Neutrinowy eksperyment MINOS

Katarzyna Grzelak

Zakład Cząstek i Oddziaływań Fundamentalnych IFD UW

12.03.2008

K.Grzelak (UW ZCiOF)

< ロト < 同ト < ヨト < ヨト

- 3 Eksperyment MINOS
- Oscylacje neutrin akceleratorowych w MINOS'ie

・ 同 ト ・ ヨ ト ・ ヨ ト

- MINOS: eksperyment zbudowany w celu potwierdzenia hipotezy oscylacji neutrin i zmierzenia parametrów modelu oscylacji
- Kontrolowana wiązka neutrin z akceleratora
- Pierwsze oddziaływanie neutrina z wiązki w dalekim detektorze: 7 marzec 2005
- Wyniki dla do tej pory przeanalizowanych danych, odpowiadające 2.5×10^{20} pot (protonów na tarczę)

• • • • • • • •

Eksperyment MINOS:

27 instytucji, 147 fizyków Instytucje: Argonne, Arkansas Tech, Athens, Benedictine, Brookhaven, Caltech, Cambridge, Campinas, Fermilab, Harvard, IIT, Indiana, Minnesota, Twin Cities, Minnesota-Duluth, Oxford, Pittsburgh, Rutherford, Sao Paulo, South Carolina, Stanford, Sussex, Texas A&M, Texas-Austin, Tufts, UCL, Uniwersytet Warszawski, William&Mary

- MINOS: drugi w historii i jedyny obecnie zbierający dane eksperyment z długą bazą
- Bliski Detektor (ND) (1kt) w ośrodku Fermilab pod Chicago, 100m pod powierzchnią ziemi
- Daleki Detektor (FD) (5.4 kt) znajduje się 735km dalej w kopalni Soudan, w Minnesocie, 710m pod powierzchnią ziemi
- Czas przelotu neutrina z Fermilab'u do Soudan: ~ 2.5ms

< ロト < 同ト < ヨト < ヨト

MACIERZ MIESZANIA DLA NEUTRIN

Trzy zapachy neutrin jako kombinacja trzech stanów własnych masy.

$$\left(\begin{array}{c}\nu_{e}\\\nu_{\mu}\\\nu_{\tau}\end{array}\right) = \left(\begin{array}{ccc}U_{e1}&U_{e2}&U_{e3}\\U_{\mu1}&U_{\mu2}&U_{\mu3}\\U_{\tau1}&U_{\tau2}&U_{\tau3}\end{array}\right) \left(\begin{array}{c}\nu_{1}\\\nu_{2}\\\nu_{3}\end{array}\right)$$

$$U = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix}$$

 $egin{aligned} & s_{ij} = \sin heta_{ij} \ & c_{ij} = \cos heta_{ij} \ & \delta & o ext{faza } ext{amania CP} \end{aligned}$

・ 同 ト ・ ヨ ト ・ ヨ ト

MACIERZ MIESZANIA DLA NEUTRIN, cz. 2

Zakładając zachowanie CP ($\delta = 0$):

K.Grzelak (UW ZCiOF)

PRAWDOPODOBIEŃSTWO PRZEMIANY $\nu_{\alpha} \rightarrow \nu_{\beta}$

$$egin{aligned} & \mathcal{P}_{
u_lpha
ightarrow
u_eta}(L) = \sum_k |U_{lpha k}|^2 |U_{eta k}|^2 \ + 2 Re \sum_{k>j} U^*_{lpha k} U_{eta k} U_{lpha j} U^*_{eta j} exp[-irac{\Delta m^2_{kj}}{2 E_
u} L] \ & \Delta m^2_{ki} \equiv m^2_k - m^2_i \end{aligned}$$

Parametry modelu: 3 kąty mieszania θ_{23} , θ_{13} i θ_{12} , 1 faza δ i dla trzech rodzajów neutrin 2 niezależne różnice mas Δm^2 .

< 回 > < 回 > < 回 > -

• obserwacje znikania neutrin mionowych

$$P(
u_{\mu}
ightarrow
u_{\mu}) \simeq 1 - \sin^2 2 heta_{23} \sin^2 rac{1.27 \Delta m_{atm}^2 L}{E_{
u}}$$

Jednostki: $\Delta m^2 [eV^2]$ $E_{\nu} [GeV]$ L[km]

Maksimum oscylacji dla

$$\frac{1.27\Delta m_{atm}^2 L}{E_{\nu}} = \frac{\pi}{2}$$

obserwacje pojawiania się nowego rodzaju neutrin

$$\begin{split} \mathcal{P}(\nu_{\mu} \rightarrow \nu_{e}) &\simeq \sin^{2} 2\theta_{13} \sin^{2} \theta_{23} \sin^{2} \Delta \\ &\mp \alpha \sin 2\theta_{13} \sin \delta_{CP} \cos \theta_{13} \sin 2\theta_{12} \sin 2\theta_{23} \sin^{3} \Delta \\ &+ \alpha \sin 2\theta_{13} \cos \delta_{CP} \cos \theta_{13} \sin 2\theta_{12} \sin 2\theta_{23} \cos \Delta \sin^{2} \Delta \\ &+ \alpha^{2} \cos^{2} \theta_{23} \sin^{2} 2\theta_{12} \sin^{2} \Delta \end{split}$$

$$\Delta \equiv \frac{\Delta m_{atm}^2 L}{4E_{\nu}}, \qquad \alpha \equiv \frac{\Delta m_{sol}^2}{\Delta m_{atm}^2}$$

Dokładnie mierzy się tylko kombinację parametrów, a nie tylko samo $\sin^2 2\theta_{13}$

K.Grzelak (UW ZCiOF)

Cele eksperymentu MINOS

- Weryfikacja hipotezy oscylacji $\nu_{\mu} \rightarrow \nu_{\tau}$ i precyzyjny pomiar (<10%) parametrów modelu neutrin Δm_{23}^2 and $\sin^2 2\theta_{23}$
- Poszukiwania jeszcze nie zaobserwowanych przy tej skali mas, oscylacji $\nu_{\mu} \rightarrow \nu_{e}$ (poszukiwanie θ_{13})
- Poszukiwanie/wykluczenie egzotycznych hipotez: sterylne neutrina,rozpad neutrina
- Pierwszy, bezpośredni pomiar oscylacji ν vs $\overline{\nu}$ (symetria CPT)
- Badanie oddziaływań ν, wyznaczanie przekrojów czynnych przy użyciu danych z bliskiego detektora
- Badanie mionów z promieniowania kosmicznego

イロト イポト イヨト イヨト

Neutrina akceleratorowe

- Pierwsze oddziaływanie w dalekim detektorze 7 marca 2005
- Pierwsze opublikowane wyniki (zanikanie ν_{μ} : w oparciu o 1.27 × 10²⁰pot (Run I) (215 oddziaływań ν_{μ})
- Do tej pory przeanalizowano 2.5 imes 10²⁰ pot (563 oddziaływań u_{μ})
- Do chwili obecnej zebrano około 3.88×10^{20} pot (Run II + Run III)
- Prace nad analizą $\nu_{\mu} \rightarrow \nu_{e}$, NC, opracowaniem danych z ND

Stan analiz eksperymentu MINOS

Neutrina atmosferyczne

- Dane zbierane od lipca 2003
- Opublikowane wyniki:
 - oddziaływania z wierzchołkiem wewnątrz detektora, rozdzielone ν_{μ} i $\overline{\nu_{\mu}}$, po selekcji ~ 0.25 oddziaływania na dzień
 - miony z oddziaływań neutrin (poruszające się ku powierzchni ziemi i poziome), rozdzielone ν_{μ} i $\overline{\nu_{\mu}}$, po selekcji ~ 0.15 oddziaływania na dzień
 - Prace nad połączeniem obu analiz

イロト イポト イヨト イヨ

Miony z promieniowania kosmicznego

- pomiar N_{μ^+}/N_{μ^-}
- daleki detektor (FD): rozróżnianie ładunku mionu dla p< 250 GeV/c, częstość rejestracji mionów ~ 0.25Hz
- bliski detektor (ND): miony o średniej energii 8 GeV, częstość rejestracji mionów \sim 10 Hz

・ 同 ト ・ ヨ ト ・ ヨ ト

WIĄZKA NEUTRIN NuMI

큰

イロト イ団ト イヨト イヨト

 Protony o energii 120 GeV z akceleratora Main Injector w Fermilabie

э

イロト イポト イヨト イヨト

WIĄZKA PIERWOTNA - PROTONY LICZBA DOSTARCZONYCH PROTONÓW

K.Grzelak (UW ZCiOF)

STRUKTURA WIĄZKI PIERWOTNEJ WIDZIANA W ND i FD

- Pierwotna wiązka protonów: wysyłana w 5-6 paczkach, w czasie 10 μs
- 2.4×10^{13} protonów/puls co 2.2s

Bliski Detektor

Daleki Detektor

WIĄZKA WTÓRNA - NEUTRINA

EKSPERYMENT MINOS

イロト イ団ト イヨト イヨト

POŁOŻENIE DETEKTORÓW

- Daleki Detektor (ND) → poszukiwanie oscylacji
- Bliski Detektor (FD) → widmo energii niezakłócone przez oscylacje

日本・モト・モン

MINOS: POŁOŻENIE DETEKTORÓW

K.Grzelak (UW ZCiOF)

3

<ロト < 回ト < 回ト < ヨト < ヨト -

DALEKI DETEKTOR: KOPALNIA SOUDAN

<ロト < 回 > < 回 > < 回 > < 回</p>

MINOS: BLISKI I DALEKI DETEKTOR

Bliski i Daleki Detektor eksperymentu MINOS mają tak bardzo jak to możliwe podobną budowę:

- naprzemiennie: stalowe płyty (2.54 cm) i paski scyntylatora (1cm)
- paski w co drugiej płaszczyźnie są do siebie prostopadłe

MINOS: BLISKI I DALEKI DETEKTOR

MINOS: BLISKI I DALEKI DETEKTOR

- Bliski Detektor: 1kt, 282 płaszczyzny, 3.8m \times 4.8m \times 15m 100m pod powierzchnią ziemi
- $\bullet\,$ Daleki Detektor: 5.4kt, 484 płaszczyzny , 8m \times 8m \times 30m 710m pod powierzchnią ziemi
- B ~ 1.3 T w obu detektorach

OSCYLACJE NEUTRIN AKCELERATOROWYCH w MINOS'ie

K.Grzelak (UW ZCiOF)

• • = • • =

PRZYKŁAD ANALIZY ZNIKANIA u_{μ}

• • • • • • • •

TYPY ODDZIAŁYWAŃ NEUTRIN w MINOS'ie

- $\nu_{\mu} N \rightarrow \mu X$
- Sygnaturą oddziaływania CC ν_μ jest obecność długiego toru mionu

•
$$E_{\nu} = E_{shower} + E_{\mu}$$

- Rozdzielczość energetyczna $55\%\sqrt{(E)}$
- Dokładność pomiaru pędu mionu (6% z zasięgu, 11% z krzywizny)

< ロ ト < 同 ト < 三 ト < 三 ト

TOPOLOGIE PRZYPADKÓW Z WIĄZKI NuMI

Monte Carlo, Daleki Detektor

30 / 51

REKONSTRUKCJA w MINOS'ie

K.Grzelak (UW ZCiOF)

REKONSTRUKCJA w MINOS'ie

TYPOWE ODDZIAŁYWANIA - DANE

Bliski Detektor

Kilka przypadków rejestrowanych w czasie jednego pulsu wiązki. Odróżniane dzięki informacji czasowej i przestrzennej

Częstość oddziaływań w FD znacznie niższa ($\sim 10^{-}6 \times$ częstość w ND)

- Zabezpieczenie się przed nieumyślnym naginaniem wyników do oczekiwanego
- Wszystkie dane z Bliskiego Detektora są dostępne
- Część danych z Dalekiego Detektora ukryta (zgodnie z nieznaną funkcją długości przypadku i energii zdeponowanej w detektorze)
- Przed otwarciem *puszki* wszystkie procedury dotyczące analizy danych muszą być zamrożone
- Po otwarciu puszki dla pierwszej analizy, część danych z FD na nowo ukryta przy użyciu nowej funkcji

イロト イポト イヨト イヨト

BLISKI DETEKTOR: PORÓWNANIE DANE/MC

K.Grzelak (UW ZCiOF)

WIDMA ENERGII W BLISKIM DETEKTORZE

- Dane były zbierane przy 7 różnych konfiguracjach wiązki (różne pozycje tarczy i różne prądy w rogach magnetycznych)
- Różnica pomiędzy MC a danymi zmienia się dla różnych konfiguracji wiązki ⇒ to sugeruje że źródłem rozbieżności są niedoskonałości w modelowaniu wiązki, a nie nieznajomości przekrojów czynnych

SELEKCJA PRZYPADKÓW CC u_{μ}

- Co najmniej jeden dobrze zrekonstruowany tor (kandydat na mion)
- Wierzchołek oddziaływania w wiarygodnym obszarze detektora (fiducial volume):
 - ND: 1m < z < 5m, R < 1m od środka wiązki
 - FD: *z* > 20cm od pierwszej płaszczyzny, *z* > 2m od ostatniej płaszczyzny , *R* < 3.7m od środka detektora

- 3 Miony z ujemnym ładunkiem (wybór u_{μ})
- Gięcie na parametrze PID (Particle IDentification), używanym do selekcji oddziaływań NC i CC

Bliski Detektor: porównanie danych i MC

Wielkości które różnicują oddziaływania CC ν_{μ} i NC

ODRÓŻNIANIE ODDZIAŁYWAŃ CC ν_{μ} i NC

Cięcie na CC ν_{μ} : PID>0.85

< ロト < 同ト < ヨト < ヨト

SELEKCJA ODDZIAŁYWAŃ Z WIĄZKI W FD

Oddziaływania w Dalekim Detektorze są selekcjonowane na podstawie czasu ich rejestracji i topologii :

- Czas rejestracji oddziaływań musi być w koincydencji z czasem wiązki NuMI (w 50 μs oknie)
- Kierunek neutrin musi być zgodny z osią wiązki (kąt toru względem osi wiązki < 50°)

Oczekiwane tło z mionów z promieniowania kosmicznego: < 0.5 przypadków MINOS PRELIMINARY

$\mathsf{EKSTRAPOLACJA}\;\mathsf{ND}\to\mathsf{FD}$

- Dane z Bliskiego Detektora są używane do przewidywania rozkładów energii w Dalekim Detektorze
- Niepewności związane z modelowaniem wiązki i przekrojami czynnymi, wspólne dla ND i FD, istotnie się skracają

- ND widzi wiązkę *ν* jako źródło rozciągłe, FD - jako punktowe
 ← Funkcja przejścia wiąże ze
- sobą prawdziwą energię ν w ND z prawdziwą energią w FD

Metoda **BEAM MATRIX**

-2

◆ロト ◆聞 ト ◆臣 ト ◆臣 ト

Kolejne kroki w metodzie BEAM MATRIX

K.Grzelak (UW ZCiOF)

Błędy systematyczne na Δm_{23}^2 and sin² 2 θ_{23}

- Duże niepewności związane z modelowaniem wiązki i z przekrojami czynnymi, dzięki ekstrapolacji w większości się kasują
- Z pozostałych błędów systematycznych największe są te związane z domieszką przypadków NC i względną normalizacją (niedokładna znajomość wiarygodnego obszaru detektorów (*fiducial mass*), różnice we względnej efektywności rekonstrukcji w ND i FD)

Błąd systematyczny	Shift in	Shift in
	Δm_{23}^2	$\sin^2 2\theta_{23}$
Normalizacja ND/FD \pm 4 %	0.065	< 0.005
Absolutna, hadronowa skala energii \pm 10 %	0.075	< 0.005
Tło od NC \pm 50 %	0.010	0.008
Inne systematyczne niepewności	0.007	< 0.005
Całkowity błąd systematyczny	0.10	0.008

Wpływ kolejnych cięć na danych z FD

Cięcie	Liczba przypadków
Tor w fiducial volume	847
Dobra jakość danych	830
Czas zgodny z czasem wiązki	828
Dobra jakość wiązki	812
Tor dobrej jakości	811
Ładunek toru <=0	672
Parametr PID >0.85	564
Zrekonstruowana $E_{\nu} < 200 GeV$	563

-2

<ロト < 回 > < 回 > < 回 > .

Zaobserwowana vs oczekiwana liczba zdarzeń

Próbka danych	FD	Przewidywanie	Dane/Przewidywanie	
	Dane	(bez osc.)	(Beam Matrix)	
$ u_{\mu} CC_{like} $	563	738 ± 30	0.76 (4.4 σ)	
$\nu_{\mu} CC_{like}$ (< 10 GeV)	310	496 ± 20	0.62 (6.2 σ)	
$ u_{\mu} CC_{like} \ (< 5 \ { m GeV}) $	198	350 ± 14	0.57 (6.5 <i>σ</i>)	

イロト イポト イヨト イヨト

Widmo energii w FD i krzywa oscylacyjna

Parametry oscylacji z najlepszego dopasowania:

•
$$\Delta m_{23}^2 = 2.38^{+0.20}_{-0.16} \times 10^{-3} eV^2$$

•
$$\sin^2 2\theta_{23} = 1.00_{-0.08}$$

< ロト < 同ト < ヨト < ヨト

Dozwolony obszar

3

Przewidywania dla θ_{13}

-

Przewidywania dla θ_{13}

- Eksperyment MINOS to jeden z nielicznych obecnie eksperymentów neutrinowych dostarczających nowych, ciekawych danych
- Ciekawa fizyka, nie tylko związana z badaniem akceleratorowych neutrin i nie tylko dotycząca oscylacji neutrin

伺 ト イヨ ト イヨ