

Accelerator neutrino interactions in the MINOS Experiment

Krzysztof Wojciech Fornalski

Warszawa 3.XII.2007

Overview of the talk

MINOS experiment neutrino interactions cuts method of selection Range Searching method results summary

MINOS experiment

Krzysztof W. Fornalski

First informations

- Minos mythical Greek king of Creta, son of Zeus and Europe
- Main Injector Neutrino Oscillation Search- a long-baseline neutrino oscillation experiment
 - Neutrinos from the 120 GeV pulsed proton beam on graphite target
 - **Two detectors (at FermiLab and Soudan)- USA**
 - The MINOS experiment measures the neutrino oscillation between the detectors
- **Experiment started in 2005**
- First results at the beginning of 2006

Two underground detectors -Near (ND) and Far Detector (FD)

 ND at FNAL, FD at Soudan Mine, 735 km from FNAL
 ND is to measure the beam composition and energy spectrum

FD is to search for evidence of oscillations between detectors

FD is ~2x bigger than ND

Detectors construction

- Near & Far detectors are functionally identical
- They share the same basic detector technology and granularity:
 - Iron/Scintillator tracking calorimeters
 - 2.54cm thick magnetized steel planes = 1.2T
 - 1cm thick scintillator planes
 - Alternate planes rotated by ±90° (U,V)
- thanks to this rotation we can find the 3D representation of an event

Neutrino interactions

Krzysztof W. Fornalski

Types of interactions

- Neutral Current (NC) Z boson exchange
- $v + N \rightarrow v + X$ (X - hadronic cascade) Charged Current (CC) - W bosons exchange

 $\nu + N \rightarrow I + X$ (X - hadronic cascade, **l** - charged lepton) Krzysztof W. Fornalski

Neutral Current or Charged Current?

We have μ with long
 μ– track +
 hadronic shower

short event, often diffuse
the neutrino is "deflected"!

Krzysztof W. Fornalski

V_e CC Event

short, with typical EM shower profile
•no μ !
•No electron track - short radiation length

CC to NC separation

MINOS can measure oscillations based on muon neutrinos which interact as CC
 It is necessary to separate CC ν_μ from NC events
 the biggest difficulty: low energy events

Main goals

creation a CC from NC Monte Carlo events separation

analysis of two methods: cuts method and Range Searching

modifications of the second method

Simple examples of CC v_{μ} (right) and NC (left) events

Krzysztof W. Fornalski

CC/NC Separation - cuts method

Cuts method

- Simple one-dimensional method of CC/NC separation
- three independent variables from STNP (Standard NTuple) files (ROOT)
- ~70 000 Monte Carlo events

Cuts method - the variables

sygnal wiodacego toru

evthdr.plane.n

Cuts on variables

- Simple cuts on all variables to separate CC from NC events
- If an event is not clasified in one cut, it is taken by next variable and so on...

the results of cuts method will be shown later

Krzysztof W. Fornalski

CC/NC Separation -Range Searching method

Range Searching - the algorithm

Overview:

multi-dimensional method
creation of the density CC/NC map based on the MonteCarlo model
one cut on the discriminant variable

Range Searching -first step

- create a model binary tree contained 220 000 Monte Carlo CC&NC events
- It is necessary to have many thousands of model events -> better density
- each event is described in 3D space by 3 variables - all coordinates are values of the variables
- In this example there are **the same** three variables as in the cuts method

Range Searching - simple 2D example

example events in 2D variable space to separate signal to background (fig. a)
algorithm tests the events one by one by comparing the V region around the event

Range Searching - simple 2D example

V region (volume) around event (being analyzed) is estimated on the basis of the Monte Carlo model

V contains a certain number of signal (CC) and background (NC) MC events

Range Searching - simple 2D example

- thanks to number of CC and NC events in V it is possible to find the density D of the events (fig. b)
- this density determines if the event being analyzed is CC or NC
 - One cut on D enable to separate CC from NC (fig. c)

Range Searching - real MINOS variables

- After creating a Monte Carlo model, the next step is to find the best volume of V
- V should not contain too small or too large number of events -> worse $v_{7,00}^{0,00}$
- best V: 15% of the characteristic region of variable
- Separation power:

$$S := \frac{\varepsilon_s}{\varepsilon_b} = \frac{\frac{N_{s,\text{selected}}}{N_{s,\text{total}}}}{\frac{N_{b,\text{selected}}}{N_{b,\text{total}}}}$$

Range Searching - discriminant variable D

by using RS algorithm we can find values of the D variable of all checking events
one cut can separate CC from NC events

Range Searching - modifications

the use some other groups of variables:

- event length ; track signal to all event signal ; all event signal to event length; (left figure)
 - length of the longest track minus length of the biggest cascade ; longest track signal to event length ; number of reconstructed tracks; (right figure)

Range Searching - modifications

modification of the original algorithm:

- size of V is changing
- when the signal or background events number are less than 25 in one V, then V

increase better resolution

Results of all presented methods

Krzysztof W. Fornalski

Purity and efficiency of the NC & CC selection

- to check the correctness of the selection, it is necessary to calculate the purity and efficiency of the selection:
- Pur = $N_{true} / (N_{true} + N_{false})$ Eff = N_{true} / N_{all}

where N_{true} is a number of correctly selected events, N_{false} of incorrectly selected events, N_{all} is the number of all events (CC or NC)

Purity (right figures) and efficiency (left figures) of CC (up fig.) and NC (down fig.) selections. Big black points - Range Searching method. Small violet points - cuts method

Purity and efficiency. Blue points - modified Range Searching method. Red points (CC only) - official MINOS Pur and EFF. Official MINOS NC selection does not exist yet!

Separation power

Defined earlier:

		$N_{s,\text{selected}}$
<u> </u>	\mathbf{E}_{S}	 N _{s,total}
5.—	$\overline{\epsilon_h}$	 $N_{b,\text{selected}}$
	-0	$N_{b,\text{total}}$

	S_{CC}	S_{NC}
Cuts method	$2,\!36 \pm 0,\!04$	$5,\!59 \pm 0,\!07$
Range Searching method	$2{,}65\pm0{,}05$	$5,\!85 \pm 0,\!08$
modified RS method	$2{,}68\pm0{,}05$	$6{,}02\pm0{,}08$
RS method - 1. new variables	$2{,}77\pm0{,}09$	$6,51 \pm 0,14$
RS method - 2. new variables	$2{,}92\pm0{,}09$	$6,83 \pm 0,14$

Summary

- MINOS can measure oscillation based on CC
 - good CC from NC separation is necessary
- test of two major separation CC/NC methods: Range Searching better than cuts methods
- Range Searching method can be modified to achieve better results
 - Range Searching can be used in other experiments, in which you need to separate some signal from some background

THANK YOU!

www.fuw.edu.pl/~minos

fornalski@knf.pw.edu.pl