Jądra o dużych deformacjach. Jądra o wysokich spinach.

- 1. Kształty jąder atomowych
- 2. Powstawanie deformacji jądra
- 3. Model rotacyjny jądra
- 4. Jądra w stanach wzbudzonych o wysokich spinach
- 5. Stany superzdeformowane
- 6. Niewyjaśnione obserwacje i niepotwierdzone przewidywania
- 7. Jądra trójosiowe
- 8. Inne przyczyny występowania dużych deformacji
- 9. Pasma rotacyjne w jądrach prawie sferycznych

Kształty jąder atomowych

Kształty jąder atomowych

Poszukiwane kształty jąder atomowych

Powstawanie deformacji jądra

- 1. Oddziaływania resztkowe
- a) długo zasięgowe siły grupowanie orbit nukleonów
- b) krótko zasięgowe siły (siły pairing) rozkład symetryczny orbit

Powstawanie deformacji jądra

Powstawanie deformacji jądra

Obszary jąder zdeformowanych:

zapełnione "pół" powłoki

- n=2 ⁷Li, Be, B, C
- n=3 Mg, Al, Si
- n=5 dla protonów i n=6 dla neutronów ziemie rzadkie, Ta, W
- n=6 dla protonów i n=7 dla neutronów

Th, U, transuranowce

Jądra zdeformowane

Deformacja jąder w stanach podstawowych (konkurencja: rdzeń – nukleony walencyjne)

Zależność energii jądra od deformacji kwadrupolowej

Zależność energii jądra od deformacji kwadrupolowej

Jeden kształt równowagi

Zależność energii jądra od deformacji kwadrupolowej

Dwa kształty równowagi

Schemat poziomów w modelu powłokowym i liczby magiczne dla jąder sferycznych

Energie stanów własnych nukleonów w jądrze

w zależności od deformacji kwadrupolowej

Jądra zdeformowane – opis kształtu jądra

Jądra zdeformowane

Opis kształtu jądra

$$\mathbf{R} = \mathbf{R}_0 \left(1 + \Sigma \, a_{\lambda \mu} \, \mathbf{Y}_{\lambda \mu} \left(\vartheta, \, \boldsymbol{\varphi} \right) \right)$$

Dla jąder osiowo symetrycznych o deformacji kwadrupolowej $R = R_0 (1 + \beta_2 Y_2 (\vartheta, \varphi))$

$$\mathbf{R} = \mathbf{R}_0 \left(1 + \sum a_{\lambda \mu} \mathbf{Y}_{\lambda \mu} \left(\vartheta, \varphi\right)\right)$$

Model rotacyjny jądra

- J całkowity moment pędu ruchu wewnętrznego
- R całkowity moment pędu ruchu rotacyjnego zdeformowanego jądra z
- I wypadkowy moment pędu

$$\overline{J} + \overline{R} = \overline{I}$$

 ${\mathfrak S}$ - moment bezwładności jądra

Energia rotacji

$$E_{rot} = \frac{\overline{R}^2}{2\Im} = \frac{I(I+1)\hbar^2}{2\Im}$$

Dla jąder zdeformowanych

Model rotacyjny jądra

Energia poziomów rotacyjnych

Widmo kwantów γ

 $E_{\gamma}[keV]$

Jądra w stanach wzbudzonych o wysokich spinach I \leq 70 \hbar

Wytwarzanie jąder w stanach wzbudzonych o wysokich spinach - Reakcja fuzji ciężkich jonów

I - spin jądra C*

J - moment bezwładności C*

Angular momentum

 $E_{rot} = I (I+1) \hbar^2 / (2J)$

Wytwarzanie jąder w stanach wzbudzonych o wysokich spinach – Reakcja fuzji ciężkich jonów

Powstawanie deformacji jądra c.d.

2. Zmiana kształtu jądra pod wpływem wzrostu momentu pędu

Niestabilność Jacobiego

 $E_{rot} = I (I+1)\hbar^2/(2J)$

Powstawanie deformacji jądra c.d.

3. Zależność kształtu jądra od temperatury jądra (energii wzbudzenia jądra) – fluktuacje kształtu jądra

Jądra superzdeformowane

Po raz pierwszy zaobserwowane w 152 Dy w 1986 r., R₁:R₂ =2:1

TESSA $3 - {}^{152}$ Dy

P.J. Twin et al PRL 57 (1986)

A major achievement for our field

Jądra superzdeformowane

Po raz pierwszy zaobserwowane w 152 Dy w 1986 r., R₁:R₂ =2:1. Dziś znane ok. 300 pasm superzdeformowanych.

Uaktualnione wyniki (2006)

Jądra superzdeformowane

Duża rola efektów powłokowych

Superdeformacja

Bardzo silna deformacja (stosunek osi 2:1) i wiele stanów rotacyjnych

Jądra superzdeformowane - rola efektów woods Savon Potential powłokowych

1. Przerwy energetyczne stabilizują deformację;

- 2. Występują przy tej samej deformacji niezależnie od A
- 3. Pasma superzdeformowane odpowiadają w większości wzbudzeniom jednocząstkowym

Przerwy energetyczne w potencjale zdeformowanym

Wpływ struktury powłokowej na deformację

Co mierzymy ?

Pomiar energii emitowanych fotonów

Pomiar czasów życia

Opis aparatury i metodyki eksperymentów – następny wykład

Jądra superzdeformowane – wyniki obserwacji

1. Obserwuje się szereg przejść elektromagnetycznych łączących stany rotacyjne - wiele równoodległych linii w widmie kwantów γ

2 Przejścia te mają charakter kwadrupolowy E2.

3. Z różnicy energii ΔE_{γ} między kolejnymi liniami można wyznaczyć moment bezwładności jądra, a stąd R₁:R₂ i deformację jądra ($\beta_2 = 0.5-0.6$)

$$\Im = \frac{4\hbar}{\Delta E_{\gamma}}$$

4. Momenty kwadrupolowe wyźnaczone z czasów życia tych jąder są znacznie większe niż dla jąder zdeformowanych.

5. W większości przypadków nieznane są przejścia łączące stany SD ze stanami o mniejszej deformacji

Stany superzdeformowane (SD)

Niewyjaśnione obserwacje i niepotwierdzone przewidywania:

1. Występowanie identycznych pasm rotacyjnych w różnych jądrach teoria: \Im - MR² ~ A^{5/3}

dla A= 150 zmiana A \rightarrow A+1 powoduje zmianę \Im o 1%, a więc dla E_{rot} = 1 MeV zmianę E_{rot} o 10 keV exp: zmiana A \rightarrow A+ 1(4) powoduje zmianę E_{rot} o 1-3 keV

Występowanie identycznych pasm rotacyjnych w różnych jądrach

Występowanie identycznych pasm rotacyjnych w obszarze A≈ 130, 150 i 190

2. Trudności obserwacji rozpadu stanów SD do stanów ND

Tunelowanie

Rozpad statystyczny ?

Zależność od Ex i A

- Status
 - A~40 "All" linked
 - A~60 (~50% linked)
 - A~80 (1 linked)
 - A~130 (~50% linked)
 - A~150 (149Gd, 152Dy)
 - A~190 (¹⁹⁴Hg, ¹⁹⁴Pb, ¹⁹²Pb)
 - A~240 (^{236,238}U)

Obserwacja rozpadu stanów SD do stanów ND

T.Lauritsen et al., PRL 88 (2002) 042501

E1 decays (similar for ¹⁹⁴Hg)

Stany hiperzdeformowane (HD)

Teoria przewiduje, że dla niektórych jąder może wystąpić trzecie minimum w energii potencjalnej odpowiadające deformacji ok. $\beta_2 = 1.1$ i $R_1:R_2 = 3:1$.

- jako wynik efektów
 powłokowych i oddziaływań
 kulombowskich
- krótki czas życia na spontaniczne rozszczepienie

Jak dotąd nie znaleziono dowodów na istnienie HD. Poszukiwania w obszarze A~ 100 Cd/Sn, A~120 Ba/Xe

Stany hiperzdeformowane (HD)

Jądra hiperzdeformowane

Poszukiwanie hiperdeformacji w jądrach ¹²⁶Xe

Reaction : ⁸²Se (⁴⁸Ca,xn) ^{130-x}Xe

- Xe-1 with the Vivitron and Euroball-VI in June 2001, E_b = 195 MeV. Analysis completed.
- Xe-2 with ATLAS and Gammasphere in December 2003, E_b = 206 MeV. Analysis in progress.

HD - Perspektywy na przyszłość

- 1. Wiązki radioaktywne
- 2. Detektory o większej wydajności (GRETA, AGATA)

Jądra trójosiowe – efekt kolebania (ang. wobbling)

Dla trójosiowego jądra o różnych momentach bezwładności względem 3 osi głównych możliwa jest rotacja kolektywna względem każdej osi. Możliwy jest przekaz momentu pędu z ruchu rotacyjnego względem osi o największym momencie bezwładności do dwóch pozostałych. Ten przekazywany moment pędu jest skwantowany.

Energia wzbudzenia jądra:

 $E(I,n_w) = I (I+1) \hbar^2 / (2J_{max}) + \hbar \omega_w (n_w + 1/2)$

Jądra trójosiowe – efekt kolebania (ang. wobbling)

Wobbling Pulsar/NeutronStar (PSR B1828-11)

Rotaional frequency (Omega_z): about 2.5 times/sec (radius about 10 Km)

Wobbling Period : about 1000 (days) ... due to deformation?

Nature (2000)

Wobbling Motion of the Earth

Period of Precession : about 306 (days) ... due to oblate symmetry (axial symmetry).

Chandler wobble: about 420 (days) ...(elatisity, streaming of water and air)

Goldstein (1980) Addison-Wesley .

Jądra trójosiowe – efekt kolebania (ang. wobbling)

Evidence for the wobbling mode in ¹⁶³Lu

Jądra tetraedryczne

Jądra tetraedryczne

$$\mathbf{R} = \mathbf{R}_{0} \left(1 + \Sigma \, \alpha_{\lambda \mu} \, \mathbf{Y}_{\lambda \mu} \left(\boldsymbol{\theta}, \boldsymbol{\phi} \right) \right)$$

1. Symetrię tetraedryczną definiuje się przez $\alpha_{32} \neq 0$

pozostałe $\alpha_{\lambda\mu} = 0$

Jądra tetraedryczne

Istnienie jako wynik bardzo silnych efektów powłokowych

- 1. Kształt tetraedryczny oczekiwany dla izomerów kształtu
- 2. Małe deformacje α_{32} = 0.1-0.3
- 3. Spin 0+
- 4. Stany wzbudzone

5. Konkurencja stany o normalnych deformacjach

Przewidywane warunki obserwacji w eksperymencie

- **1. Stany o niskim spinie**
- 2. Energia wzbudzenia Ex \approx 0.5 - kilka MeV
- 3. Jądra o liczbach magicznych tetraedrycznych

4. Przejścia γtypu E3 (E1 i E2 niemożliwe)

Tetraedryczne liczby magiczne

Z= 16, 20, 32, 40, 56-58, 70, 90-94, 100, 112, 126 N= 16, 20, 32, 40, 56-58, 70, 90-94, 100, 112, 136

Inne przyczyny występowania dużych deformacji

1. Izomeria kształtu w rozszczepieniu

 $\beta_2 = 0.6$

2. Egzotyczne kształty jąder lekkich

A domain rich of new exotic phenomena to be discovered

Pasma rotacyjne w jądrach prawie sferycznych

- 1. Wywołane przez sprzężenie momentów pędu walencyjnych protonów i dziur neutronowych
- 2. Rozpad stanów poprzez promieniowanie typu M1
- 3. Obserwacja dla jąder w obszarze A
 \approx 190, 140, 110, 80

Pasma rotacyjne w jądrach prawie sferycznych

Porównanie rotacji elektrycznej i magnetycznej

Porównanie rotacji elektrycznej i magnetycznej

- 1. Pasma rotacyjne
- Anizotropowość
 (R.E. rozkład materii, R.M. rozkład prądów)
- 3. Wyróżniony kierunek

- 4. Duże momenty pędu
- 5. Liczba nukleonów biorących udział we wzbudzeniu

