

MINOS unplugged Not only the latest beam results...

OUTLINE

- The tools (beam, detectors, CR shield)
- Latest beam results
 - New results with anti-neutrinos
 - Iatest results with the Near Detector
- Old and new results with CR
 - Contained events and upward-going muons
 - Charge-separated muon rates and stratosphere
- Summary / outlook

Main Injector Neutrino Oscillation Studies

Strategy for precision measurements:

- Two-detector measurement
 - ⇒ long baseline (735km)
 - ⇒ underground (CR shielding + physics)
- High intensity beam from 120 GeV Main Injector
 - ⇒ (up to) 4x10¹³ protons/pulse (0.4 MW beam) (potential for ~4x10²⁰ protons/year)
 - \Rightarrow single turn extraction (8.67 µs)
- Flexible & well-controlled beam
 - ⇒ two parabolic magnetic horns
 - ⇒ movable target (→energy spectrum)

Experimental setup: NuMI beam Target **Decay Pipe Target Hall** μ^+ 120 GeV π protons From π **Main Injector** Horns π 30 m 10 m 675 m 5 m Hadron Monitor 210 m 12 m 18 m

Near Detector – 1,040 m from the target at Fermilab bfld_160.dat - Near Detector 2.2 veto - target - µ spectrometer y [m] 1.5 mass = 1 kT1.8 **ഥ** 1.6 **153 scintillator planes** 1.4 0.5 1.2 **QIE-based front-end** 0 -0.5 0.8 3.8 x 4.8 "squeezed" octagon 0.6 -1È 12,300 scint.strips 0.4 -1.5 103 m 0.2 -2È 1-end readout underground -1 0 3 2 -2 1 no-multiplexing x [m] 220 M64s View of the Near Detector Hall nearing end of 282 steel planes 65 km WLS fiber etector constructi 51 km clear fiber 3.8m v target region of these Planes 48 of these Planes 48 of each Module T 4.8m 29 of these Planes 29 of each Module Type 8 of these Planes 8 of each Module Typ μ spectrometer region

K. Lang, University of Texas at Austin, MINOS unplugged, Warsaw, May 2009

Far Detector – 735.3 km away (Soudan Mine, Mn)

Running since July 2003

- 2 Supermodules
- ♦ 5.4 kT
- ♦ 484 scint. planes
- CR veto shield (2,070mwe)
- ◆ B ~ 1.5T (R=2m)
- 93,120 strips (4.1 x 1.0 cm)
- 8-fold MUXed 2-ended readout
- ◆ 1551 M16s
- 722 km of WLS fiber
- 794 km of clear fiber

Scintillator Plane

(8 modules, 192 strips)

- ♦ HAD = 56% / E ^{1/2}
- EM = 23% / E $\frac{1}{2}$

Physics with the

FAR DETECTOR

MINOS disappearance highlights (based on 3.36x10²⁰ protons on target)

PRL 101, 131802 (2008)

PHYSICAL REVIEW LETTERS

week ending 26 SEPTEMBER 2008

- Expect: 27 ± 5(stat) ± 2(syst)
- Observed: 35 events
- Observed is 1.5σ higher
 than background expectation
- We do observe a similar sized excess of events in a (independent, signal-less) sideband region

PHYSICAL REVIEW D 76, 072005 (2007)

Measurement of neutrino velocity with the MINOS detectors and NuMI neutrino beam

 Previous measurements constrained muon and muon-neutrino interaction time difference | v-c | / c < 4x10⁻⁵ for E > 30 GeV over 500 m (FMMF collab. at FNAL)

MINOS

- ⇒ Measure absolute times ND to FD
- ⇒ Distance of 734 km
- ⇒ we make the unique measurement of comparing the energies of neutrinos in charged-current (CC) interactions to the interaction times in the FD
- The measurement
 - \Rightarrow The time of a neutrino interaction in the ND is taken as time of the earliest scintillator hit, t_{ND}
 - \Rightarrow This time is compared to the time of extraction magnet signal, t_0 and corrected for known timing delays:
 - $\boldsymbol{t}_1 = \boldsymbol{t}_{ND} \boldsymbol{t}_0 \boldsymbol{d}_{ND}$

$$\Rightarrow \text{ for FD events, } t_2 = t_{FD} - t_0 - d_{FD}$$

 $\Rightarrow \quad \delta = (t_2 - t_1) - \tau$

	Description	Uncertainty (68% C.L.)
A	Distance between detectors	2 ns
В	ND antenna fiber length	27 ns
С	ND electronics latencies	32 ns
D	FD antenna fiber length	46 ns
Е	FD electronics latencies	3 ns
F	GPS and transceivers	12 ns
G	Detector readout differences	9 ns
Tota	l (sum in quadrature)	64 ns

TABLE II. Sources of uncertainty in ν relative time measurement.

$$P_2^n(t_2) = \int \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(t_2 - t')^2}{2\sigma^2}\right) P_1^n(t') dt' \qquad (n = 5, 6)$$

 $\sigma = 150 \text{ ns}$

$$L = \sum_{i} \ln P_2(t_2^i - \tau - \delta).$$

 $\delta = -126 \pm 32$ (stat.) ± 64 (syst.) ns

68%C.L.

PHYSICAL REVIEW D 76, 072005 (2007)

Measurement of neutrino velocity with the MINOS detectors and NuMI neutrino beam

(New) ANTINEUTRINO OSCILLATIONS

K. Lang, University of Texas at Austin, MINOS unplugged, Warsaw, May 2009

- If not, could be evidence for CPT violation or non-standard interactions
- ν_µ appearance predicted by the standard model at the 10⁻¹⁸ level if neutrinos are Majorana:

P(
$$v_{\mu} \rightarrow v_{\mu}$$
) ~ (m_{ν} / E_{ν})²

Also predicted at a very low level by models with a large neutrino magnetic moment, neutrino decay and other exotic processes (Langacker and Wang, Phys. Rev. D 58:093004)

- v_µ originate almost entirely from π⁺ produced upstream of decay pipe
- v_µ spectrum has significant components that originate from:
 - ⇒ Upstream produced K⁻
 - constrained by external hadron production data
 - K⁰ < 1% of total</p>
 - $\Rightarrow \mu^{+}$ from π^{+} (small and well constrained)
 - ⇒ Interaction of primary protons and secondary hadrons downstream
 - Decay pipe production in walls
- Due to different solid angle acceptances for the two detectors, the upstream and downstream fractions are different at the two locations

Antineutrino event classification

Likelihood-based with 3 Probability Density Functions:

- Track length
 Pulse height fraction in track
- Pulse height per plane
- + two more variables

- Observe 42 events in the Far detector
- First direct observation of v
 µ
 in an accelerator long
 -baseline experiment

- Predicted events with CPT conserving oscillations:
 \$58.3 ± 7.6 (stat.) ± 3.6 (syst.)
- Predicted events with null oscillations:

```
⇒ 64.6 ± 8.0 (stat.) ± 3.9 (syst.)
```


- Compared to the CPT -conserving oscillation hypothesis we have a deficit of 16.3 events
- Using normalisation information alone this is a 1.9 sigma effect
- A study using 100,000 fake experiments including systematics gave the probabilities in accordance with expectations

- Contours obtained using Feldman-Cousins technique, including systematics
- Null oscillation hypothesis excluded at 99%
- CPT conserving point from the MINOS neutrino analysis is within 90% contour
- Unshaded region around maximal mixing is excluded at 99.7% C.L.

- Global fit to previous data
 - ⇒ Super-Kamiokande dominates
 - ⇒ Includes SK-I and SK-II data
 - ⇒ M. C. Gonzalez-Garcia & Michele Maltoni, Phys. Rept. 460 (2008)
- MINOS data excludes previously allowed CPT violating regions of parameter space, particularly near maximal mixing

If 10% of ν_μ MINOS Preliminary: 3.2×10²⁰ POT transitioned to v_u No Oscillations we would see this **CPT** Conserving Events/GeV 3 experimental 10% Transitions Low Energy Beam signature Far Detector Simulated • The intrinsic \overline{v}_{u} in the NuMI beam are effectively the 15 20 30 5 10 40 50 Reconstructed Energy (GeV) background to a search for \overline{v}_{μ} appearance

- MINOS observes no appearance of v_µ in the NuMI beam
- 1-parameter fit for α using simple parameterization

$$P(v_{\mu} \rightarrow \overline{v_{\mu}}) = \alpha \cdot \sin^2(2\theta) \cdot \sin^2\left(\frac{1.27\Delta m^2 L}{E}\right)$$

(θ and Δm^2 set to CPT conserving case)

- Uncertainty from v_µ/v_µ cross section ratio
- Result: limit fraction, α, of events transitioning from v_μ to v_μ:
 α < 0.026 (90% C.L.)

Accumulated Beam Data

The muon anti-neutrino analysis presented today uses Run I + Run II

- Plan to reverse current in NuMI magnetic horns to focus π⁻ from September (create a v_µ beam)
- MINOS can directly observe v_{μ} disappearance at 7 σ with 5x10²⁰ POT
- rapidly reduce the uncertainty on Δm²₃₂

Physics with the

NEAR DETECTOR

K. Lang, University of Texas at Austin, MINOS unplugged, Warsaw, May 2009

Final results

Charge Current Quasi-elastic (CC QEL) interactions ($v_{\mu} + N^* \rightarrow \mu^- + N'$)

The uncertainty in the QE cross section is dominated by the uncertainty in the axial-vector form factor. F_A is written using a dipole form as:

1.2 Q² (GeV/c)²

0.8

CC QE Near Detector (based on 1.26x10²⁰ protons on target)

CC QE Near Detector (based on 1.26x10²⁰ protons on target)

Preliminary results (based on 1.26x10²⁰ protons on target)

$Q^2 > 0.3$						
Systematic Source	Positive Shift (GeV)	Negative Shift (GeV)				
QE Selection Cut	0.018	0.033				
Hadronic Energy Offset	0.045	0.047				
Final State Interactions	0.042	0.042				
DIS Cross Section	0.033	0.035				
Flux Tuning	0.025	0.025				
QE Nuclear Effects	0.000	0.077				
RES Nuclear Effects	0.000	0.021				
Quadrature Sum	0.076	0.115				

1σ Contours (Minimized w.r.t. Other Parameters)

MINOS OBSERVATORY

K. Lang, University of Texas at Austin, MINOS unplugged, Warsaw, May 2009

NuMI beam event

High multiplicity

Multiple muon

Contained event candidate

First observations of separated atmospheric ν_{μ} and $\bar{\nu}_{\mu}$ events in the MINOS detector

Selection	Data	Expected no oscillations	Expected $\Delta m_{23}^2 = 0.0024 \text{ eV}^2$
Good timing	77	90 ± 9	68 ± 7
Low res.	30	37 ± 4	28 ± 3
All events	107	127 ± 13	96 ± 10

K. Lang, University of Texas at Austin, MINOS unplugged, Warsaw, May 2009

First observations of separated atmospheric ν_{μ} and $\bar{\nu}_{\mu}$ events in the MINOS detector

K. Lang, University of Texas at Austin, MINOS unplugged, Warsaw, May 2009

Atmospheric separate neutrino and anti-neutrino (first observation)

K. Lang, University of Texas at Austin, MINOS unplugged, Warsaw, May 2009

MINOS Observatory: upward-going muons

Charge-separated atmospheric neutrino-induced muons in the MINOS far detector

Upward-going muons

Start with
$$\frac{dN_{\mu}}{dE_{\mu}} \approx \frac{0.14 \cdot E_{\mu}^{-2.7}}{cm^2 sr GeV} \times \left(\frac{1.0}{1 + \frac{1.1 \cdot E_{\mu} cos(\theta)}{\epsilon_{\pi}}} + \frac{0.054}{1 + \frac{1.1E_{\mu} cos(\theta)}{\epsilon_{K}}}\right)$$

Critical energies above which the pions and kaons
 "prefer" to interact more often than decay

 $\varepsilon_{\pi} = 115 \ GeV$ $\varepsilon_{K} = 850 \ GeV$

- 0.054 is related to π/K ratio in showers and the Br to a muon
- ⇒ 1st term reflects the muon contribution from pions
- ⇒ 2nd term from kaons
- ⇒ f_{π^+} and and f_{K^+} are fractions of all decaying pions and kaons with a detected µ+

$$\frac{\mu^{+}}{\mu^{-}} = \frac{\left(\frac{f_{\pi^{+}}}{1 + \frac{1.1E_{\mu^{+}}\cos(\theta)}{\epsilon_{\pi}}} + \frac{0.054f_{K^{+}}}{1 + \frac{1.1E_{\mu^{+}}\cos(\theta)}{\epsilon_{K}}}\right)}{\left(\frac{(1 - f_{\pi^{+}})}{1 + \frac{1.1E_{\mu^{-}}\cos(\theta)}{\epsilon_{\pi}}} + \frac{0.054(1 - f_{K^{+}})}{1 + \frac{1.1E_{\mu^{-}}\cos(\theta)}{\epsilon_{K}}}\right)}$$

Seasonal variations – muon rate correlation with stratospheric temperatures

FIG. 3: The daily deviation from the mean rate of cosmic ray muon arrivals from 8/03-8/08, shown here with statistical error bars. The periodic fluctuations have the expected maxima in August, minima in February. The vertical bars indicate the period of time when the detector ran in nominal reverse field mode.

FIG. 4: The daily deviation from (T_{eff}) over a period of five years, beginning when the Far Detector was complete, 08/03-08/08. The vertical bars indicate the period of time when the detector ran in nominal reverse field mode.

Seasonal variations – muon rate correlation with stratospheric temperatures

67 mln muons

$$\alpha_T \frac{\Delta T_{\text{eff}}}{\langle T_{\text{eff}} \rangle} = \frac{\Delta R_\mu}{\langle R_\mu \rangle}$$

 $\alpha_T = 0.874 \pm 0.009.$

FIG. 3: The daily deviation from the mean rate of cosmic ray muon arrivals from 8/03-8/08, shown here with statistical error bars. The periodic fluctuations have the expected maxima in August, minima in February. The vertical bars indicate the period of time when the detector ran in nominal reverse field mode.

FIG. 5: A plot of the time series analysis, $\Delta R_{\mu} / \langle R_{\mu} \rangle$ vs. $\Delta T_{\text{eff}} / \langle T_{\text{eff}} \rangle$ for single muons. The fit has a $\chi^2 / ndf = 1905/1797$, and the slope is $\alpha_T = 0.874 \pm 0.009$.

FIG. 4: The daily deviation from (T_{eff}) over a period of five years, beginning when the Far Detector was complete, 08/03-08/08. The vertical bars indicate the period of time when the detector ran in nominal reverse field mode.

FIG. 7: A histogram of $\Delta R_{\mu} / \langle R_{\mu} \rangle$ vs. $\Delta T_{\text{eff}} / \langle T_{\text{eff}} \rangle$ in bins of 0.4 % width for μ^+ (a) and μ^- (b). The fit results are $\alpha_T = 0.769 \pm 0.051, \chi^2 / ndf = 36.3/20$ for μ^+ , $\alpha_T = 0.727 \pm 0.061, \chi^2 / ndf = 17.2/19$ for μ^- .

FIG. 8: The theoretical prediction for α_T as a function of detector depth. The solid (top) curve is the prediction using the pion-only model (of MACRO) and the dotted (bottom) curve is the prediction using a kaon-only model. The solid red (middle) curve is the new prediction including both K and π . The data from other experiments are shown for comparison only, and are from Barrett 1, 2 [1], AMANDA [3], MACRO [14], Torino [15], Poatina [16], Utah [17], Sherman [18], Hobart [19] and Baksan [20].

Moon and Sun shadow

MINOS is exploiting it's potential

- ⇒ Beam
 - **Antineutrinos**
 - Near Detector
- ⇒ Observatory
 - **Expect updates atm. oscillations results**
 - **Charge ratios (neutrinos and CR)**
- May be the last two weeks with neutrinos
 - ⇒ After the 2000 summer shutdown will likely run focusing "-"
 - ⇒ Will have collected > 7x 1020 POT

THE END

K. Lang, University of Texas at Austin, MINOS unplugged, Warsaw, May 2009

PHYSICAL REVIEW D 76, 072005 (2007)

Measurement of neutrino velocity with the MINOS detectors and NuMI neutrino beam

Testing Lorentz Invariance and CPT Conservation with NuMI Neutrinos in the MINOS Near Detector

$$P_{\nu_{\mu} \to \nu_{x}} \simeq L^{2}[(\mathcal{C})_{\mu x} + (\mathcal{A}_{c})_{\mu x} \cos(\omega_{\oplus} T_{\oplus}) + (\mathcal{A}_{s})_{\mu x} \sin(\omega_{\oplus} T_{\oplus}) + (\mathcal{B}_{c})_{\mu x} \cos(2\omega_{\oplus} T_{\oplus}) + (\mathcal{B}_{s})_{\mu x} \sin(2\omega_{\oplus} T_{\oplus})]^{2}, \qquad (1)$$

FIG. 1 (color online). The local sidereal phase histograms for run I and run II. Superposed are fits to a constant sidereal rate.

TABLE III. Limits to the magnitudes of the SME coefficients for $\nu_{\mu} \rightarrow \nu_{x}$ in terms of the suppression factor $m_{W}/m_{P} \sim 10^{-17}$; a_{L} have units of (GeV) and c_{L} are unitless.

$\times 10^{-17}$		×10 ⁻¹⁷	
a_L^X	3.0×10^{-3}	a_L^Y	$3.0 imes 10^{-3}$
c_L^{TX}	0.9×10^{-5}	c_L^{TY}	$0.9 imes 10^{-5}$
c_L^{XX}	$5.6 imes 10^{-4}$	c_L^{YY}	$5.5 imes 10^{-4}$
c_L^{XY}	$2.7 imes 10^{-4}$	c_L^{YZ}	$1.2 imes 10^{-4}$
c_L^{XZ}	$1.3 imes10^{-4}$		

At experimentally accessible energies, signals for Lorentz and CPT violation can be described by a theory based on the standard model and general relativity, referred to as the standard-model extension (SME) [1,2]. The SME was developed following the suggestion in string theory that extended quantum strings introduce non-locality that could break Lorentz invariance [3]. It is an observer independent theoretical framework that contains all the Lorentz-violating (LV) terms involving particle fields in the standard model of particle physics and gravitational fields in general relativity (GR). SME is an effective field theory with quantum field action applying to quantum fields and elementary particles and classical action applying to gravitational fields. Since the standard model is thought to be the low-energy limit of a more fundamental theory that unifies quantum physics and gravity at the Planck scale, mP ' 1019 GeV, it has been suggested [2] that the violations of Lorentz and CPT symmetries introduced by SME provide a link to Planck scale physics. Although the magnitude of LV signatures in the accessible energy limit are suppressed by a factor of order the electroweak scale divided by the Planck scale, mW=mP 1017 [4], these low-energy probes of new physics can and have been explored in many ways with current experimental technologies [5].

Far Detector Distributions

Magnetic field in MINOS

- Magnetic coil runs down the detector centre and back along the bottom
 - ⇒ Produces a "toroidal" field
 - ⇒ Fiducial volume has = 1.3 T
- Magnetic field separates μ⁻ from μ⁺
 - ⇒ Focused µ's typically follow an "S" shaped path: bending towards, then crossing the coil
 - ⇒ De-focused µ's are bent outwards to the detector edges, typically exiting
- Coil current polarity is "forward" to focus µ⁻ from v_µ towards the coil

Figure 27: The directionality of all cosmic muons passing our selection criteria. Note that there is no statistical excess in the regions where we might expect neutrinos from numi and mini-boone.

MINOS Observatory: upward-going muons

First observations of separated atmospheric ν_{μ} and $\bar{\nu}_{\mu}$ events in the MINOS detector

Beam: a how to

(Main Injector = MI)

Image: MI is fed 1.56 µs batches from 8 GeV Booster (MI ramp time ~1.5sec)

NuMI designed for

- \rightarrow 8.67 µsec single turn extraction
- → 4 × 10¹³ppp @ 120 GeV
- ➔ 1.9 second cycle time
- → beam power ~400kW

□ Typical performance to date:

- → 3.2 × 10¹³ ppp @ 120 GeV
- ➔ 2.2 second cycle time

□ Achieved records:

- → 3.7 ×10¹³ ppp @ 120 GeV
- \rightarrow 2.0 second cycle time
- → 320 kW

K. Lang, University of Texas at Austin, MINOS unplugged, Warsaw, May 2009

New experimental challenges in neutrino physics - intensity

Near Detector spill

1 spill lasts ~10 μs

Anti-neutrino disappearance (NEW !!!)

15

10

5

10

400 Low Energy Beam

5

15

Reconstructed \overline{v}_{μ} Energy (GeV)

Events/4 GeV

MINOS Preliminary: 3.2×10²⁰ POT

- Far Detector Data

Prediction no osc-

Background CPT

20 30 40 50

3.2×10²⁰ POT

Prediction CPT

- Observe 42 events in the Far detector
- Predicted events with
 CPT conserving oscillations:
 - ⇒ 58.3 ± 7.6 (stat.) ± 3.6 (syst.)
- Predicted events with null oscillations:
 - ⇒ 64.6 ± 8.0 (stat.) ± 3.9 (syst.)
- CPT conserving point from the MINOS neutrino analysis is within the 90% contour

Main goals:

- **Decisive low-systematics observation of disappearannce** $(v_{\mu} \rightarrow v_{x})$
- **Determine** $|\Delta m_{32}^2|$ and $sin^2 2\theta_{23}$ with < 10% accuracy
- □ Measure (or improve limits) on $v_{\mu} \rightarrow v_{e} / v_{\mu} \rightarrow v_{sterile} / "exotic" transitions$
- **Test CPT** in atmospheric CC_{μ} charge-separated interactions

