κ1r)−l

. . . . . . . . . . . .

(κNr)−l − l

r
(κNr)−l . . . (−1)N−1 l (l + 1) · . . . · (l + N − 2)

rN−1 (κNr)−l




.
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Therefore

W ≈ C

rNl · rN(N−1)/2
⇒

⇒ logW

(
rh

(1)
l (κ1r), . . . , rh

(1)
l (κNr)

)
≈

−N

(
l +

N − 1

2

)
log r + C.

Finally, the expression (37) yields the transformed effective

finite-range potential

u
[N ]
l ≈ 1

r2
[l (l + 1)−N (2l + N − 1)] . (39)
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Connection with generalized zero-range potentials

In particular, one can notice that the expression (36) coin-
cides with (13) if

exp (2iηl) =
N∏

m=1

(κm − ik)

(κm + ik)
, (40)

or, taking into account (22),

tan ηl = −a2l+1
l k2l+1 =

−i
∏N

m=1(κm−ik)−∏N
m=1(κm+ik)∏N

m=1(κm−ik)+
∏N

m=1(κm+ik)
.

(41)

And we conclude that for the direct correspondence N =
2l + 1 should be taken.

Since
N∏

m=1

(κm + ik) =

N∏

m=1

κm+ik
N∑

n=1

N∏

m=1
m 6=n

κm+(ik)2
N∑

j=1

N∑

n<j

N∏

m=1
m 6=n, m 6=j

κm+. . .+

28



(ik)N−1
N∑

n=1

κn + (ik)N ,

we continue the last equality as

a2l+1
l k2l+1 = i

ik
∑2l+1

n=1
∏2l+1

m=1
m6=n

κm + . . . + (ik)2l+1

∏2l+1
m=1 κm + . . . + (ik)2l ∑2l+1

n=1 κn
.

(42)



Matching coefficients at the same powers of k (namely, by

setting all terms but the first one and the last one in de-

nominator and numerator, respectively, equal to zero, and∏N
m=1 κm = i (i/al)

2l+1 = (−1)2l+1 /a2l+1
l ) we

obtain a set of equations allowing to determine all the trans-

formation parameters κm.

However, we can use more alternative and more convenient

approach of choosing κm.

Given some quantity a = |a| eiφa, we want to choose pa-

rameters κ1, . . . , κ2l+1 in a way that

2l+1∏

m=1

(κm + ik) = (ik)2l+1 − a. (43)
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as solutions of algebraic problem

This is equivalent to the ikm = −κm (m = 1, . . . , 2l+
1) being the roots of the equation

(ik)2l+1 = a,

that is to say −κm = (2l+1)
√

a, or

−κm = |a|1/(2l+1) exp

(
i
(φa + 2πm)

2l + 1

)
, m = 1, . . . , 2l+1.

(44)

Following the same procedure, we can write (simply by re-
placing ik → −ik)

2l+1∏

m=1

(κm − ik) = (−ik)2l+1 − a. (45)

Substitution of (43), (45) into (41) results in

a2l+1
l k2l+1 = i2l+2︸ ︷︷ ︸

=(−1)l+1

1

a
k2l+1 ⇒

a = (−1)l+1 /a2l+1
l .
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Kappa choice

Therefore, providing al is a real number, (44) yields

κm = −1/al·exp
(
iπ

l + 2m + 1

2l + 1

)
, m = 1, . . . , 2l+1.

(46)

To sum up, the Darboux transformations significantly broad-

ening the range of solvable (integrable) potentials, in partic-

ular, give a possibility to tune a free-space solution to corre-

spond to potential scattering characteristics, whilst the same

transformation of the solution at the origin yields generalized

zero-range potentials behavior.
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Problem with plane symmetric multiple point-center

potential

Toy problem with 3 point-centers - discrete spectrum

Let us start with considering a problem of finding bounded

states of the potential describing symmetrical structure with

3 fixed point-centers (i.e. their positions constitute the cyclic

group C3).

Due to linearity of the Schrodinger equation, the superposi-

tion principle can be applied and, therefore, bounded state

32



solution (9) is written in the form

ψ(~r) = C1
e
−κ

∣∣∣~r−~R1

∣∣∣
∣∣∣~r − ~R1

∣∣∣
+C2

e
−κ

∣∣∣~r−~R2

∣∣∣
∣∣∣~r − ~R2

∣∣∣
+C3

e
−κ

∣∣∣~r−~R3

∣∣∣
∣∣∣~r − ~R3

∣∣∣
,

(47)

where κ =

√
−2µE

~2
.

This solution must satisfy zero-range potential conditions

(11) at each center

∂ log
(∣∣∣~r − ~Ri

∣∣∣ · ψ(~r)
)

∂
∣∣∣~r − ~Ri

∣∣∣

∣∣∣∣∣∣∣∣∣~r−~Ri

∣∣∣=0

= −β, i = 1, 2, 3.



We expand on calculation and existence of these derivatives

while discussing general case of N point-centers in the next

section.

Taking into account that
∣∣∣~R2 − ~R1

∣∣∣ =
∣∣∣~R3 − ~R1

∣∣∣ =∣∣∣~R3 − ~R2

∣∣∣ ≡ ∆R, these conditions give





−κ +
C2 + C3

C1
· e
−κ∆R

∆R
= −β,

−κ +
C1 + C3

C2
· e
−κ∆R

∆R
= −β,

−κ +
C1 + C2

C3
· e
−κ∆R

∆R
= −β.

In the matrix form this reads



(β − κ)∆R · eκ∆R 1 1
1 (β − κ)∆R · eκ∆R 1
1 1 (β − κ)∆R · eκ∆R







C1
C2
C3


 =




0
0
0


 .
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Compatibility condition of this system is

d3 ≡
∣∣∣∣∣∣∣

a 1 1
1 a 1
1 1 a

∣∣∣∣∣∣∣
= a·d2−2b2 = (a−1)2(a+2) = 0,

where

d2 =

∣∣∣∣∣
a 1
1 a

∣∣∣∣∣ = a2 − 1,

b2 ≡
∣∣∣∣∣
1 1
1 a

∣∣∣∣∣ = a− 1,

a ≡ (β − κ)∆R · eκ∆R.

This leads to two possibilities

(β − κ)∆R · eκ∆R = 1, (48)
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in case if β >
1

∆R
, and

(β − κ)∆R · eκ∆R = −2 (49)

providing β > − 2

∆R
.



Existence conditions β >
1

∆R
and β > − 2

∆R
for (48) and

(49), respectively, are apparent from plotting with respect to

κ the both sides of the equations κ∆R = β∆R−e−κ∆R

and κ∆R = β∆R + 2 · e−κ∆R.

Solution corresponding to the last condition (49), i.e. a =
−2, can be found using the Cramer’s rule.

Take, for example, C3 ≡ C0 as a free variable and consider

two of the equations
(

a 1
1 a

) (
C1
C2

)
=

(
−C0
−C0

)
.

Then the Cramer’s formulas yield

C1 = C2 = −C0
b2
d2

= −C0
1

a + 1
= C0.

Thus, in this case we have predictable from the symmetry

properties result C1 = C2 = C3 = C0 where C0 is

simply a normalization constant.
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or, finally The first case, (48), allows to have any values of

C1, C2, C3 satisfying the only condition

C1 + C2 + C3 = 0,

that is obvious from the direct substitution of a = 1 into

the set of equations.

Let us consider this case in more detail. The solution (58)

yields

ψ(~r) = C1
e
−κ

∣∣∣~r−~R1

∣∣∣
∣∣∣~r − ~R1

∣∣∣
+C2

e
−κ

∣∣∣~r−~R2

∣∣∣
∣∣∣~r − ~R2

∣∣∣
−(C1+C2)

e
−κ

∣∣∣~r−~R3

∣∣∣
∣∣∣~r − ~R3

∣∣∣
.
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The symmetric combination of functions.

Due to symmetry in positions of centers, only solutions which
are representations in he correspondent eigenvalue subspace
must be realized. It means that in nondegenerate case Hamil-
tonian eigenstates must also be eigenfunctions (with eigen-
values of the complex exponential form eiφ0, multiplication
on which is known not to change a state of the system) of
an appropriate rotation operator.

To employ this symmetry considerations in a convenient way,
we choose coordinate system such that all centers are lying
in the plane z = 0 (i.e. θ = π/2, see the figure), and
formulate an eigenvalue problem for the operator T3 that
performs rotation of the coordinates around z-axis on 2π/3
angle

T3ψ(~r) = λC1
e
−κ

∣∣∣~r−~R1

∣∣∣
∣∣∣~r − ~R1

∣∣∣
+

λC2
e
−κ

∣∣∣~r−~R2

∣∣∣
∣∣∣~r − ~R2

∣∣∣
− λ(C1 + C2)

e
−κ

∣∣∣~r−~R3

∣∣∣
∣∣∣~r − ~R3

∣∣∣
.
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On the other hand, since in our case the rotation results

simply in the transposition ~R1 → ~R2, ~R2 → ~R3, ~R3 →
~R1, we have

T3ψ(~r) = C1
e
−κ

∣∣∣~r−~R2

∣∣∣
∣∣∣~r − ~R2

∣∣∣
+C2

e
−κ

∣∣∣~r−~R3

∣∣∣
∣∣∣~r − ~R3

∣∣∣
−(C1+C2)

e
−κ

∣∣∣~r−~R1

∣∣∣
∣∣∣~r − ~R1

∣∣∣
.



From the last two expressions it follows that

[C1 (λ + 1) + C2]
e
−κ

∣∣∣~r−~R1

∣∣∣
∣∣∣~r − ~R1

∣∣∣
+ (50)

[λC2 − C1]
e
−κ

∣∣∣~r−~R2

∣∣∣
∣∣∣~r − ~R2

∣∣∣
−

[C1λ + C2 (λ + 1)]
e
−κ

∣∣∣~r−~R3

∣∣∣
∣∣∣~r − ~R3

∣∣∣
= 0.

However, we note that due to the order (symmetry) in po-

sitions of point-centers ~Ri, the functions
e
−κ

∣∣∣~r−~Ri

∣∣∣
∣∣∣~r − ~Ri

∣∣∣
, i =

1, 2, 3 can not be considered as independent.

Assuming an observation point to be arbitrary but close to

the origin of the symmetrical structure, i.e. r ¿ R0 where

38



R0 =
∣∣∣~R1

∣∣∣ =
∣∣∣~R2

∣∣∣ =
∣∣∣~R3

∣∣∣, we can do approximation

e
−κ

∣∣∣~r−~Ri

∣∣∣ ≈ e−κR0, i = 1, 2, 3 and write the following

expansions



1∣∣∣~r − ~Ri

∣∣∣
=

∞∑

l=0

rl

Rl+1
0

Pl (cos γi) , i = 1, 2, 3,

where cos γi =
~r · ~Ri

|~r| ·R0
.

Now we utilize the addition theorem for spherical harmonics

Pl (cos γ1) =

4π

2l + 1

l∑

m=−l

(−1)m Y m
l (θ, φ)Y −m

l (π/2, 0),

Pl (cos γ2) =

4π

2l + 1

l∑

m=−l

(−1)m Y m
l (θ, φ) Y −m

l (π/2, 2π/3)︸ ︷︷ ︸
=Y −m

l (π/2,0)·e−i2π
3 m

,

Pl (cos γ3) =
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4π

2l + 1

l∑

m=−l

(−1)m Y m
l (θ, φ) Y −m

l (π/2, 4π/3)︸ ︷︷ ︸
=Y −m

l (π/2,0)·e−i4π
3 m

.

Taking these expansions into account, the expression () leads

us to

∞∑

l=0

4π

2l + 1
· rl

Rl+1
0

l∑

m=−l

(−1)m Y −m
l (π/2, 0) [(C1 −

λC2)e
−i2π

3 m+

+(λC1 + C2 (λ + 1)) e−i4π
3 m − C1 (λ + 1)−

C2]Y
m
l (θ, φ) = 0.



Due to the independence of different spherical harmonics, we

readily conclude that the expression in square brackets should

be equal to zero for each m. Because of periodicity of the

complex exponents, this condition is reduced to be valid only

for m = 0, ±1, ±2, ±3.

Thus,

(C1 − λC2) e−i2π
3 m+

(λC1 + C2 (λ + 1)) e−i4π
3 m − C1 (λ + 1)− C2 = 0,

+ |m| = 0, . . . , 3.

(51)

Obviously, for m = 0 the condition is automatically sat-

isfied, so we consider the case m = ±1 and, later on, it

remains to check that the result is consistent with fulfillment

of the conditions for m = ±2, ±3.
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For the case m = ±1 we require




(
−1− λ + e−i2π

3 +

λe−i4π
3 C1 +

(
−1− λe−i2π

3 + (1 + λ) e−i4π
3

)
C2 = 0,

(
−1− λ + ei2π

3 +

λei4π
3 C1 +

(
−1− λei2π

3 + (1 + λ) ei4π
3

)
C2 = 0.



To have a non-zero solution, the characteristic equation of

the system matrix must hold true.

Skipping tedious intermediate calculations, the characteristic

equation simplifies to

λ2 + λ + 1 = 0.

This gives

λ1 = ei2π
3 , λ2 = ei4π

3 = e−i2π
3 .

It is a natural result due to commutation of the rotation

operator T3 and the Hamiltonian of the system, as it was

mentioned before.

By finding the corresponding set of constants C1, C2 (cal-

culations are purely algebraic and quite cumbersome to be
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given here), we end up with the following eigenstates corre-

sponding to λ1, λ2, respectively,

ψ1(~r) =

C01·


e−iπ

3
e
−κ

∣∣∣~r−~R1

∣∣∣
∣∣∣~r − ~R1

∣∣∣
− e

−κ
∣∣∣~r−~R2

∣∣∣
∣∣∣~r − ~R2

∣∣∣
+ eiπ

3
e
−κ

∣∣∣~r−~R3

∣∣∣
∣∣∣~r − ~R3

∣∣∣


 ,

ψ2(~r) =

C02·


eiπ

3
e
−κ

∣∣∣~r−~R1

∣∣∣
∣∣∣~r − ~R1

∣∣∣
− e

−κ
∣∣∣~r−~R2

∣∣∣
∣∣∣~r − ~R2

∣∣∣
+ e−iπ

3
e
−κ

∣∣∣~r−~R3

∣∣∣
∣∣∣~r − ~R3

∣∣∣


 ,

where C01, C02 are normalization constants.



In order to make further generalization possible, it is con-

venient to redefine constants C01 → C01 · eiπ
3 , C02 →

C02 · e−iπ
3 and rewrite the last expressions as it follows

ψ1(~r) = C01·




e
−κ

∣∣∣~r−~R1

∣∣∣
∣∣∣~r − ~R1

∣∣∣
+ e−i2π

3
e
−κ

∣∣∣~r−~R2

∣∣∣
∣∣∣~r − ~R2

∣∣∣
+ ei2π

3
e
−κ

∣∣∣~r−~R3

∣∣∣
∣∣∣~r − ~R3

∣∣∣


 ,

(52)

ψ2(~r) = C02·




e
−κ

∣∣∣~r−~R1

∣∣∣
∣∣∣~r − ~R1

∣∣∣
+ ei2π

3
e
−κ

∣∣∣~r−~R2

∣∣∣
∣∣∣~r − ~R2

∣∣∣
+ e−i2π

3
e
−κ

∣∣∣~r−~R3

∣∣∣
∣∣∣~r − ~R3

∣∣∣


 .

(53)

These states (that are, in fact, complex conjugated) corre-

sponding to the eigenvalue with the energy determined from

(48), along with the state
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ψ3(~r) = C03·




e
−κ

∣∣∣~r−~R1

∣∣∣
∣∣∣~r − ~R1

∣∣∣
+

e
−κ

∣∣∣~r−~R2

∣∣∣
∣∣∣~r − ~R2

∣∣∣
+

e
−κ

∣∣∣~r−~R3

∣∣∣
∣∣∣~r − ~R3

∣∣∣


 ,

(54)

having the energy to be found from (49), make up the com-

plete set of solutions for the 3 point-center symmetrical po-

tential case.

Also we note that each of these solutions is an eigenfunction

of the rotation operator T3 (with eigenvalues ei2π
3 , ei4π

3 ,

1, respectively) and, therefore, obey to the symmetry of the

problem.



N point-center plane symmetric potential

Now we continue with generalization of the previous case by

considering the potential describing a symmetrical structure

with point-centers forming the cyclic group CN in space.

As before, we write solution as

ψ(~r) =
N∑

k=1

Ck
e
−κ

∣∣∣~r−~Rk

∣∣∣
∣∣∣~r − ~Rk

∣∣∣
, (55)

subject to the conditions

∂ log
(∣∣∣~r − ~Ri

∣∣∣ · ψ(~r)
)

∂
∣∣∣~r − ~Ri

∣∣∣

∣∣∣∣∣∣∣∣∣~r−~Ri

∣∣∣=0

= −β, (56)

where i = 1, . . . , N .
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Let us introduce the following notation. We will denote a

distance between nearest neighboring centers as ∆R1, be-

tween every second center from each given one - ∆R2, every

third - ∆R3, and so on.

From simple geometrical considerations it follows that

∆Rj = 2R0 sin
(
2π

N
· j

2

)
= 2R0 sin

(
φj+1/2

)
,

(57)
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for j = 1, . . . , [N/2], where [·] marks integer part of

an argument (i.e. the floor function), φj =
2π

N
(j − 1)

azimuthal angle coordinate of a j-th point-center.



Infinite number of point-centers

Now we consider a limiting case when number of point-

centers is infinitely large. So we define their linear density

ρ0 and replace summation over point-center contributions

with integral over the ring arc where they lie. In this case

there is no crucial importance of direction of x-axis so the

expressions obtained above, in fact, define radial dependence

in xy-plane

ψ1(~r) = ψ̄1(~r) = 2C01ρ0

π∫

0

cosφ
e
−κ

∣∣∣~r−~R
∣∣∣

∣∣∣~r − ~R
∣∣∣

R0dφ,

where ~R = (R0 cosφ, R0 sinφ, 0)T .

Assume the observation point is deep inside the symmetrical

structure, that is r ¿ R0 where r =
∣∣∣(~r · ~ex, ~r · ~ey, 0)T

∣∣∣.
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Then e
−κ

∣∣∣~r−~R
∣∣∣ ≈ e−κR0 and using generating function

technique for Legendre polynomials we can perform expan-

sion

1∣∣∣~r − ~R
∣∣∣
=

∞∑

l=0

rl

Rl+1
0

· Pl(cosφ).

Therefore

ψ1(~r) = 2C01ρ0e−κR0
∞∑

l=0

(
r

R0

)l π∫

0

Pl(cosφ) cosφ·dφ.

Due to orthogonality of Legendre polynomials, among all

terms in summation only the one with l = 1 remains.

Thus, finally we arrive at

ψ1(~r) = C01
πρ0

R0
e−κR0r,

when z = 0.



Scattering on N -centers - continuous spectrum problem

Consider the scattering of plane wave incident axially on the

N -center potential plane symmetrical structure under ques-

tion.

We write the solution to the Schrodinger equation as

ψ(~r) = A0eikz +
N∑

j=1

Cj
e
ik

∣∣∣~r−~Rj

∣∣∣
∣∣∣~r − ~Rj

∣∣∣
, (58)

where k =

√
2µE

~2
and A0 is an amplitude of the incident

plane wave.

Using previously described notation, at each center (scat-

terer) the solution must satisfy the ZRP condition (56)

∂ log
(∣∣∣~r − ~Rj

∣∣∣ · ψ(~r)
)

∂
∣∣∣~r − ~Rj

∣∣∣

∣∣∣∣∣∣∣∣∣~r−~Rj

∣∣∣=0

=
1

Cj
(A0 + . . .
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+Cj−1·
eik∆R1

∆R1
+Cj ·ik+Cj+1·

eik∆R1

∆R1
+. . . = −β.



On the figures below we present total scattering cross sec-

tions dependence on energy E = (~k)2 / (2µ) obtained

for different number of scatterers N .

Within the model, we observe reasonable decay of total scat-

tering cross section as energy grows whilst change of this

dependence with respect to number of scatterers is not uni-

form (see the second figure).
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When plotting, the following values of parameters were used:

κ = 0.5 [Ang−1] , R0 = 5.0 [Ang].



Dressing in a multi-center problem The second obser-
vation is principal, it allows to built a zero-range potential
eigenfunction in the multi-center problem. In a more general
situation one can consider a system with a smooth poten-
tial plus a number of ZRP. If one knows the Green function
for the smooth potential, then one can provide a solution
for the problem with the ZRPs added. This was outlined in
Demkov,Ostrovskij, where the case of a single ZRP was con-
sidered. Generalization to the case with an arbitrary number
of ZRP is straightforward. On the contrary, our general idea
is to ”dress”a multicenter system without Green function con-
sideration. This procedure gives simple formulas for partial
phases and their corrections at low energies.

Let us consider scattering problem for a non-spherical poten-
tial U :

(
−1

2

∂2

∂r2
− 1

r

∂

∂r
+

L̂2

2r2
+ Û − E

)
ψ(~r) = 0, (59)

where L̂2 is square of angular momentum operator, E de-
scribes the energy of particle. The asymptotic of wave func-
tion ψ(~r) looks like

ψ(~r)
r→∞∼ exp(i~k · ~r) + f(θ)

eikr

r
, (60)
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where f(θ) is scattering amplitude, which depends on scat-

tering angle θ. The operator L̂2 commutes with all radial

derivatives, in particular with ∂ = ∂/∂r.



In three-dimensional space the DT may be reduced

to one-dimensional operator (or matrix) problem. The first

order DT for Schrödinger equation (59) is

ψ(1) = (∂ − ŝ)ψ,

Û(1) = Û + 1/r2 − ŝ′,
(61)

and ŝ must be assumed as function of the operator variable

L̂2. The formula (61) gives non-local (over angles) potential

which depends on L̂2. In order to find operator ŝ we can

use covariance principle for the equation (59).
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The covariance principle formally yields explicit constraint

for ŝ, which gives

ŝ′ + 2

r
ŝ + ŝ2 =

L̂2

r2
+ 2Û + K2, (62)

It is supposed that the constant of integration (by r) K =∑∞
n=0 KnL̂2n is the analytical function of L̂2. The op-

erator ŝ can be found as series
∑∞

n=0 snL̂2n where the

coefficients sn depend only on r. It is easy to show that the

equation leads to recursion relations for the coefficients sn.
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Thus, we have the algorithm that determine the operator

ŝ and a dressed potential via the operator K. The choice

ŝ′ = 0 at the infinity that corresponds the desirable case
ˆU(1) → 0 (61) yields ŝ(∞) = K . For our purpose (cross

section evaluation) we need only partial phases or scattering

amplitude related to operator K. In order to find the partial

phases for a dressed potential we need to apply the DT to

wave function. However, we have one trouble: in general DT

modifies the plane wave exp(i~k · ~r). Thus, DT applied to

wave function ψ(~r) with asymptotic (60) gives an another

asymptotic. In some particular cases, special choice of the

operator K allows to avoid this problem. Indeed, consider

the partial wave asymptotics for a non-spherical potential

Demkov, Rudakov

ψJ(~r) ∼
1

2ikr
(eikr+iδJΛJ(~n)− e−ikr−iδJΛJ(−~n)),

(63)
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where ~n is unit vector directed as ~r, δJ denote partial shifts,
and ΛJ(~n) are normalized eigenvectors of S-matrix operator
(partial harmonics). The most simple formulas for the shifts
δ
(1)
J for the potential Û(1) result when partial harmonic ΛJ

are also eigenvectors of operator K. For example, suppose
all partial harmonic ΛJ are eigenvector of K but only Λ0
has nonzero eigenvalue κ

KΛ0(~n) = κΛ0(~n). (64)

The asymptotic dressing is reduced to the action of the oper-
ator ∂ −K on asymptotic (63). It is easy to show by using
expression

ln
(

κ− ik

κ + ik

)
= −2i arctan(k/κ), (65)

for real-valued variables k, κ, that DT changes only the par-
tial shift δ0 as

δ
(1)
0 = δ0 − arctan(k/κ). (66)

In this special case we add only one additional parameter. In
the region k À |κ| the second term of the equation (66)
practically does not contribute to the partial cross section

σJ =
4π

k2
sin2 δJ . (67)
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One observes an important contribution to the cross section

when k ≈ |κ| and hence it can be considered as a correction

at low energies.



Illustrations: Xn and YXn structures

we consider the scattering problem for a dressed multi-center

potential with a symmetry. The multi-center scattering within

the framework of the ZRP model was investigated by Demkov

and Rudakov, Szmytkowski, and others.

Suppose a structure Xn contains n identical scatterers, which

involve only s-waves. Let R denote the distance between two

nearest scatterers X-X. The partial waves and phase shifts can

be classified with respect to symmetry group representation

for the structures Xn (n=2,3,4), degeneracy being defined by

the dimension of the representation Demkov, Rudakov.
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The partial phases can be calculated by classical ZRP method

Demkov, Ostrovskij

tan δJ =





−a kR+(n−1) sin(kR)
R+(n−1)a cos(kR), J = 0

−a kR−sin(kR)
R−a cos(kR), J = 1, n−1.

(68)

In special case n = 4, our result coincides with Szmytkowski
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Consider structures YXn. For simplicity, suppose that the

scatterers X are in vertices of a regular structure Xn. Let D

denotes the distance between scatterers Y-X and R denotes

distance between X-X. Position of the scatterer Y perfectly

fixed only if n=4 (geometric center of tetrahedron). We

arrive at the constraint R = 2
√

2
3D. The partial phases

derived analytically

tan δJ = −ax
kR− sin(kR)

R− ax cos(kR)
, J = 2, n. (69)

The t = tan δ0,1 obeys the quadratic equation

(t + ayk)
(

t
n−1 + ax

(
k

n−1 + sin(kR)
R + tcos(kR)

R

))
=

n
n−1axay

(
sin(kD)

D + tcos(kD)
D

)2
,

(70)

where ax, ay, denote boundary parameters. For large dis-

tances we can interpret the parameters as scattering lengths

of isolated atoms. Thus, in the limiting case when the dis-

tance D is very large, tan δ0 tends to first equation of (68)

and tan δ1 ∼ −ayk. This situation corresponds to inde-

pendent scattering on a molecule Xn and an atom Y.
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Conclusions/Problems/Perspective

1. This approach allows to calculate quantum scattering

parameters

2. Our procedure allows to combine dressing with ZRP ac-

tions.

3. Integrable potentials

4. Analyze SUSY partners,

5. Further generalizations. Extension theory

Berezin F, Faddeev L. Note on Schrodinger equation

with singular potential DAN 1961 - Extension of Neu-

menn.

BS Pavlov TMF (Theor. Math. Phys) 1984 Internal

structure via Hilbert space extensions.
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