Eksperymenty badające neutrina akceleratorowe Teraźniejszość i przyszłość

Katarzyna Grzelak

Zakład Cząstek i Oddziaływań Fundamentalnych Uniwersytet Warszawski

3.03.2006 / Seminarium ZFJAt

Wprowadzenie

- Neutrina: leptony nienaładowane ν_e, ν_μ, ν_τ
- Masy neutrin << masy leptonów naładowanych

 $m(\nu_e) < 3eV, \quad m(\nu_\mu) < 0.19 MeV, \quad m(\nu_\tau) < 18.2 MeV$

- Stany własne oddziaływań i masy są różne → oscylacje neutrin
 - W oddziaływaniu powstaje jeden rodzaj → po jakimś czasie mieszanka zapachów

 $\nu_{e} \rightarrow$

SYGNAŁY WYSTĘPOWANIA OSCYLACJI NEUTRIN

- Deficyt neutrin słonecznych + dane SNO i KamLAND
 - za mało v_e ze Słońca
 - całkowity strumień zgodny z Modelem Słońca
 - deficyt ve z reaktora
- Dane dla neutrin atmosferycznych + dane K2K
 - deficyt ν_{μ}
 - rozkłady kątowe (mniej ν_μ przychodzących z dołu detektora niż z góry)
- Dane LSND
 - nadwyżka neutrin elektronowych w wiązce neutrin mionowych z akceleratora
 - sprawdzane przez eksperyment MINIBooNE
 - jeśli wyniki LSND potwierdzone: nie wystarczą 3 zapachy neutrin

MACIERZ MIESZANIA DLA NEUTRIN

Trzy zapachy neutrin jako kombinacja trzech stanów własnych masy.

$$\begin{pmatrix} \nu_{\mathsf{e}} \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix} = \begin{pmatrix} U_{\mathsf{e}1} & U_{\mathsf{e}2} & U_{\mathsf{e}3} \\ U_{\mu1} & U_{\mu2} & U_{\mu3} \\ U_{\tau1} & U_{\tau2} & U_{\tau3} \end{pmatrix} \begin{pmatrix} \nu_{1} \\ \nu_{2} \\ \nu_{3} \end{pmatrix}$$

$$U = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix}$$

 $egin{aligned} & s_{ij} = \sin heta_{ij} \ & c_{ij} = \cos heta_{ij} \ & \delta &
ightarrow ext{faza } ext{amania CP} \end{aligned}$

イロト イヨト イヨト

MACIERZ MIESZANIA DLA NEUTRIN, cz. 2

Zakładając zachowanie CP ($\delta = 0$):

$$\left(\begin{array}{c}\nu_{\mathbf{e}}\\\nu_{\mu}\\\nu_{\tau}\end{array}\right) =$$

PRAWDOPODOBIEŃSTWO PRZEMIANY $\nu_{\alpha} \rightarrow \nu_{\beta}$

$$egin{aligned} & \mathcal{P}_{
u_lpha
ightarrow
u_eta}(\mathcal{L}) = \sum_k |U_{lpha k}|^2 |U_{eta k}|^2 \ & + 2 Re \sum_{k>j} U^*_{lpha k} U_{eta k} U_{lpha j} U^*_{eta j} exp[-irac{\Delta m^2_{kj}}{2E_
u} \mathcal{L}] \ & \Delta m^2_{kj} \equiv m^2_k - m^2_j \end{aligned}$$

Parametry modelu: 3 kąty mieszania θ_{23} , θ_{13} i θ_{12} , 1 faza δ i dla trzech rodzajów neutrin 2 niezależne różnice mas Δm^2 .

イロト 不得 トイヨト イヨト

Wyniki globalnego dopasowania do istniejących danych (z eksperymentów Super-K,K2K,CHOOZ,KamLAND), najbardziej prawdopodobne wartości:

•
$$\Delta m_{23}^2 = 2.4 \times 10^{-3} eV^2$$

- $\sin^2 \theta_{23} = 0.44$
- $\Delta m_{12}^2 = 7.92 \times 10^{-5} eV^2$
- $\sin^2 \theta_{12} = 0.314$
- $\sin^2 \theta_{13} < 3.2 \times 10^{-2}$

- $\Delta m_{sol}^2 \equiv \Delta m_{21}^2$
- $\Delta m_{atm}^2 \equiv \Delta m_{32}^2 \simeq \Delta m_{31}^2$

•
$$\Delta m_{sol}^2 << \Delta m_{atm}^2$$

・ 戸 ト ・ ヨ ト ・ ヨ ト

Fractional Flavor Content

E

-

< 17 ►

- czy na pewno tylko 3 rodzaje neutrin
- nieznany kąt θ_{13}
- nieznane δ
- brakuje precyzyjnych pomiarów pozostałych parametrów
- jaka jest hierarchia mas
- czy tylko oscylacje, czy jeszcze jakiś inny proces

bezwzględne masy neutrin

4 6 1 1 4

• obserwacje znikania danego rodzaju neutrin

$$P(
u_{\mu}
ightarrow
u_{\mu}) \simeq 1 - \sin^2 2 heta_{23} \sin^2 rac{1.27 \Delta m_{atm}^2 L}{E_{
u}}$$

Jednostki: $\Delta m^2 [eV^2]$ $E_{\nu} [GeV]$ L[km]

Maksimum oscylacji dla

$$\frac{1.27\Delta m_{atm}^2 L}{E_{\nu}} = \frac{\pi}{2}$$

obserwacje pojawiania się nowego rodzaju neutrin

$$\begin{split} \mathcal{P}(\nu_{\mu} \rightarrow \nu_{e}) &\simeq \sin^{2} 2\theta_{13} \sin^{2} \theta_{23} \sin^{2} \Delta \\ &\mp \alpha \sin 2\theta_{13} \sin \delta_{CP} \cos \theta_{13} \sin 2\theta_{12} \sin 2\theta_{23} \sin^{3} \Delta \\ &+ \alpha \sin 2\theta_{13} \cos \delta_{CP} \cos \theta_{13} \sin 2\theta_{12} \sin 2\theta_{23} \cos \Delta \sin^{2} \Delta \\ &+ \alpha^{2} \cos^{2} \theta_{23} \sin^{2} 2\theta_{12} \sin^{2} \Delta \end{split}$$

$$\Delta \equiv \frac{\Delta m_{atm}^2 L}{4E_{\nu}}, \qquad \alpha \equiv \frac{\Delta m_{sol}^2}{\Delta m_{atm}^2}$$

Dokładnie mierzy się tylko kombinację parametrów, a nie tylko samo $\sin^2 2\theta_{13}$

K.Grzelak (UW ZCiOF)

Seminarium ZFJAt 12 / 56

Neutrinowe eksperymenty akceleratorowe

eksperyment	ośrodek/kraj	detektor	m[kt]	daty		
Przeszłość						
K2K	KEK/Japonia	wodny (Super-K)	50	1999-2004		
Teraźniejszość						
MiniBooNE	Fermilab/USA	ciekły scynt.	~ 1	2002-		
MINOS	Fermilab/USA	scynt./żelazo	5.4	2005-		
Przyszłość						
ICARUS	CERN	ciekły argon	~ 1	2006-		
OPERA	CERN	emulsje/ołów	1.65	2006-		
T2K	J-Parc/Jap.	wodny (Super-K)	50	2009-		
NOvA	Fermilab/USA	ciekły scynt.	30	2010-		
FLARE/?	Fermilab/USA/?	ciekły argon/wodny	50/?	?		

Neutrinowe eksperymenty akceleratorowe

eksperyment	badany proces	L[km]	$< E_{ u} > [GeV]$			
Przeszłość						
K2K	$ u_\mu ightarrow u_\mu$	250	1			
Teraźniejszość						
MiniBooNE	$\nu_{\mu} \rightarrow \nu_{e}, \overline{\nu_{\mu}} \rightarrow \overline{\nu_{e}}$	0.5	0.7			
MINOS	$ u_{\mu} ightarrow u_{\mu, {e}}$	735	3			
Przyszłość						
ICARUS	$(u_{\mu} ightarrow u_{ au, \mu, \mathbf{e}})$	732	17			
OPERA	$ u_{\mu} ightarrow u_{ au,\mu,\mathbf{e}}$	732	17			
T2K	$ u_{\mu} ightarrow u_{e,\mu}$	295	0.76			
NOvA	$ u_{\mu} ightarrow u_{e,\mu}$	810	2.22			
FLARE/?	$ u_{\mu} ightarrow u_{ extbf{e},\mu}$	820/?	2/?			

STANDARDOWA WIĄZKA NEUTRIN

K.Grzelak (UW ZCiOF)

Eksperymenty badające neutrina akceleratorc

Seminarium ZFJAt 15 / 56

・ 同 ト ・ ヨ ト ・ ヨ

 Protony o energii 120 GeV z akceleratora Main Injector w Fermilabie

- Protony uderzają w grafitową tarczę o długości 1m
- π⁺, K⁺ są ogniskowane przez dwa paraboliczne rogi (*ang.* horn) magnetyczne
- Piony i kaony rozpadają się w próżniowej rurze rozpadowej o długości 675m

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

WIDMO NEUTRIN

- Podstawowe źródło neutrin: $\pi^+ \rightarrow \mu^+ \nu_\mu$
- Pięć podstawowych trajektorii mezonów, które przechodzą przez rogi magnetyczne
- Rysunek: wkład każdej kategorii do widma neutrin

- Skład wiązki neutrin: głównie ν_{μ} , ale także $\overline{\nu_{\mu}}$
- Mały dodatek (<~ 1%) ν_e, ν
 _e
 z rozpadów kaonów i mionów
- Obecnie wartość strumienia neutrin w bliskim detektorze jest znana z dokładnością 15-20%
- Względny stosunek strumienia w bliskim i dalekim detektorze znany jest z dokładnością 2-10%

SKŁADOWE WIDMA NEUTRIN

 Rozkład widma neutrin i antyneutrin na składowe pochodzące z rozpadów pionów, kaonów i mionów.

- Dla małych kątów, E_{ν} bardzo słabo zależy od energii pionu $E_{\nu} = 0.43E_{\pi}/(1 + \gamma^2\theta^2)$ θ to kąt pomiędzy kierunkiem lotu pionu a neutrina
- Widmo off-axis węższe

 Mniej wysokoenergetycznych neutrin

M.Messier Neutrino 2004

- Widmo neutrin można przesunąć do położenia, które odpowiada maksimum oscylacji
- Energia wiązki głównie zdeterminowana przez kąt θ (pozycja detektora względem osi wiązki)

DETEKTORY

э

- Duży, daleki detektor → poszukiwanie oscylacji
 Mały, bliski
- detektor → widmo energii niezakłócone przez oscylacje

A D A D A D

DETEKTORY

イロト イロト イヨト イヨト

æ

EKSPERYMENT MINOS

・ 同 ト ・ ヨ ト ・ ヨ

MINOS: PIERWSZY UŻYTKOWNIK WIĄZKI NuMI

FERMILAB #98-1321D

K.Grzelak (UW ZCiOF)

Eksperymenty badające neutrina akceleratorc

э

イロト 不得 トイヨト イヨト

SOUDAN

K.Grzelak (UW ZCiOF)

Eksperymenty badające neutrina akceleratorc

Seminarium ZFJAt 27 / 56

MINOS: PIERWSZY UŻYTKOWNIK WIĄZKI NuMI

- Drugi w historii i jedyny obecnie zbierający dane eksperyment z długą bazą
- Detektory umieszczona w osi wiązki NuMI
- Bliski Detektor (ND) (1kt) w ośrodku Fermilab pod Chicago
- Daleki Detektor (FD) (5.4 kt) znajduje się 735km dalej w kopalni Soudan, w Minnesocie
- Pierwsze oddziaływanie neutrina z wiązki w dalekim detektorze: 7 marzec 2005

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

CELE FIZYCZNE EKSPERYMENTU MINOS, cz. 1

$$P(
u_{\mu}
ightarrow
u_{\mu}) \simeq 1 - \sin^2 2 heta_{23} \sin^2(rac{1.27 \Delta m_{23}^2 L}{E})$$

 $u_{\mu} N \rightarrow \mu X$

- Przedstawienie prawdopodobieństwa zanikania ν_μ z wiązki w funkcji energii
 - potwierdzenie, że oscylacje opisują dane
 - wykluczenie na wysokim poziomie ufności innych modeli lub ...
- Precyzyjne pomiary parametrów oscylacji
 Δm²₂₃ (z precyzją lepszą niż 10 %) i sin²(2θ₂₃)

不同 トイラトイラ

CELE FIZYCZNE EKSPERYMENTU MINOS, cz. 2

$$P(\nu_{\mu} \rightarrow \nu_{e})$$

 $\nu_e N \to e X$

• Poszukiwania oscylacji $\nu_{\mu} \rightarrow \nu_{e}$ Możliwość pierwszego wykazania niezerowej wartości θ_{13} !

również

Pierwszy, bezpośredni pomiar oscylacji ν vs ν
 poprzez badanie neutrin atmosferycznych !
 (Pierwszy, namagnetyzowany podziemny detektor)

不同 トイラトイラ

WIĄZKA PIERWOTNA - PROTONY

- Pierwotna wiązka protonów: wysyłana w 5-6 paczkach, w czasie 8-10 μs
- 2.5×10^{13} protonów/puls co 2.2s

→ Ξ → < Ξ</p>

WIĄZKA PIERWOTNA - PROTONY LICZBA DOSTARCZONYCH PROTONÓW

Już zebrane więcej danych niż w czasie całego działania K2K !

K.Grzelak (UW ZCiOF)

Eksperymenty badające neutrina akceleratorc

Seminarium ZFJAt 32 / 56

Unikalną cechą wiązki NuMI jest możliwość zmiany widma neutrin poprzez zmianę położenia tarczy.

Dane zbierane głównie z konfiguracją niskoenergetyczną (LE).

Dla 2.5×10^{20} protonow/rok, w przypadku braku oscylacji w Dalekim Detektorze oczekuje się około 1300 przypadków.

MINOS: BLISKI I DALEKI DETEKTOR

Bliski i Daleki Detektor eksperymentu MINOS mają tak bardzo jak to możliwe podobną budowę:

- naprzemiennie: stalowe płyty (2.54 cm) i paski scyntylatora (1cm)
- paski w co drugiej płaszczyźnie są do siebie prostopadłe

MINOS: BLISKI I DALEKI DETEKTOR

- Bliski detektor: 1kt, 282 płaszczyzny, 3.8m wysokości
- Daleki detektor: 5.4kt, 485 płaszczyzn, 8m wysokości

不同 トイモトイモ

MINOS: PRECYZYJNE POMIARY

 $\mathsf{P}(\nu_{\mu} \rightarrow \nu_{\mu})$

MINOS: POSZUKIWANIE θ_{13}

Poszukiwania ν_e w wiązce ν_{μ} :

możliwość znalezienia pierwszego niezerowego sygnału.

→ Ξ → < Ξ</p>

- Zabezpieczenie się przed nieumyślnym naginaniem wyników do oczekiwanego (zgodnego z wynikiem Super-Kamiokande)
- Wszystkie dane z Bliskiego Detektora są dostępne
- Część danych z Dalekiego Detektora ukryta (zgodnie z nieznaną funkcją długości przypadku i energii zdeponowanej w detektorze)
- Przed otwarciem *puszki* wszystkie procedury dotyczące analizy danych muszą zostać zamrożone
- Otwarcie *puszki* w ten weekend !

< ロト < 同ト < ヨト < ヨト

DANE Z BLISKIEGO DETEKTORA

- W bliskim detektorze bardzo duża statystyka: po cięciach czyszczących około 1 mln ν dla 1 \times 10²⁰ pot
- Widoczne detale budowy detektora

Bardzo dobra zgodność wyników symulacji MC i danych.

TYPOWE ODDZIAŁYWANIE W DALEKIM DETEKTORZE

NIE Z WIĄZKI

Głębokość 2070 mwe: strumień mionów kosmicznych to 50000 przypadków/dzień Oddziaływania neutrin atmosferycznych: 0.54 ± 0.05 /dzień

< ロト < 同ト < ヨト < ヨト

ODDZIAŁYWANIE NEUTRINA Z WIĄZKI

Seminarium ZFJAt 47 / 56

Przypadki w przedziale 10 μs zgodnie z szerokością wiązki NuMI. Tło od promieniowania kosmicznego całkowicie usuwalne za pomocą cięć na topologię przypadku.

< ロト < 同ト < ヨト < ヨト

Rozkład wierzchołków oddziaływań neutrin z wiązki w dalekim detektorze. Porównanie MC i danych. Równie dobra zgodność jak dla Bliskiego Detektora.

くぼう くほう くほう

MINOS: OCZEKIWANE WYNIKI ANALIZY PIERWSZEJ PRÓBKI DANYCH DLA 1 ×10²⁰ pot

Seminarium ZFJAt 50 / 56

CELE FIZYCZNE ...

... PRZYSZŁYCH EKSPERYMENTÓW AKCELERATOROWYCH

$$P(\nu_{\mu}
ightarrow
u_{e, au,
u})$$

- Pierwsza obserwacja składowej ν_{τ} w wiązce ν_{μ} poprzez identyfikację oddziaływań z produkcją i rozpadem τ
- Pomiar albo ustanowienie ciasnego limitu na sin²(2θ₁₃)
- Ustalenie hierarchii mas (wykorzystując zmianę prawdopodobieństwa oscylacji związaną z wpływem materii)
- Precyzyjny pomiar Δm_{23}^2 i sin²(2 θ_{23})
- Wkład do studiów nad łamaniem CP w sektorze leptonowym (Proton Driver)

イロトイポトイラトイラ

JAK OSIĄGNĄĆ POWYŻSZE CELE ?

POSZUKIWANIE $\nu_{\mu} \rightarrow \nu_{\tau}$

- 1) Energia wiązki wystarczająco wysoka, aby umożliwić powstanie leptonu τ
- 2) Bardzo dobra rozdzielczość przestrzenna: detektor wypełniony ciekłym argonem (ICARUS) lub emulsje fotograficzne przełożone ołowiem (OPERA)
- 3) Duża masa detektora

JAK OSIĄGNIE SIĘ POWYŻSZE CELE

POSZUKIWANIE $\nu_{\mu} \rightarrow \nu_{e}$

 1) Detektor umieszczony poza osią wiązki (off-axis) aby dopasować się do maksimum oscylacji i zredukować tło, które ma zwykle znacznie szersze spektrum niż sygnał

Rozkład liczby przypadków poza (off-axis) wiązką NuMI:

Neutrino 2004

JAK OSIĄGNIE SIĘ POWYŻSZE CELE POSZUKIWANIE $\nu_{\mu} \rightarrow \nu_{e}$ cd

• 2) Zwiększenie masy detektora

- rozważane rozmiary: 50 kt, 30 kt, 100kt
- 3) Wymagania dla detektora:
 - dobra zdolność rozdzielcza (żeby zredukować tło od składowej ν_e wiązki)
 - 2 bardzo dobra rozdzielczość e/ π^0 (żeby zredukować tło)
 - Detektor wodny (Super-K)
 - Ciekły scyntylator + PCV (NOvA)
 - Ciekły argon (FLARE ...)

MOŻLIWOŚĆI POMIARU sin² $2\theta_{13}$ w przyszłych i obecnych eksperymentach akceleratorowych i reaktorowych

K.Grzelak (UW ZCiOF)

Eksperymenty badające neutrina akceleratorc

Seminarium ZFJAt 55 / 56

- Eksperyment MINOS jedyny eksperyment akceleratorowy z długą bazą dostarczający obecnie nowych danych
- Analiza pierwszego zbioru danych (~ 1 × 10²⁰ pot) jest prowadzona jako *blind analysis*: otwarcie *puszki* w ten weekend !
- Dziedzina ciesząca się bardzo dużym zainteresowaniem: w najbliższych kilku latach oczekiwane cztery nowe eksperymenty, a wiele innych jest planowanych