Phase Space Quantum Mechanics Canonical Regime Part 2

Maciej Błaszak Ziemowit Domański

Adam Mickiewicz University, Faculty of Physics Division of Mathematical Physics

June 5, 2010

Ordinary description of quantum mechanics

Tensor product of Hilbert spaces

$$L^2(\mathbb{R}^2) = \left(L^2(\mathbb{R})\right)^* \otimes L^2(\mathbb{R}),$$

where

$$(\varphi \otimes \psi)(x,y) = \varphi^*(x)\psi(y),$$
$$\langle \varphi_1 \otimes \psi_1 | \varphi_2 \otimes \psi_2 \rangle_{L^2} = \langle \varphi_2 | \varphi_1 \rangle_{L^2} \langle \psi_1 | \psi_2 \rangle_{L^2},$$

for
$$\varphi, \varphi_1, \varphi_2 \in (L^2(\mathbb{R}))^* \cong L^2(\mathbb{R})$$
 and $\psi, \psi_1, \psi_2 \in L^2(\mathbb{R})$.

Isomorphisms of $L^2(\mathbb{R}^2)$

The Fourier transform \mathcal{F}_y is an isomorphism of $L^2(\mathbb{R}^2)$. For $\Psi(x,y)\in L^2(\mathbb{R}^2)$, the function

$$\Psi(x,p) = \mathcal{F}_y(\Psi(x,y)) = \frac{1}{\sqrt{2\pi\hbar}} \int dy \, e^{-\frac{i}{\hbar}py} \Psi(x,y)$$

will be called an (x, p)-representation of $\Psi(x, y)$ and it will be considered as a function on the phase space $M = \mathbb{R}^2$ in the canonical coordinates of position x and momentum p.

Isomorphisms of $L^2(\mathbb{R}^2)$

The Fourier transform \mathcal{F}_y is an isomorphism of $L^2(\mathbb{R}^2)$. For $\Psi(x,y)\in L^2(\mathbb{R}^2)$, the function

$$\Psi(x,p) = \mathcal{F}_y(\Psi(x,y)) = \frac{1}{\sqrt{2\pi\hbar}} \int dy \, e^{-\frac{i}{\hbar}py} \Psi(x,y)$$

will be called an (x, p)-representation of $\Psi(x, y)$ and it will be considered as a function on the phase space $M = \mathbb{R}^2$ in the canonical coordinates of position x and momentum p.

The map

$$T_{\sigma}\Psi(x,y) := \Psi(x - \bar{\sigma}y, x + \sigma y), \quad \Psi \in L^{2}(\mathbb{R}^{2})$$

is an isomorphism of $L^2(\mathbb{R}^2)$.

(σ, α, β) -twisted tensor product of Hilbert spaces

$$\mathcal{H} = \left(L^2(\mathbb{R})\right)^* \otimes_{\sigma,\alpha,\beta} L^2(\mathbb{R}) := S_{\alpha,\beta} \mathcal{F}_y \, T_\sigma \left(\left(L^2(\mathbb{R})\right)^* \otimes L^2(\mathbb{R}) \right),$$

where

$$\langle \varphi_1 \otimes_{\sigma,\alpha,\beta} \psi_1 | \varphi_2 \otimes_{\sigma,\alpha,\beta} \psi_2 \rangle_{\mathcal{H}} = \langle \varphi_2 | \varphi_1 \rangle_{L^2} \langle \psi_1 | \psi_2 \rangle_{L^2} \,,$$

for
$$\varphi_1, \varphi_2 \in (L^2(\mathbb{R}))^* \cong L^2(\mathbb{R})$$
 and $\psi_1, \psi_2 \in L^2(\mathbb{R})$.

Generators of ${\cal H}$

The generators of ${\cal H}$ are of the form

$$\begin{split} \Psi^{\sigma,\alpha,\beta}(x,p) &= (\varphi \otimes_{\sigma,\alpha,\beta} \psi)(x,p) \\ &= \frac{1}{(2\pi\hbar)^{3/2} \sqrt{\alpha\beta}} \iiint \mathrm{d}x' \, \mathrm{d}p' \, \mathrm{d}y \, \varphi^*(x' - \bar{\sigma}y) \psi(x' + \sigma y) \\ &\cdot e^{-\frac{1}{2\hbar\alpha}(x-x')^2} e^{-\frac{1}{2\hbar\beta}(p-p')^2} e^{-\frac{i}{\hbar}p'y}, \end{split}$$

where $\varphi, \psi \in L^2(\mathbb{R})$.

Basis in ${\cal H}$

If $\{\varphi_i\}$ is an orthonormal basis in $L^2(\mathbb{R})$, then $\{\Psi_{ij}\} = \{\varphi_i \otimes_{\sigma,\alpha,\beta} \varphi_j\}$ is an orthonormal basis in \mathcal{H} and for any $\Psi = \varphi \otimes_{\sigma,\alpha,\beta} \psi \in \mathcal{H}$ where $\varphi, \psi \in L^2(\mathbb{R})$:

$$arphi = \sum_i b_i arphi_i, \qquad \psi = \sum_j c_j arphi_j, \qquad ext{for some } b_i, c_i \in \mathbb{C},$$
 $\Psi = \sum_{i,j} a_{ij} \Psi_{ij}, \qquad a_{ij} = b_i^* c_j.$

Basis in \mathcal{H}

If $\{\varphi_i\}$ is an orthonormal basis in $L^2(\mathbb{R})$, then $\{\Psi_{ij}\} = \{\varphi_i \otimes_{\sigma,\alpha,\beta} \varphi_j\}$ is an orthonormal basis in \mathcal{H} and for any $\Psi = \varphi \otimes_{\sigma,\alpha,\beta} \psi \in \mathcal{H}$ where $\varphi, \psi \in L^2(\mathbb{R})$:

$$arphi = \sum_i b_i arphi_i, \qquad \psi = \sum_j c_j arphi_j, \qquad ext{for some } b_i, c_i \in \mathbb{C},$$
 $\Psi = \sum_{i,j} a_{ij} \Psi_{ij}, \qquad a_{ij} = b_i^* c_j.$

The basis functions Ψ_{ij} are idempotent:

$$\Psi_{ij}\star_{\sigma,\alpha,\beta}\Psi_{kl}=rac{1}{\sqrt{2\pi\hbar}}\delta_{il}\Psi_{kj}.$$

Theorem

Every pure state $\Psi_{\mathrm{pure}} \in \mathcal{H}$ is of the form

$$\Psi_{\mathrm{pure}} = \varphi \otimes_{\sigma,\alpha,\beta} \varphi,$$

for some normalized function $\varphi \in L^2(\mathbb{R})$. Conversely, every function $\Psi \in \mathcal{H}$ of the form $\varphi \otimes_{\sigma,\alpha,\beta} \varphi$ is a pure state.

$$A\star_{\sigma,\alpha,\beta}=A_{\sigma,\alpha,\beta}(\hat{q}_{\sigma,\alpha},\hat{p}_{\sigma,\beta}).$$

$$A \star_{\sigma,\alpha,\beta} = A_{\sigma,\alpha,\beta}(\hat{q}_{\sigma,\alpha},\hat{p}_{\sigma,\beta}).$$

States $\Psi \in \mathcal{H}$ can also be considered as operators on \mathcal{H} given by

$$\hat{\Psi} = \sqrt{2\pi\hbar} \Psi \star_{\sigma,\alpha,\beta}.$$

$$A \star_{\sigma,\alpha,\beta} = A_{\sigma,\alpha,\beta}(\hat{q}_{\sigma,\alpha},\hat{p}_{\sigma,\beta}).$$

States $\Psi \in \mathcal{H}$ can also be considered as operators on \mathcal{H} given by

$$\hat{\Psi} = \sqrt{2\pi\hbar}\Psi \star_{\sigma,\alpha,\beta}$$
 .

Note, that for $\Psi = \sum_{i,j} c_{ij} \varphi_i \otimes_{\sigma,\alpha,\beta} \varphi_j$ there holds

$$\hat{\Psi} = \hat{1} \otimes_{\sigma,\alpha,\beta} \hat{\rho},$$

where $\hat{\rho} = \sum_{i,j} c_{ij} |\varphi_j\rangle \langle \varphi_i|$.

$$A\star_{\sigma,\alpha,\beta}=A_{\sigma,\alpha,\beta}(\hat{q}_{\sigma,\alpha},\hat{p}_{\sigma,\beta}).$$

States $\Psi \in \mathcal{H}$ can also be considered as operators on \mathcal{H} given by

$$\hat{\Psi} = \sqrt{2\pi\hbar} \Psi \star_{\sigma,\alpha,\beta}.$$

Note, that for $\Psi = \sum_{i,j} c_{ij} \varphi_i \otimes_{\sigma,\alpha,\beta} \varphi_j$ there holds

$$\hat{\Psi} = \hat{1} \otimes_{\sigma,\alpha,\beta} \hat{\rho},$$

where $\hat{\rho} = \sum_{i,j} c_{ij} |\varphi_j\rangle \langle \varphi_i|$.

In particular, for $\Psi = \varphi \otimes_{\sigma,\alpha,\beta} \psi$ there holds

$$\hat{\Psi} = \hat{1} \otimes_{\sigma,\alpha,\beta} \hat{\rho},$$

where $\hat{\rho} = |\psi\rangle \langle \varphi|$.

If $\Psi_{\mathrm{pure}} = \varphi \otimes_{\sigma,\alpha,\beta} \varphi$ is a pure state then $\hat{\Psi}_{\mathrm{pure}} = \hat{1} \otimes_{\sigma,\alpha,\beta} \hat{\rho}_{\mathrm{pure}}$ where $\hat{\rho}_{\mathrm{pure}} = |\varphi\rangle \langle \varphi|$. Moreover, operators $\hat{\rho}_{\mathrm{pure}}$ satisfy

- $\hat{
 ho}_{
 m pure} = \hat{
 ho}_{
 m pure}^{\dagger}$ (hermiticity),
- ② $\hat{
 ho}_{\mathrm{pure}}^2 = \hat{
 ho}_{\mathrm{pure}}$ (idempotence),
- tr $\hat{\rho}_{pure} = 1$ (normalization).

If $\Psi_{\mathrm{pure}} = \varphi \otimes_{\sigma,\alpha,\beta} \varphi$ is a pure state then $\hat{\Psi}_{\mathrm{pure}} = \hat{1} \otimes_{\sigma,\alpha,\beta} \hat{\rho}_{\mathrm{pure}}$ where $\hat{\rho}_{\mathrm{pure}} = |\varphi\rangle \langle \varphi|$. Moreover, operators $\hat{\rho}_{\mathrm{pure}}$ satisfy

- $oldsymbol{\hat{
 ho}}_{\mathrm{pure}}=\hat{
 ho}_{\mathrm{pure}}^{\dagger}$ (hermiticity),
- ② $\hat{
 ho}_{\mathrm{pure}}^2 = \hat{
 ho}_{\mathrm{pure}}$ (idempotence),
- \bullet tr $\hat{\rho}_{\mathrm{pure}} = 1$ (normalization).

If $\Psi_{\mathrm{mix}} = \sum_{\lambda} p_{\lambda} \Psi_{\mathrm{pure}}^{(\lambda)}$ is a mixed state then $\hat{\Psi}_{\mathrm{mix}} = \hat{1} \otimes_{\sigma,\alpha,\beta} \hat{\rho}_{\mathrm{mix}}$ where

$$\hat{
ho}_{
m mix} = \sum_{\lambda} p_{\lambda} \hat{
ho}_{
m pure}^{(\lambda)}.$$

Theorem

Let $A \in \mathcal{A}_Q$ and $\Psi \in \mathcal{H}$ be such that $\Psi = \varphi \otimes_{\sigma,\alpha,\beta} \psi$ for $\varphi, \psi \in L^2(\mathbb{R})$, then

$$A_{L} \star_{\sigma,\alpha,\beta} \Psi = A_{\sigma,\alpha,\beta} (\hat{q}_{\sigma,\alpha}, \hat{p}_{\sigma,\beta}) \Psi = \varphi \otimes_{\sigma,\alpha,\beta} A_{\sigma,\alpha,\beta} (\hat{q}, \hat{p}) \psi,$$

$$A_{R} \star_{\sigma,\alpha,\beta} \Psi = A_{\sigma,\alpha,\beta} (\hat{q}_{\bar{\sigma},\alpha}^{*}, \hat{p}_{\bar{\sigma},\beta}^{*}) \Psi = A_{\sigma,\alpha,\beta}^{\dagger} (\hat{q}, \hat{p}) \varphi \otimes_{\sigma,\alpha,\beta} \psi,$$

if
$$\psi \in D(A_{\sigma,\alpha,\beta}(\hat{q},\hat{p}))$$
 and $\varphi \in D(A_{\sigma,\alpha,\beta}^{\dagger}(\hat{q},\hat{p}))$, where $\hat{q} = x$, $\hat{p} = -i\hbar\partial_x$ and $D(\hat{A})$ denotes a domain of an operator \hat{A} .

From previous theorem it follows that operators $A\star_{\sigma,\alpha,\beta}$ can be written as

$$A\star_{\sigma,lpha,eta}=A_{\sigma,lpha,eta}(\hat{q}_{\sigma,lpha},\hat{p}_{\sigma,eta})=\hat{1}\otimes_{\sigma,lpha,eta}A_{\sigma,lpha,eta}(\hat{q},\hat{p}).$$

From previous theorem it follows that operators $A\star_{\sigma,\alpha,\beta}$ can be written as

$$A\star_{\sigma,lpha,eta}=A_{\sigma,lpha,eta}(\hat{q}_{\sigma,lpha},\hat{p}_{\sigma,eta})=\hat{1}\otimes_{\sigma,lpha,eta}A_{\sigma,lpha,eta}(\hat{q},\hat{p}).$$

Moreover, the action of observables $A_{\sigma,\alpha,\beta}(\hat{q}_{\sigma,\alpha},\hat{p}_{\sigma,\beta})$ on states $\hat{\Psi}=\hat{1}\otimes_{\sigma,\alpha,\beta}\hat{\rho}$ reads

$$egin{aligned} A_{\sigma,lpha,eta}(\hat{q}_{\sigma,lpha},\hat{p}_{\sigma,eta})\hat{\Psi} &= \hat{1}\otimes_{\sigma,lpha,eta}A_{\sigma,lpha,eta}(\hat{q},\hat{p})\hat{
ho}, \ \hat{\Psi}A_{\sigma,lpha,eta}(\hat{q}_{\sigma,lpha},\hat{p}_{\sigma,eta}) &= \hat{1}\otimes_{\sigma,lpha,eta}\hat{
ho}A_{\sigma,lpha,eta}(\hat{q},\hat{p}). \end{aligned}$$

Theorem

Every solution of the $\star_{\sigma,\alpha,\beta}$ -genvalue equation

$$A \star_{\sigma,\alpha,\beta} \Psi = a\Psi$$

for $A \in \mathcal{A}_Q$ and $a \in \mathbb{C}$ is of the form

$$\Psi = \sum_{i} \varphi_{i} \otimes_{\sigma,\alpha,\beta} \psi_{i},$$

where $\varphi_i \in L^2(\mathbb{R})$ are arbitrary and $\psi_i \in L^2(\mathbb{R})$ are the eigenvectors of the operator $A_{\sigma,\alpha,\beta}(\hat{q},\hat{p})$ corresponding to the eigenvalue a spanning the subspace of all eigenvectors, i.e. ψ_i satisfy the eigenvalue equation

$$A_{\sigma,\alpha,\beta}(\hat{q},\hat{p})\psi_i = a\psi_i.$$

Theorem

Every solution of the $\star_{\sigma,\alpha,\beta}$ -genvalue equation

$$\Psi \star_{\sigma,\alpha,\beta} B = b\Psi$$

for $B \in \mathcal{A}_Q$ and $b \in \mathbb{C}$ is of the form

$$\Psi = \sum_{i} \psi_{i} \otimes_{\sigma,\alpha,\beta} \varphi_{i},$$

where $\varphi_i \in L^2(\mathbb{R})$ are arbitrary and $\psi_i \in L^2(\mathbb{R})$ are the eigenvectors of the operator $B^{\dagger}_{\sigma,\alpha,\beta}(\hat{q},\hat{p})$ corresponding to the eigenvalue b^* spanning the subspace of all eigenvectors, i.e. ψ_i satisfy the eigenvalue equation

$$B_{\sigma,\alpha,\beta}^{\dagger}(\hat{q},\hat{p})\psi_{i}=b^{*}\psi_{i}.$$

In the nondegenerate case the solution Ψ to the following pair of $\star_{\sigma,\alpha,\beta}$ -genvalue equations

$$A \star_{\sigma,\alpha,\beta} \Psi = a\Psi, \qquad \Psi \star_{\sigma,\alpha,\beta} B = b\Psi,$$

is unique up to a multiplication constant and is of the form $\Psi=\varphi\otimes_{\sigma,\alpha,\beta}\psi$, where $\varphi,\psi\in L^2(\mathbb{R})$ satisfy the following eigenvalue equations

$$A_{\sigma,\alpha,eta}(\hat{q},\hat{p})\psi=a\psi, \qquad B_{\sigma,\alpha,eta}^{\dagger}(\hat{q},\hat{p})arphi=b^*arphi.$$

In the nondegenerate case the solution Ψ to the following pair of $\star_{\sigma,\alpha,\beta}$ -genvalue equations

$$A \star_{\sigma,\alpha,\beta} \Psi = a\Psi, \qquad \Psi \star_{\sigma,\alpha,\beta} B = b\Psi,$$

is unique up to a multiplication constant and is of the form $\Psi=\varphi\otimes_{\sigma,\alpha,\beta}\psi$, where $\varphi,\psi\in L^2(\mathbb{R})$ satisfy the following eigenvalue equations

$$A_{\sigma,\alpha,eta}(\hat{q},\hat{p})\psi=\mathsf{a}\psi, \qquad B_{\sigma,\alpha,eta}^{\dagger}(\hat{q},\hat{p})arphi=b^{*}arphi.$$

In particular, a pair of $\star_{\sigma,\alpha,\beta}$ -genvalue equations

$$A_L \star_{\sigma,\alpha,\beta} \Psi = a\Psi, \qquad (A_R \star_{\sigma,\alpha,\beta})^{\dagger} \Psi = a^* \Psi$$

have a solution Ψ in the form of a pure state $\Psi = \varphi \otimes_{\sigma,\alpha,\beta} \varphi$, where $\varphi \in L^2(\mathbb{R})$ is a solution to the eigenvalue equation

$$A_{\sigma,\alpha,\beta}(\hat{q},\hat{p})\varphi = a\varphi.$$

Theorem

Let $A \in \mathcal{A}_Q$, $\Psi = \sum_{\lambda} p_{\lambda} \Psi_{\mathrm{pure}}^{(\lambda)} = \sum_{\lambda} p_{\lambda} (\varphi^{(\lambda)} \otimes_{\sigma,\alpha,\beta} \varphi^{(\lambda)}) \in \mathcal{H}$ be some mixed state and $\hat{\rho} = \sum_{\lambda} p_{\lambda} |\varphi^{(\lambda)}\rangle \langle \varphi^{(\lambda)}|$ the corresponding density operator. Then there holds

$$\langle A \rangle_{\Psi} = \sum_{\lambda} p_{\lambda} \left\langle \varphi^{(\lambda)} | A_{\sigma,\alpha,\beta}(\hat{q},\hat{p}) \varphi^{(\lambda)} \right\rangle_{L^{2}} = \operatorname{tr}(\hat{\rho} A_{\sigma,\alpha,\beta}(\hat{q},\hat{p})).$$

Time evolution of density operators

The time evolution of states represented as operators on the Hilbert space $L^2(\mathbb{R})$ is governed by a Hermitian operator $H_{\sigma,\alpha,\beta}(\hat{q},\hat{p})$ corresponding to the Hamiltonian H:

$$i\hbar \frac{\partial \hat{
ho}}{\partial t} - [H_{\sigma,\alpha,\beta}(\hat{q},\hat{p}),\hat{
ho}] = 0.$$

Stationary states of the harmonic oscillator

The Hamiltonian of the harmonic oscillator:

$$H(x,p) = \frac{1}{2} (p^2 + \omega^2 x^2).$$

Stationary states of the harmonic oscillator

The Hamiltonian of the harmonic oscillator:

$$H(x,p) = \frac{1}{2} (p^2 + \omega^2 x^2).$$

Note that H is a Hermitian function for every (σ, α, β) -ordering, i.e. $H \star_{\sigma,\alpha,\beta} = (H \star_{\sigma,\alpha,\beta})^{\dagger}$.

Stationary states of the harmonic oscillator

The Hamiltonian of the harmonic oscillator:

$$H(x,p)=\frac{1}{2}\left(p^2+\omega^2x^2\right).$$

Note that H is a Hermitian function for every (σ, α, β) -ordering, i.e. $H \star_{\sigma,\alpha,\beta} = (H \star_{\sigma,\alpha,\beta})^{\dagger}$.

The stationary pure states of the harmonic oscillator are precisely the solutions of the following pair of $\star_{\sigma,\alpha,\beta}$ -genvalue equations

$$H \star_{\sigma,\alpha,\beta} \Psi = E\Psi,$$

$$\Psi \star_{\sigma,\alpha,\beta} H = E\Psi,$$

for $F \in \mathbb{R}$.

Lets introduce new coordinates called holomorphic coordinates

$$a(x,p) = \frac{\omega x + ip}{\sqrt{2\hbar\omega}}, \quad \bar{a}(x,p) = \frac{\omega x - ip}{\sqrt{2\hbar\omega}}.$$

Lets introduce new coordinates called holomorphic coordinates

$$a(x,p) = \frac{\omega x + ip}{\sqrt{2\hbar\omega}}, \quad \bar{a}(x,p) = \frac{\omega x - ip}{\sqrt{2\hbar\omega}}.$$

In this new coordinates the Hamiltonian H takes the form

$$H(a, \bar{a}) = \hbar\omega \left(\bar{a} \star_{\sigma,\alpha,\beta} a + \bar{\lambda}\right) = \hbar\omega \left(a \star_{\sigma,\alpha,\beta} \bar{a} - \lambda\right),$$

where
$$\lambda=\frac{1}{2}(1+\omega\alpha+\omega^{-1}\beta)$$
 and $\bar{\lambda}:=1-\lambda=\frac{1}{2}(1-\omega\alpha-\omega^{-1}\beta)$.

Lets introduce new coordinates called holomorphic coordinates

$$a(x,p) = \frac{\omega x + ip}{\sqrt{2\hbar\omega}}, \qquad \bar{a}(x,p) = \frac{\omega x - ip}{\sqrt{2\hbar\omega}}.$$

In this new coordinates the Hamiltonian H takes the form

$$H(a, \bar{a}) = \hbar\omega \left(\bar{a} \star_{\sigma,\alpha,\beta} a + \bar{\lambda}\right) = \hbar\omega \left(a \star_{\sigma,\alpha,\beta} \bar{a} - \lambda\right),$$

where
$$\lambda = \frac{1}{2}(1 + \omega\alpha + \omega^{-1}\beta)$$
 and $\bar{\lambda} := 1 - \lambda = \frac{1}{2}(1 - \omega\alpha - \omega^{-1}\beta)$.

The $\star_{\sigma,\alpha,\beta}$ -genvalues of H are equal

$$E_n=(n+\bar{\lambda})\hbar\omega.$$

Assume that $\sigma = \frac{1}{2}$ and $\beta = \omega^2 \alpha$.

Assume that $\sigma = \frac{1}{2}$ and $\beta = \omega^2 \alpha$.

The stationary states of the harmonic oscillator take the form

$$\Psi_{n} = \frac{1}{\sqrt{2\pi\hbar}\lambda} (-1)^{n} \left(\frac{\bar{\lambda}}{\lambda}\right)^{n} L_{n} \left(\frac{H}{\hbar\omega\lambda\bar{\lambda}}\right) \exp\left(-\frac{H}{\hbar\omega\lambda}\right) \quad \text{for } \lambda \neq 0, 1$$

$$\Psi_{n} = \frac{1}{\sqrt{2\pi\hbar}n!} \left(\frac{H}{\hbar\omega}\right)^{n} \exp\left(-\frac{H}{\hbar\omega}\right) \quad \text{for } \lambda = 1.$$

Assume that $\sigma = \frac{1}{2}$ and $\beta = \omega^2 \alpha$.

The stationary states of the harmonic oscillator take the form

$$\begin{split} \Psi_n &= \frac{1}{\sqrt{2\pi\hbar}\lambda} (-1)^n \left(\frac{\bar{\lambda}}{\lambda}\right)^n L_n \left(\frac{H}{\hbar\omega\lambda\bar{\lambda}}\right) \exp\left(-\frac{H}{\hbar\omega\lambda}\right) & \text{for } \lambda \neq 0, 1, \\ \Psi_n &= \frac{1}{\sqrt{2\pi\hbar}n!} \left(\frac{H}{\hbar\omega}\right)^n \exp\left(-\frac{H}{\hbar\omega}\right) & \text{for } \lambda = 1. \end{split}$$

 Ψ_n converges to a classical pure state (x=0,p=0) in the limit $\hbar \to 0^+$:

$$\lim_{\hbar \to 0^+} \rho_n(x, p) = \delta(x)\delta(p),$$

where $\rho_n = \frac{1}{\sqrt{2\pi\hbar}} \Psi_n$.

Coherent states of the harmonic oscillator

Coherent states of the harmonic oscillator are functions $\Psi_z \in \mathcal{H}$ which satisfy the following $\star_{\sigma,\alpha,\beta}$ -genvalue equations

$$a_L \star_{\sigma,\alpha,\beta} \Psi_z = z \Psi_z,$$

 $\bar{a}_R \star_{\sigma,\alpha,\beta} \Psi_z = z^* \Psi_z,$

where $z \in \mathbb{C}$.

Coherent states of the harmonic oscillator

Coherent states of the harmonic oscillator are functions $\Psi_z \in \mathcal{H}$ which satisfy the following $\star_{\sigma,\alpha,\beta}$ -genvalue equations

$$a_L \star_{\sigma,\alpha,\beta} \Psi_z = z \Psi_z,$$

$$\bar{a}_R \star_{\sigma,\alpha,\beta} \Psi_z = z^* \Psi_z,$$

where $z \in \mathbb{C}$.

Above system of equations for $z=(\omega x_0+ip_0)/\sqrt{2\hbar\omega}$ is equivalent to the following system of differential equations

$$\begin{split} &(\omega(x-x_0)+i(p-p_0))\Psi_z+\hbar((\bar{\sigma}+\omega\alpha)\partial_x+i(\sigma\omega+\beta)\partial_p)\Psi_z=0,\\ &(\omega(x-x_0)-i(p-p_0))\Psi_z+\hbar((\sigma+\omega\alpha)\partial_x-i(\bar{\sigma}\omega+\beta)\partial_p)\Psi_z=0. \end{split}$$

The solution to the previous system of differential equations for $\alpha=\beta=0$ reads

$$\begin{split} \Psi_z(x,p) &= \frac{1}{\sqrt{\pi\hbar\omega(\bar{\sigma}^2 + \sigma^2)}} \exp\left(-\frac{\omega^2(x-x_0)^2}{2\hbar\omega(\bar{\sigma}^2 + \sigma^2)}\right) \exp\left(-\frac{(p-p_0)^2}{2\hbar\omega(\bar{\sigma}^2 + \sigma^2)}\right) \\ & \cdot \exp\left(i\frac{2(2\sigma-1)\omega(x-x_0)(p-p_0)}{2\hbar\omega(\bar{\sigma}^2 + \sigma^2)}\right). \end{split}$$

The solution to the previous system of differential equations for $\alpha=\beta=0$ reads

$$\begin{split} \Psi_z(x,p) &= \frac{1}{\sqrt{\pi\hbar\omega(\bar{\sigma}^2 + \sigma^2)}} \exp\left(-\frac{\omega^2(x-x_0)^2}{2\hbar\omega(\bar{\sigma}^2 + \sigma^2)}\right) \exp\left(-\frac{(p-p_0)^2}{2\hbar\omega(\bar{\sigma}^2 + \sigma^2)}\right) \\ & \cdot \exp\left(i\frac{2(2\sigma-1)\omega(x-x_0)(p-p_0)}{2\hbar\omega(\bar{\sigma}^2 + \sigma^2)}\right). \end{split}$$

A quantum distribution function induced by Ψ_z is then given by

$$\begin{split} \rho(x,p) &= \frac{1}{\sqrt{2\pi\hbar}} \Psi_z(x,p) \\ &= \frac{1}{\pi\hbar\sqrt{2\omega(\bar{\sigma}^2 + \sigma^2)}} \exp\left(-\frac{\omega^2(x-x_0)^2}{2\hbar\omega(\bar{\sigma}^2 + \sigma^2)}\right) \exp\left(-\frac{(p-p_0)^2}{2\hbar\omega(\bar{\sigma}^2 + \sigma^2)}\right) \\ &\cdot \exp\left(i\frac{2(2\sigma-1)\omega(x-x_0)(p-p_0)}{2\hbar\omega(\bar{\sigma}^2 + \sigma^2)}\right). \end{split}$$

The solution to the previous system of differential equations for $\alpha=\beta=0$ reads

$$\begin{split} \Psi_z(x,p) &= \frac{1}{\sqrt{\pi\hbar\omega(\bar{\sigma}^2 + \sigma^2)}} \exp\left(-\frac{\omega^2(x-x_0)^2}{2\hbar\omega(\bar{\sigma}^2 + \sigma^2)}\right) \exp\left(-\frac{(p-p_0)^2}{2\hbar\omega(\bar{\sigma}^2 + \sigma^2)}\right) \\ & \cdot \exp\left(i\frac{2(2\sigma-1)\omega(x-x_0)(p-p_0)}{2\hbar\omega(\bar{\sigma}^2 + \sigma^2)}\right). \end{split}$$

A quantum distribution function induced by Ψ_z is then given by

$$\begin{split} \rho(x,p) &= \frac{1}{\sqrt{2\pi\hbar}} \Psi_z(x,p) \\ &= \frac{1}{\pi\hbar\sqrt{2\omega(\bar{\sigma}^2 + \sigma^2)}} \exp\left(-\frac{\omega^2(x-x_0)^2}{2\hbar\omega(\bar{\sigma}^2 + \sigma^2)}\right) \exp\left(-\frac{(p-p_0)^2}{2\hbar\omega(\bar{\sigma}^2 + \sigma^2)}\right) \\ &\cdot \exp\left(i\frac{2(2\sigma-1)\omega(x-x_0)(p-p_0)}{2\hbar\omega(\bar{\sigma}^2 + \sigma^2)}\right). \end{split}$$

Note, that the expectation values of position and momentum in a coherent state Ψ_z are equal

$$\langle x \rangle_{\Psi_z} = x_0, \quad \langle p \rangle_{\Psi_z} = p_0.$$

To find the time evolution of the coherent states it is necessary to solve the time evolution equation

$$i\hbar\frac{\partial\rho}{\partial t}-[H,\rho]=0,$$

where
$$H(x, p) = \frac{1}{2}(\omega^2 x^2 + p^2)$$
.

To find the time evolution of the coherent states it is necessary to solve the time evolution equation

$$i\hbar\frac{\partial\rho}{\partial t}-[H,\rho]=0,$$

where $H(x, p) = \frac{1}{2}(\omega^2 x^2 + p^2)$.

Above equation is equivalent to the following equation

$$\frac{\partial \rho}{\partial t} - \omega^2 x \frac{\partial \rho}{\partial p} + p \frac{\partial \rho}{\partial x} - i\hbar \omega^2 \frac{1}{2} (2\sigma - 1) \frac{\partial^2 \rho}{\partial p^2} + i\hbar \frac{1}{2} (2\sigma - 1) \frac{\partial^2 \rho}{\partial x^2} = 0.$$

The solution of the previous equation initially in a coherent state reads

$$\begin{split} \rho(x,p,t) &= \frac{1}{\pi\hbar\sqrt{2\omega(\bar{\sigma}^2+\sigma^2)}} \exp\left(-\frac{\omega^2(x-\bar{x}(t))^2}{2\hbar\omega(\bar{\sigma}^2+\sigma^2)}\right) \exp\left(-\frac{(p-\bar{p}(t))^2}{2\hbar\omega(\bar{\sigma}^2+\sigma^2)}\right) \\ &\cdot \exp\left(i\frac{2(2\sigma-1)\omega(x-\bar{x}(t))(p-\bar{p}(t))}{2\hbar\omega(\bar{\sigma}^2+\sigma^2)}\right), \end{split}$$

where

$$ar{x}(t) = x_0 \cos \omega t + rac{p_0}{\omega} \sin \omega t,$$

 $ar{p}(t) = -\omega x_0 \sin \omega t + p_0 \cos \omega t,$

are the expectation values of position and momentum.

The solution of the previous equation initially in a coherent state reads

$$\begin{split} \rho(x,p,t) &= \frac{1}{\pi\hbar\sqrt{2\omega(\bar{\sigma}^2+\sigma^2)}} \exp\left(-\frac{\omega^2(x-\bar{x}(t))^2}{2\hbar\omega(\bar{\sigma}^2+\sigma^2)}\right) \exp\left(-\frac{(p-\bar{p}(t))^2}{2\hbar\omega(\bar{\sigma}^2+\sigma^2)}\right) \\ & \cdot \exp\left(i\frac{2(2\sigma-1)\omega(x-\bar{x}(t))(p-\bar{p}(t))}{2\hbar\omega(\bar{\sigma}^2+\sigma^2)}\right), \end{split}$$

where

$$\bar{x}(t) = x_0 \cos \omega t + \frac{p_0}{\omega} \sin \omega t,$$

$$\bar{p}(t) = -\omega x_0 \sin \omega t + p_0 \cos \omega t,$$

are the expectation values of position and momentum.

Coherent states, in the limit $\hbar \to 0^+$, converge to the classical pure states of the harmonic oscillator $(\bar{x}(t), \bar{p}(t))$

$$\lim_{\bar{p}\to 0^+} \rho(x, p, t) = \delta(x - \bar{x}(t))\delta(p - \bar{p}(t)).$$

The end of Part 2