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Ordinary description of quantum mechanics

Ordinary description of quantum mechanics

Tensor product of Hilbert spaces
L*(R%) = (LX(R))" @ L*(R),

where

(e @Y)(x,y) = " (x)¥(y),
(1 ® P1|p2 ® P2) 2 = (p2|p1) 2 (Y1lh2) 2,

for ¢, 1,02 € (L2(R))” = L2(R) and ¥, 71,9 € L2(R).
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Ordinary description of quantum mechanics

Isomorphisms of L2(R?)

The Fourier transform F, is an isomorphism of L?(R?). For
V(x,y) € L2(R?), the function

W(x, p) = Fy (V(x,y)) dy e~ FP'W(x, y)

~ v

will be called an (x, p)-representation of W(x,y) and it will be considered
as a function on the phase space M = R? in the canonical coordinates of
position x and momentum p.
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Ordinary description of quantum mechanics

Isomorphisms of L2(R?)

The Fourier transform F, is an isomorphism of L?(R?). For
V(x,y) € L2(R?), the function

W(x, p) = Fy (V(x,y)) dy e~ FP'W(x, y)

~ v

will be called an (x, p)-representation of W(x,y) and it will be considered
as a function on the phase space M = R? in the canonical coordinates of
position x and momentum p.

The map

T,V(x,y) == V¥(x — Gy, x +oy), Ve lLl}(R?

is an isomorphism of L?(IR?).
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Ordinary description of quantum mechanics

(o, a, B)-twisted tensor product of Hilbert spaces

H = (13(R))” Q.05 LA(R) := So 3F, T» ((LZ(R))* ® Lz(R)) ,
where

(91 ®o,0,8 V1|92 Bo,0,8 W2) 3y = (W2101) 12 (W1|12) 12

for g1, € (L2(R))" = L2(R) and 91,7, € L3(R).
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Ordinary description of quantum mechanics

Generators of H

The generators of H are of the form

\UU’Q"B(X, p) = (¢ Ro,a,8 ¥)(x, p)
1 * _
" (2rh)¥2/ap /// dx' dp’ dy " (x' = 3y)(x' + o)
o= s (x=x')? e—ﬁ(p—p’)ze—%p'y’

where ¢, € L2(R).
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Ordinary description of quantum mechanics

Basis in H

If {¢;} is an orthonormal basis in L?(R), then {V;;} = {¢; ®v.a.5 ¢;} is
an orthonormal basis in H and for any V = ¢ ®g.,8 % € H where

@, € L2(R):

p= Z bipi, Y= Z CiPjs for some b;, ¢; € C,
i J

—_— . .. e — * .
V= E ajVi, ajj = b;¢;.
i
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Ordinary description of quantum mechanics

Basis in H

If {¢;} is an orthonormal basis in L?(R), then {V;;} = {¢; ®v.a.5 ¢;} is
an orthonormal basis in H and for any V = ¢ ®g.,8 % € H where

@, € L2(R):

= Z bipi, Y= Z Cipjs for some b;, ¢; € C,
i J
iJj
The basis functions W;; are idempotent:

1
Viixg,a,8 Vi = ﬁ&/‘uky
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Ordinary description of quantum mechanics

Theorem

Every pure state W, € H is of the form

wpure =@ ®o,o¢,ﬁ ®,

for some normalized function p € L?(R). Conversely, every function
W € 'H of the form ¢ ®q.,q.3 @ IS a pure state.
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Ordinary description of quantum mechanics

Observables A € Ag can be considered as operators on H given by

A *o,0,8 = Aﬂ,a,ﬁ(ao,aa ﬁo,ﬂ)-
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Ordinary description of quantum mechanics

Observables A € Ag can be considered as operators on H given by

A *o,0,8 = Aﬂ,a,ﬁ(ao,aa ﬁo,ﬂ)-

States W € H can also be considered as operators on H given by

U = V2rhW sy 05 -
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Ordinary description of quantum mechanics

Observables A € Ag can be considered as operators on H given by
A *o,0,8 = Aﬂ,a,ﬁ(ao,aa ﬁo,ﬂ)-

States W € H can also be considered as operators on H given by

U = V2rhW sy 05 -
Note, that for W = 3_, . ¢jjpi ®o,q,3 ¢; there holds

w = ®U’D¢ﬂ pAv

where p = Zi,j Cij |90j> (il
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Ordinary description of quantum mechanics

Observables A € Ag can be considered as operators on H given by

A *o,0,8 = Aﬂ,a,ﬁ(ao,aa ﬁo,ﬂ)-

States W € H can also be considered as operators on H given by

U = V2rhW sy 05 -

Note, that for W = 3_, . ¢jjpi ®o,q,3 ¢; there holds

A~ ~

w = ®U’D¢ﬂ pAv

where p = 3", . ¢ |¢;) (wil.
In particular, for ¥ = ¢ ®4,4,3 % there holds

\Il) = i ®U,a,ﬁ ﬁa
where = ) (g].
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Ordinary description of quantum mechanics

If Vpure = ¢ ®q,a,3 @ is a pure state then \Tlpure =1 ®o,a,8 Ppure Where
Ppure = |©) (|. Moreover, operators fpure satisfy

o p/\pure ppure (herm|t|C|ty)
° p,f)ure = ﬁpure (idempotence),

@ trfpure = 1 (normalization).
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Ordinary description of quantum mechanics

If Vpure = ¢ ®q,a,3 @ is a pure state then \Tlpure =1 ®o,a,8 Ppure Where
Ppure = |©) (|. Moreover, operators fpure satisfy

o p/\pure ppure (herm|t|C|ty)
° p,f)ure = ﬁpure (idempotence),

@ trfpure = 1 (normalization).

If Wik = D>y p)\\llg‘l)re is a mixed state then W, = 1 Ro,0,8 Pmix Where

ﬁmix = Z p)\ﬁg\])r@
A
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Ordinary description of quantum mechanics

Let A€ Aq and W € H be such that ¥ = ¢ ®,.4.5 ¢ for ¢, € L2(R),
then

AL *o,a,3 V= Ao’ a,,@(aa a ﬁa ,G)W =@ Ro ,a,3 Ao’ a,ﬁ(av ﬁ))wa
AR *oaﬁw Aaa,,B(qg a?po' ﬁ)w Agaﬁ(qa )‘P Ro,a,8 ¢7

if e D(Agva,ﬁ(a,?)) and ¢ € D(AL , ,(4.p)), where 4=x,
p = —ihdx and D(A) denotes a domain of an operator A.
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Ordinary description of quantum mechanics

From previous theorem it follows that operators A x5, can be written
as

A *o,0,8 = Ao,(x,ﬁ(aa,aa ﬁa,ﬂ) = i ®a,a,ﬂ Aa,(x,ﬂ(aa /3)
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Ordinary description of quantum mechanics

From previous theorem it follows that operators A x5, can be written
as
A *o,0,8 = Ao,(x,ﬁ(aa,aa ﬁa,ﬂ) =1 Qo0 Aa,(x,ﬂ(aa /3)

Moreover, the action of observables A, . 3(§s,a, Po,3) ON states
U =1®,.44p reads

Asc,5(80.0: Pop)V =1 @00, Asa,s(d, P)D,
VA, 0.6(40.0: Pos) = 1 ®0,0,8 PAs,a,6(d, ).
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Ordinary description of quantum mechanics

Every solution of the %, o 3-genvalue equation
Axg oV =aVl

for A€ Ag and a € C is of the form

V= Z Pi ®o’,a,ﬂ d)iv

where @; € L?(R) are arbitrary and 1; € L?(R) are the eigenvectors of
the operator A, . 5(§, p) corresponding to the eigenvalue a spanning the
subspace of all eigenvectors, i.e. 1; satisfy the eigenvalue equation

Ao’,a,ﬁ(l\a [5)1/), = a'l;[}i'
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Ordinary description of quantum mechanics
Theorem

Every solution of the x, o 3-genvalue equation
Vs, a3 B=>bV

for B € Aq and b € C is of the form

V= Z"/}l ®a,a,ﬁ Pi,

where p; € L?(R) are arbitrary and v; € L?(R) are the eigenvectors of
the operator Bl o 6(6], p) corresponding to the eigenvalue b* spanning
the subspace of all eigenvectors, i.e. v); satisfy the eigenvalue equation

B! . 5@, p)bi = b*1);.
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Ordinary description of quantum mechanics

In the nondegenerate case the solution W to the following pair of
*q,q,8-genvalue equations

AxoapV =aV, Vi, ap B=>bV,

is unique up to a multiplication constant and is of the form
V = ¢ @051, where @, 1 € L?(R) satisfy the following eigenvalue
equations

Avap(@ Py =av, Bl 5(ap)p="b"p.
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Ordinary description of quantum mechanics

In the nondegenerate case the solution W to the following pair of
*q,q,8-genvalue equations

Axgap VW =aV, Yk, 08B =0V,
is unique up to a multiplication constant and is of the form

V = ¢ @051, where @, 1 € L?(R) satisfy the following eigenvalue
equations

Avap(@ Py =av, Bl 4(ap)p=>b".
In particular, a pair of %, o g-genvalue equations
AL xoapV=aV,  (Ar*sap) ¥ =a"V

have a solution W in the form of a pure state ¥ = ¢ ®, 4,3 ¢, Where
¢ € L%(R) is a solution to the eigenvalue equation
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Ordinary description of quantum mechanics

Theorem

Let Ac Aq, V = Z/\p,\\llpure_z p,\( N @4.0.5 ¢™N) € H be some

mixed state and p =", px |¢™) (o] the corresponding density
operator. Then there holds

Ay = pr (V| Ag.0,6(8, B)e™) 2 = tr(pAs,0,5(d, P))-
A
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Ordinary description of quantum mechanics

Time evolution of density operators

The time evolution of states represented as operators on the Hilbert
space L?(R) is governed by a Hermitian operator Hy o (8, P)
corresponding to the Hamiltonian H:

op A Ay A
ihE = [Haa,6(3: B), 7] = 0.
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Simple harmonic oscillator
Examples

Stationary states of the harmonic oscillator

The Hamiltonian of the harmonic oscillator:

1
H(x,p) = > (p2 + w2X2) .
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Simple harmonic oscillator
Examples

Stationary states of the harmonic oscillator

The Hamiltonian of the harmonic oscillator:

1
H(x,p) = > (p2 + w2X2) .

Note that H is a Hermitian function for every (o, o, 3)-ordering, i.e.
H 005 = (H*o.0,8)"-
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Simple harmonic oscillator
Examples

Stationary states of the harmonic oscillator

The Hamiltonian of the harmonic oscillator:

1
H(x,p) = > (p2 + w2X2) .

Note that H is a Hermitian function for every (o, o, 3)-ordering, i.e.
H 005 = (H*o.0,8)"-

The stationary pure states of the harmonic oscillator are precisely the
solutions of the following pair of x, o g-genvalue equations

H¥gopV = EV,
Va5 H=EV,

for E € R.

Maciej Btaszak, Ziemowit Domariski Phase Space Quantum Mechanics Canonical Regime Part 2



Simple harmonic oscillator
Examples

Lets introduce new coordinates called holomorphic coordinates

wx + ip wx — Ip

a(x, p) = Joh 5(X7P):ﬁ
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Simple harmonic oscillator
Examples

Lets introduce new coordinates called holomorphic coordinates

wx + ip wx — Ip

a(x, p) = Joh 5(X7P):ﬁ

In this new coordinates the Hamiltonian H takes the form
H(a,3) = hw (3*pap8a+A) = hw (a*sa,53— ),

where A= 3(1+wa+w™B)and A:=1- X = (1 —wa —w™1p).
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Simple harmonic oscillator
Examples

Lets introduce new coordinates called holomorphic coordinates
wx + ip _ wx — Ip
a(x,p) = —, a(x,p) = ——.
(x,p) T (x,p) T
In this new coordinates the Hamiltonian H takes the form
H(a,3) = hw (3*pap8a+A) = hw (a*sa,53— ),

where A= 3(1+wa+w™B)and A:=1- X = (1 —wa —w™1p).

The %, o g-genvalues of H are equal

En= (n+ \)hw.
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Simple harmonic oscillator
mples

Assume that o = } and 3 = w?a.
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Simple harmonic oscillator
Examples

Assume that o = } and 3 = w?a.

The stationary states of the harmonic oscillator take the form

1 N H H
U= ——(—1)(2) L, (= ~ ) fora#£0,1,
NN <A) (thA)eXp( th) or A #
1 H\" H
_ _H for A = 1.
Vo= o <hw) ex"( m) or A
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Simple harmonic oscillator
Examples

Assume that o = } and 3 = w?a.

The stationary states of the harmonic oscillator take the form

1 N H H
U= ——(—1)(2) L, (= ~ ) fora#£0,1,
NN <A) (thA)eXp( th) or A #
1 H\" H
o _H for A = 1.
Vo= o <hw) ex"( m) or A

W, converges to a classical pure state (x = 0, p = 0) in the limit A — 07:

Jim_pn(x, p) = 6(x)o(p),
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Simple harmonic oscillator
Examples

Coherent states of the harmonic oscillator

Coherent states of the harmonic oscillator are functions W, € H which
satisfy the following 4. g-genvalue equations

aL *o,a,8 v, =zV,,
zZ*V,,

5R’ *o,a,3 \Uz

where z € C.
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Simple harmonic oscillator
Examples

Coherent states of the harmonic oscillator

Coherent states of the harmonic oscillator are functions W, € H which
satisfy the following 4. g-genvalue equations

aL *o,a,8 v, =zV,,

—_ *
ar *o,a,8 \Uz =z \UZ7

where z € C.
Above system of equations for z = (wxg + ipg)/V2hw is equivalent to the
following system of differential equations
(Wx = x0) +i(p = po) )Wz + A((F + wa)Ox + i(ow + )0,V = 0,
(w(x —x0) — i(p — po))V; + A((0 + wa)Ox — i(Gw + £)0p)¥, = 0.
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Simple harmonic oscillator
Examples

The solution to the previous system of differential equations for
a = [ =0 reads

W, (x,p) = 1) exp ( “’2("—XO)2> exp ( (P—Po)2>

whw(5? + o2 - 2hw(52 + 02)  2hw(52 + 0?)
2(20 — Dw(x — x0)(p — po)
- exp (I 2%(62 n 02) ) .
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Simple harmonic oscillator
Examples

The solution to the previous system of differential equations for
a = [ =0 reads

B 1 w?(x — xp)? (P — po)°
Vo) = v () o0 ()
.2(20 — Dw(x — x0)(p — po)
-exp (’ 2hw (52 + 02) ) '

A quantum distribution function induced by W, is then given by

1
9 - 7“’2 X,
p(x, p) 5T (x, p)

! w?(x — x0)” (p— po)?
2@ 407 (‘mu(am) P (‘ 2h(72 + 0?) )

)]
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Simple harmonic oscillator
Examples

The solution to the previous system of differential equations for

a = (=0 reads
S S S kY A WO N . il
Va(x, p) = meuﬁq“%:%m#+ﬁ0“diﬁmﬁ+ﬁ0
.2(20 — Dw(x — x0)(p — po)
‘“pc 2hw (32 + 02) )'

A quantum distribution function induced by W, is then given by

1
x,p) = —V,(x,
p(x, p) 5T (x,p)

! w(x — x0)? (p — po)?
oo (o) o (o)

)]

Note, that the expectation values of position and momentum in a
coherent state WV, are equal

<x>\,,z = X0, <P>\uz = Po-
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Simple harmonic oscillator
Examples

To find the time evolution of the coherent states it is necessary to solve
the time evolution equation

., Op
Iha — [H,p] = 0,

where H(x, p) = 3(w?x? + p?).
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Simple harmonic oscillator
Examples

To find the time evolution of the coherent states it is necessary to solve
the time evolution equation

—[H,p] =0,

where H(x, p) = 3(w?x? + p?).

Above equation is equivalent to the following equation

8,0 x op op 51 8p 8p B
5 8p+ Ix — ihw (2 1)8 2+/h (20 1)8X2—0.
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Simple harmonic oscillator
Examples

The solution of the previous equation initially in a coherent state reads

A1) = s o (e o) o (o es)

o (20 0o~ )

where
X(t) = xo coswt + P in wt,
w
p(t) = —wxpsinwt + po coswt,

are the expectation values of position and momentum.
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Simple harmonic oscillator
Examples

The solution of the previous equation initially in a coherent state reads

W2(x — X(t))? (p—p(1))?
p(x; p,t) = wh\/m ( W2)> &P <_275‘1(52p+02)>
oo <I_2(20 — Dw(x — x(t))(p — ﬁ(t))>
2hw (52 + 02) ’

where
X(t) = xo coswt + P in wt,
w
p(t) = —wxpsinwt + po coswt,

are the expectation values of position and momentum.

Coherent states, in the limit i — 0, converge to the classical pure
states of the harmonic oscillator (x(t), p(t))

Jimp(x, p, t) = 6(x = x(2))d(p — p(t))-
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Simple harmonic oscillator
mples

The end
of

Part 2
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