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Introduction

Three massive scientific waves are gathering momentum as we approach
the end of the twentieth century. These waves are set to transform our
lives in the twenty-first century to a far greater extent, than our parent’s
and grandparent’s lives were changed by advances made during this century.
Nanoscale science, information science and molecular biology are all rapidly
developing into engineering disciplines, and each will be responsible for the

start of at least one major industrial revolution during the next 20 years.

The book is mostly devoted to nanoscale science. Nanoscale science in-
volves the study understanding and control of matter at the atomic level. In
the late 1950s only the Nobel prize winning physicist Richard Feynman truly
understood that it would be possible to observe and manipulate individual
atoms [1]. Today hundreds of laboratories all over the world routinely use
the scanning tunneling microscope (STM) — which was invented in the early
1980s by Gerd Binning and Heinrich Rohrer at IBM’s Research Laboratory
and Ruschlikon — to obtain topographic maps of material surfaces in which

it is possible to identify individual atoms.

It may soon be possible to manufacture electrical contacts so tiny, that
they would comprise just one, single atom, creating the ultimate in elec-

tronic miniaturization. E. Scheer and her multinational team created their



single-atom contacts using SMT [2]. The conductance for one atom of lead
contacts was measured as the contact was stretched. It occurs that the
conductance fell into in discrete steps. But perhaps most interesting of
all, these single-atom contacts determine the conductance of the entire cir-
cuits in which they are placed. In other words, the quantum properties of
atoms effectively determine the properties of an electronic circuit, which is
a macroscopic object.

Recent years have seen significant advances in the characterization and
manipulation of individual molecules. STM techniques allow for the study
of single molecules on the surfaces, and optical techniques enable their char-
acterization in complex condensed environments. Furthermore, the manip-
ulation of molecules with STM may lead to the construction of artificial
molecular machines [3].

An important scientific frontier is the application of X-ray pulses to in-
vestigate ultrafast structural dynamics (atomic motion and rearrangement),
associated with phase transitions in solids, chemical reactions and rapid bi-
ological processes. The fundamental time scale for such motion is an atomic
vibrational period, on the order of 100 fs. Such dynamics have been inves-
tigated to date primarily with visible pulses from mode-locked femtosecond
lasers. That probe only extended electronic states providing indirect infor-
mation about atomic structure. X-rays, on the other hand, interact with
core electronic levels and can therefore provide direct information about
atomic structure. Recently, 300-femtosecond synchrotron pulses were gen-
erated directly from an electron storage ring [4].

For the first few decades after the invention of the laser in 1960, the
record for the shortest laser pulse fell by a factor of two every three years or

so. Each development provided new insight into the microworld of atoms,



molecules and solids. In 1986, however, this trend essentially stopped, when
the pulse length reached 6 femtoseconds. Only recently physicists at the
Foundation for Research and Technology — Hellas (FORTH) on Crete have
one new approach to break the femtosecond limits and measured 100 at-
tosecond sharp feature [5].

The excitation of matter on the quark nuclear atomic, molecular or
macroscopic level leads to transfer of energy. The response of the chunk
of matter (atom, molecule or nanoparticle) is governed by the relaxation
time 7.

In the book, we give the general definition of the relaxation time, which
depends on coupling constants for electromagnetic, strong or gravitational
interactions. It occurs, that for all interactions 7 is not equal zero (though
it scales from 107* s to the seconds).

The models of thermal processes with 7 # 0 we will call the causal
models of the thermal phenomena, in the opposition to noncausal models
with 7 = 0. The physical background for the differentiation of the causal
and noncausal models stems from the observation, that for 7 = 0 velocity of
the propagation of the interaction v — oo and v/c — oo (¢ = light velocity)
in complete disagreement with special relativity theory. In the book, we for
short, define the causal thermal phenomena as the phenomena for which
T # 0.

Nanoscience is located in length scale between atoms and small molecules
on the one hand, and macroscopic matter on the other. It is regime into
which we know very little. This state of affairs would not be of much concern
if there were a desert of physical phenomena between the very large and the
very small. But as we all know, there is life in the desert.

Contemporary there is considerable progress in the experimental nano-



science. Subfemtosecond lasers, scanning tunneling microscopy and atomic
force microscopy allow us to measure nanoscale phenomena. The discovery
of physical principles at nanoscale will reinforce the attack by biologists
on the mysteries callular function. In any event the applicability of the
science of nanoscale will not be limited to the world between angstroms and
centimeters. Phenomena following similar principles may well be manifested
in astrophysics, for example may be useful in explaining the origin of large-
scale structure in the Universe [6].

The organization of the book is as follows: In Chapter 1 causal thermal
phenomena in classical approximation are described. Chapter 2 is devoted
to the study of quasi quantum description of causal thermal phenomena in
quark, nucleon, atom and molecule gases. The gravitational causal thermal
phenomena are described in Chapter 3. Chapter 4 presents the conclusions
and perspectives of the study of causal thermal phenomena. Finally, Ap-
pendices encloses the preliminaries of partial differential equations (nomen-
clature and definitions) (A), and (B) the discussion of the heat transport

paradox.
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Chapter 1

Causal thermal phenomena,

classical description

1.1 Fundamentals of the rapid thermal pro-

cesses

The differential equations of thermal energy transfer should be hyperbolic
so as to exclude action at distance; yet, the equations of irreversible ther-
modynamics — those of Navier-Stokes and Fourier are parabolic.!

When an ultrafast thermal pulse (e. g. femtosecond pulse) interacts with
a metal surface, the excited electrons become the main carriers of the ther-
mal energy. For a femtosecond thermal pulse, the duration of the pulse is

of the same order as the electron relaxation time. In this case, the hyper-

IThe classification of the partial differential equation can be found in Appendix A.

11



12 Chapter 1. Causal thermal phenomena, classical description

bolicity of the thermal energy transfer plays an important role.

Radiation deposition of energy in materials is a fundamental phenome-
non to laser processing. It converts radiation energy into material’s internal
energy, which initiates many thermal phenomena, such as heat pulse prop-
agation, melting and evaporation. The operation of many laser techniques
requires an accurate understanding and control of the energy deposition
and transport processes. Recently, radiation deposition and the subsequent
energy transport in metals have been investigated with picosecond and fem-
tosecond resolutions [1.1]-[1.7]. Results show that during high-power and
short-pulse laser heating, free electrons can be heated to an effective tem-
perature much higher than the lattice temperature, which in turn leads
to both a much faster energy propagation process and a much smaller
lattice-temperature rise than those predicted from the conventional radi-
ation heating model. Corkum et al. [1.8] found that this electron-lattice
nonequilibrium heating mechanism can significantly increase the resistance
of molybdenum and copper mirrors to thermal damage during high-power
laser irradiation when the laser pulse duration is shorter than one nanosec-
ond. Clemens et al. [1.9] studied thermal transport in multilayer metals
during picosecond laser heating. The measured temperature response in
the first 20 ps was found to be different from predictions of the conven-
tional Fourier model. Due to the relatively low temporal resolution of the
experiment (~ 4ps), however, it is difficult to determine whether this dif-
ference is the result of nonequilibrium laser heating or is due to other heat
conduction mechanisms, such as non-Fourier heat conduction, or reflection
and refraction of thermal waves at interfaces. Heat is conducted in solids
through electrons and phonons. In metals, electrons dominate the heat con-

duction, while in insulators and semiconductors, phonons are the major heat
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Table 1.1: General Features of Heat Carriers

Free Electron Phonon
Generation ionization or excitation | lattice vibration
Propagation media vacuum or media media only
Statistics Fermion Boson
Dispersion E = h*¢*/(2m) E=FE(q)
Velocity (m -s™1) ~ 108 ~ 103

carriers. Table 1.1 lists important features of the electrons and phonons.
The traditional thermal science, or macroscale heat transfer, employs
phenomenological laws, such as Fourier’s law, without considering the de-
tailed motion of the heat carriers. Decreasing dimensions, however, have
brought an increasing need for understanding the heat transfer processes
from the microscopic point of view of the heat carriers. The response of the
electron and phonon gases to the external perturbation initiated by laser
irradiation can be described with the help of a memory function of the sys-

tem. To that aim, let us consider the generalized Fourier law [1.10]—[1.13]:

glt) = — /_t K(t =)V dr (1.1)

where ¢(t) is the density of a thermal energy flux, T'(¢') is the tempera-
ture of electrons and K (¢ —t') is a memory function for thermal processes.
The density of thermal energy flux satisfies the following equation of heat

conduction:

a, _ 1 2 t - N, ! /
Gl ="V /_Oo[x(t—t)T(t)dt, (1.2)
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where p is the density of charge carriers and ¢, is the specific heat of electrons
in a constant volume. We introduce the following equation for the memory

function describing the Fermi gas of charge carriers:
K(t—-1t)=K, 7floi_n% ot —t'—to). (1.3)

In this case, the electron has a very “short” memory due to thermal dis-
turbances of the state of equilibrium. Combining Eqs. (1.3) and (1.2) we
obtain 5 ,

9 = e

Equation (1.4) has the form of the parabolic equation for heat conduc-

K, V°T. (1.4)

tion (PHC). Using this analogy, Eq. (1.4) may be transformed as follows:

0
—T = DpV2T 1.5
at T ) ( )
where the heat diffusion coefficient Dt is defined as follows:
K
Dr = . 1.6
= (1.6)

From Eq. (1.6), we obtain the relation between the memory function and

the diffusion coeflicient
K(t —1t") = Drpe, tloiglo S(t—t—ty). (1.7)

In the case when the electron gas shows a “long” memory due to thermal

disturbances, one obtains for memory function
K({t—-1)=K,. (1.8)

When Eq. (1.8) is substituted to the Eq. (1.2) we obtain

0., Ky _, [t ..,
gl =0V /_OOT(t)dt. (1.9)
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Differentiating both sides of Eq. (1.9) with respect to ¢, we obtain

T K,

— = VT 1.10
att  pe, (1.10)

Equation (1.10) is the hyperbolic wave equation describing thermal wave
propagation in a charge carrier gas in a metal film. Using a well-known
form of the wave equation,

1 0°T

and comparing Eqgs. (1.10) and (1.11), we obtain the following form for the
memory function:

K(t—t') = pe,v? (1.12)
v = finite, v < oo.

As the third case, “intermediate memory” will be considered:

T

K(t—1) = % exp [— (t= t/)] , (1.13)

where 7 is the relaxation time of thermal processes. Combining Eqs. (1.13)

and (1.2) we obtain

T ¢, 0T K
—— 4+ 2 = 2V 1.14
at? + T Ot  pr (1.14)

Cy

and

K3 = D.c,p. (1.15)

Thus, finally,

*T 19T Dr_,

— 4+ - — = —V-T. 1.1
ot? + T Ol T v (1.16)
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Equation (1.16) is the hyperbolic equation for heat conduction (HHC), in
which the electron gas is treated as a Fermion gas. The diffusion coeffi-

cient Dr can be written in the form [1.14]

1
Dr = §U12;T, (1.17)

where vp is the Fermi velocity for the electron gas in a semiconductor.
Applying Eq. (1.17) we can transform the hyperbolic equation for heat
conduction, Eq.(1.16), as follows:
o*r N Laor 1
oz T at 3

Let us denote the velocity of disturbance propagation in the electron gas

s = @w. (1.19)

Using the definition of s, Eq. (1.18) may be written in the form

1 9T 1 0T _,

For the electron gas, treated as the Fermi gas, the velocity of sound propa-

v2 V2T, (1.18)

as S:

gation is described by the equation [1.15]

vs = LE (1+ 77 " Pr =
5= (3mm* 5 ) , F = MU, (1.21)
where m is the mass of a free (non-interacting) electron and m* is the
effective electron mass. Constant FjJ represents the magnitude of carrier-
carrier interaction in the Fermi gas. In the case of a very weak interaction,

m* — m and FJ — 0, so according to Eq. (1.21),

Mug 1
= " — ] v 1.22
vs= \/;UF (1.22)
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To sum up, we can make a statement that for the case of weak electron-
electron interaction, sound velocity v, = MUF and this velocity is equal
to the velocity of thermal disturbance propagation s. From this we conclude
that the hyperbolic equation for heat conduction Eq. (1.20), is identical as

the equation for second sound propagation in the electron gas:

1 0*T 1 aT

— 4 — — = V*T. 1.23

vi Ot? + i Ot (123)
Using the definition expressed by Eq. (1.17) for the heat diffusion coefficient,

Eq. (1.23) may be written in the form

1T 1 9T
Lo L 1.24
o o T Dy o (1.24)

The mathematical analysis of Eq. (1.23) leads to the following conclusions:

1. In the case when vi — oo, Tv3 is finite, Eq. (1.24) transforms into the

parabolic equation for heat diffusion:

— = VT, (1.25)

2. In the case when 7 — oo, vs is finite, Eq. (1.24) transforms into the

wave equation:

— = =VT. (1.26)

Equation (1.26) describes propagation of the thermal wave in the electron
gas. From the point of view of theoretical physics, condition vs — oo
violates the special theory of relativity. From this theory we know that there

is a limited velocity of interaction propagation and this velocity vy, = ¢,
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where ¢ is the velocity of light in a vacuum. Multiplying both sides of
Eq. (1.24) by ¢*, we obtain
o ar

—— + — — =T 1.27
Zor "D eV (1.27)

Denoting 8 = vs/c, Eq. (1.27) may be written in the form

1 0*T 1 aT 9
— —— 4 — — = VT, 1.28

32 8t22+DT a - (1.28)
where Dy = 732, 3 < 1. On the basis of the above considerations, we con-
clude that the heat conduction equation, which satisfies the special theory
of relativity, acquires the form of the partial hyperbolic Eq. (1.28). The
rejection of the first component in Eq. (1.28) violates the special theory of

relativity.

1.2 The relaxation dynamics of the ultrafast

thermal pulses

Heat transport during fast laser heating of solids has become a very ac-
tive research area due to the significant applications of short pulse lasers in
the fabrication of sophisticated microstructures, synthesis of advanced ma-
terials, and measurements of thin film properties. Laser heating of metals
involves the deposition of radiation energy on electrons, the energy exchange
between electrons, and the lattice, and the propagation of energy through
the media.

The theoretical predictions showed that under ultrafast excitation con-

ditions the electrons in a metal can exist out of equilibrium with the lattice
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for times of the order of the electron energy relaxation time [1.2, 1.5]. Model
calculations suggest that it should be possible to heat the electron gas to
temperature T, of up to several thousand degrees for a few picoseconds while
keeping the lattice temperature 7; relatively cold. Observing the subsequent
equilibration of the electronic system with the lattice allows one to directly
study electron-phonon coupling under various conditions.

Several groups have undertaken investigations relating dynamics’ chan-
ges in the optical constants (reflectivity, transmissivity) to relative changes
in electronic temperature. But only recently, the direct measurement of
electron temperature has been reported.

The temperature of hot electron gas in a thin gold film (I = 300 A)
was measured, and a reproducible and systematic deviation from a simple
Fermi-Dirac (FD) distribution for short time At ~ 0.4 ps were obtained.
As stated in Ref. [1.5], this deviation arises due to the finite time required
for the nascent electrons to equilibrate to a FD distribution. The nascent
electrons are the electrons created by the direct absorption of the photons
prior to any scattering.

In papers [1.10, 1.13], the relaxation dynamics of the electron tempera-
ture with the hyperbolic heat conduction equation (HHC), Eq.(1.24), was
investigated. Conventional laser heating processes which involve a rela-
tively low-energy flux and long laser pulse have been successfully modeled
in metal processing and in measuring thermal diffusivity of thin films [1.16].
However, applicability of these models to short-pulse laser heating is ques-
tionable [1.2, 1.5, 1.10, 1.11, 1.12, 1.13]. As it is well known, the Anisimov
model [1.16] does not properly take into account the finite time for the
nascent electrons to relax to the FD distribution. In the Anisimov model,

the Fourier law for heat diffusion in the electron gas is assumed. However,
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the diffusion equation is valid only when relaxation time is zero, 7 = 0, and
velocity of the thermalization is infinite, v — oc.

The effects of ultrafast heat transport can be observed in the results of
front-pump back probe measurements [1.2, 1.5]. The results of these type of
experiments can be summarized as follows. Firstly, the measured delays are
much shorter than would be expected if heat were carried by the diffusion of
electrons in equilibrium with the lattice (tens of picoseconds). This suggests
that heat is transported via the electron gas alone, and that the electrons
are out of equilibrium with the lattice on this time scale. Secondly, since
the delay increases approximately linearly with the sample thickness, the
heat transport velocity can be extracted, v, ~ 108 cm-s™" = 1 puym - ps~!.
This is of the same order of magnitude as the Fermi velocity of electrons in

gold, 1.4 pm - ps™.

1.3 The thermal inertia of materials heated

with ultrafast laser pulses

According to the constitutive relation in the thermal wave model, heat flux ¢

obeys the relation [1.10]-[1.13]
qrit+7)=—kVT(rt), (1.29)

where 7 is the relaxation time (a phase lag) and k is the thermal conductiv-
ity. The temperature gradient established in the material at time ¢ results
in a heat flux that occurred at a later time ¢ + 7 due to the insufficient
time of response. For combining with the energy equation, however, all the

physical quantities involved must correspond to the same instant of time.
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The Taylor’s series expansion is thus applied to the heat flux ¢'in Eq. (1.29)

to give
o aq(r,t) 0*q(F,t) .
2 — = —kVT(r,t). 1.
q(r,t) + 5 T+ 52 5 VT(7,t) (1.30)

In the linearized thermal wave theory, the phase lag is assumed to be small

and the higher-order terms in Eq. (1.30) are neglected. By retaining only
the first-order term in 7, Eq. (1.30) becomes

aq(r, t)
ot

JF ) + 7 = _kVT(7,1) (1.31)

After combining Eq. (1.31) with the energy conservation equation

. oT
—V-q-pcua (1.32)

one obtains the HHC, Eq. (1.24).
Equation (1.31) can be compared to the equation of the motion for

particle with mass m in a resistive medium,

i dv
VoA m

P(7)1), (1.33)

where ~ is a resistive coefficient, ¢ denotes the velocity, and ﬁ(F,t) is the

external force. Comparing Eqgs. (1.31) and (1.33) we conclude the corre-

spondence
—VT(7,t) — P(F.1)
girit) — o
EDo— 4
% — m (1.34)
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Figure 1.1: (a) The solution of HHC for vs = 0.15 ym - ps™*, 7 = 0.12 ps,
At-pulse duration= 0.06 ps. (b) The solution of PHC for the same values

(a) H-TEMPERATURE [K]

Length[um]
0.3

2 Time[ps]

(b) F-TEMPERATURE [K]

Length[um]
0.3

2 Time[ps]

of vg, 7 and At = 0.06 ps.
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(a) H-TEMPERATURE [K]

2 Time[ps]

(b) F-TEMPERATURE [K]

Length[um]
0.3

2 Time[ps]

Figure 1.2: (a) The same as in Fig. 1.1(a) but with A¢-pulse duration=
0.1 ps. (b) The same as in Fig. 1.1(b), but with At = 0.1 ps.
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For the steady-state case, Eq. (1.33) reduces to
v = P(7t) (1.35)

and Eq. (1.30) reduces to the Fourier law.

From the relations, given by Eq. (1.34), we conclude that the greater
relaxation time corresponds to the greater mass = greater inertia. It seems
quite resonable to treat the relaxation time as the measure of the degree
of the thermal inertia. In papers [1.10]-[1.13], it was shown that for the
thermal processes with characteristic time At > 7, the heat transfer is well
described by Fourier law. In another way, for At > 7 the thermal pro-
cesses can be called inertia-free processes. On the other hand, for thermal

processes with At < 7 the thermal inertia plays an important role.

In Figs. 1.1 and 1.2, the 3D solutions of HHC and PHC equation are

Land 7 =

presented. The solutions are obtained for vg = 0.15pm - ps™
0.12ps [1.13] and for At = 0.06 ps and 0.1 ps. As can be easily seen, the
solutions of HHC equations (Figs. 1.1(a) and 1.2(a)) show the retardation
of the response of the system to the external thermal perturbation. The
temperature surface shows the effect of the thermal inertia. Moreover, the
shorter the At, the more localized is the temperature surface. For the
solution of PHC (Figs. 1.1(b) and 1.2(b)) the instant heating of the system

is observed without any signature of the inertia of the system, and the

temperature in system is smeared out.
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1.4 Causal transport of hot electrons

The effects of ultrafast heat transport can be observed in the results of
front-pump back probe measurements [1.5]. The results of these type of
experiments can be summarized as follows: Firstly, the measured delays
are much shorter than would be expected if the heat were carried by the
diffusion of electrons in equilibrium with the lattice (tens of picoseconds).
This suggests, that the heat is transported via the electron gas alone, and
that the electrons are out of equilibrium with the lattice on this time scale.
Secondly, since the delay increases approximately linearly with the sample
thickness, the heat transport velocity can be extracted vy ~ 108 cm -s™! =
1 pm - ps~t. This is of the same order of magnitude as the Fermi velocity of

electrons in Au, 1.4 um - ps™1.

Since the heat moves at a velocity comparable to vy — Fermi velocity
of the electron gas, it is natural to question exactly how the transport takes
place. Since those electrons which lie close to the Fermi surface are the
principal contributors to transport, the heat-carrying electrons move at vg.
In the limit of lengths longer than the momentum relaxation length, A,
the random walk behavior is averaged and the electron motion is subject
to a diffusion equation. Conversely, on a length scale shorter than A, the

electrons move ballistically with velocity close to vg.

The importance of the ballistic motion may be appreciated by consider-
ing the different hot-electron scattering lengths reported in the literature.
The electron-electron scattering length in Au, A.. has been calculated in
Ref. [1.17]. They find that A.. ~ (E — EF)? for electrons close to the Fermi
level. For 2-eV electrons A.. &~ 35nm increasing to 80 nm for 1-eV. The

electron-phonon scattering length ., is usually inferred from conductivity
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data. Using Drude relaxation times, A., can be computed, A., ~ 42nm at
273 K. This is shorter than A, but of the same order of magnitude. Thus,
we would expect that both electron-electron and electron-phonon scattering
are important on this length scale. However, since conductivity experiments
are steady state measurements, the contribution of phonon scattering in
a femtosecond regime experiment such as pump-probe ultrafast lasers, is

uncertain.

In the usual electron-phonon coupling model [1.16], one describes the
metal as two coupled subsystems, one for electrons and one for phonons.
Each subsystem is in local equilibrium so the electrons are characterized by
a FD distribution at temperature 7. and the phonon distribution is charac-
terized by a Bose-Einstein distribution at the lattice temperature T;. The
coupling between the two systems occurs via the electron-phonon interac-
tion. The time evolution of the energies in the two subsystems is given
by the coupled parabolic differential equations (Fourier law). For ultrafast
lasers, the duration of pump pulse is of the order of relaxation time in met-
als [1.5]. In that case, the parabolic heat conduction equation is not valid

and hyperbolic heat conduction must be used (1.24)

1 0°T 1 oT
2ot a -Vl Dr = 70} (1.36)
S

In Eq. (1.36), vs is the thermal wave speed, 7 is the relaxation time and Dy
denotes the thermal diffusivity. In the following, Eq. (1.36) will be used to
describe the heat transfer in the thin gold films.

To that aim, we define: T, is the electron gas temperature and T is

the lattice temperature. The governing equations for nonstationary heat
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transfer are
6Te DT 82Te aTl
=DV — — —~ _Q(T. - T, — =G(T. =T 1.
51 TV AT G( D, T G( D), (1.37)

where Dr is the thermal diffusivity, T, is the electron temperature, 7. is

the lattice temperature, and G is the electron-phonon coupling constant.
In the following, we will assume that on subpicosecond scale the coupling
between electron and lattice is weak and Eq. (1.37) can be replaced by the
following equations (1.24):
aT. Dy 0*T.
= DpVT — =
ot T vi o a2’
Equation (1.38) describes nearly ballistic heat transport in a thin gold film
irradiated by an ultrafast (At < 1 ps) laser beam. The solution of Eq. (1.38)
for 1D is given by [1.10]-[1.13]:
1 1
T(e,) = — [/ T(&,0) [e_t/ZT CI

Vs 0

1 (t2 _ t2)1/2
—t/2r T 0
Te 27 { 0 ( 27

T _ttg)w I ((t2 _222))1/2) } ot — to)] ., (1.39)

where v; is the velocity of second sound, to = (z — 2')/vs and Iy and [,

T) = constant. (1.38)

are modified Bessel functions and ©(¢ — ¢o) denotes the Heaviside function.
We are concerned with the solution to Eq. (1.39) for a nearly delta function
temperature pulse generated by laser irradiation of the metal surface. The

pulse transferred to the surface has the shape:

5PE
ATy = —— f 0< s At
0 Cvv. AL or r<v

ATy =0 for z > v, Al (1.40)
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In Eq. (1.40), pg denotes the heating pulse fluence, 3 is the efficiency of the
absorption of energy in the solid, Cy(T.) is electronic heat capacity, and
At is duration of the pulse. With ¢{ = 0 temperature profile described by
Eq. (1.40) yields:

1
QUDE AToe 7Ot — 15)O(to + At — 1)

+ f—:AToe—f/% {10(2) + % é[l(z)} Ol — to), (1.41)
where z = (12 — 12)'/2/27 and ¢ = [/v,. The solution to Eq. (1.38), when
there are reflecting boundaries, is the superposition of the temperature at [
from the original temperature and from image heat source at +2nl. This
solution is:

T(,t)= Y AToe 0t — 1;)0(t; + At — 1)

=0
Al t1
ot/ : ~ - . _f.
+ATy e {JO(ZZ) tom o [l(zz)} Ot — 1), (1.42)
where t; = to, 3to, 5lo, to = [/ve. For gold, Cy(T.) = C.(T.) = AT,y =
71.5Jm 3 K~? and Eq. (1.40) yields:

1.4 x 10°pp3
Thi=— < <
ATy o AT, for 0 <z <wv,Al
ATy =10 for x > v,Al, (1.43)

2 1

where pg is measured in mJ-cm~

T. =300K :

, Vs In um-ps~', and At in ps. For

4.67 x 10?8pg
vs At

ATy =0 for z > v, Al (1.44)

ATy = for 0 <z <uv,Al
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The model calculations (formulae 1.41-1.44) were applied to the de-
scription of the experimental results presented in paper [1.5] and a fairly

good agreement of the theoretical calculations and experimental results was

obtained [1.13].

1.5 Velocity of thermal waves

One of the best models in mathematical physics is Fourier’s model for heat
conduction in solids. Despite the excellent agreement obtained between
theory and experiment, the Fourier model contains several inconsistent im-
plications. The most important is that the model implies an infinite speed of
propagation for heat. Despite such an unacceptable notion of energy trans-
port in solids, the classical diffusion theory gives quite reliable results for
most situations encountered in modern thermal engineering. However, there
are situations, such as those dealing with extremely short time responses,
where the classical diffusion model breaks down and the wave nature of
heat propagation becomes dominant. For femtosecond laser pulses the hy-
perbolicity of the thermal energy transfer plays an important role. The
consequence of the hyperbolicity of the master equations for heat transfer
is the existence of the thermal waves. Considering the importance of the
thermal wave in future engineering applications and simultaneously the lack
of a simple physics presentation of the thermal wave for the reader, a new
insight into the hyperbolic heat conduction equation is presented. A new
form of HHC equation is obtained which properly takes into account the
relativistic nature of the ultrafast heat transport.

The earliest recorded speculations of the existence of a propagating tem-

perature wave was advanced by Nernst [1.18] in 1917. He suggested that
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in good thermal conductors, at low temperature, heat may have sufficient
“inertia” to give rise to an “oscillating discharge”. In the early fifties it
was shown by Dingle [1.19], Ward and Wilks [1.20] and London [1.21], that
a density fluctuation in a phonon gas would propagate as a thermal wave
— a second sound wave — provided that “losses” from the wave were neg-
ligible. In one of their papers, Ward and Wilks [1.22] indicated they would
attempt to look for a second sound wave in sapphire crystals. No results of
their experiments were published. Then, for nearly a decade, the subject of
“thermal wave” lay dormant. Interest was revived in the sixties, primarily
through the efforts of J. A. Krumhansl, R. A. Guyer and C. C. Ackerman.
In the paper by Ackerman and Guyer [1.23] the thermal wave in dielectric
solids was experimentally and theoretically investigated. They found a value
for the thermal wave velocity in LiF at a very low temperature 7' ~ 1 K,
of vy ~ 100 — 300 ms™'. In insulators and semiconductors phonons are the
major heat carriers. In metals electrons dominate. For long thermal pulses,
i.e., when the pulse duration, At, is larger than the relaxation time, 7, for
thermal processes, At > 7, the heat transfer in metals is well described by
Fourier diffusion equation. The advent of modern ultrafast lasers opens up
the possibility investigating a new mechanism of thermal transport — the
thermal wave in an electron gas heated by lasers. The effect of an ultrafast
heat transport can be observed in the results of front pump back probe
measurements [1.2, 1.5]. The results of this type of experiments can be
summarized as follows. Firstly, the measured delays are much shorter than
it would be expected if the heat were carried by the diffusion of electrons
in equilibrium with the lattice (tens of picoseconds). This suggests that the
heat is transported via the electron gas alone, and that the electrons are out

of equilibrium with the lattice within this time scale. Secondly, since the
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delay increases approximately linearly with the sample thickness, the heat
transport velocity can be determined, v, ~ 10® cm s™' = 1pym ps'. This is
of the same order of magnitude as the Fermi velocity of electrons in Au,
1.4 pm ps~h.

In the papers [1.2, 1.12], the heat transport in a thin metal film (Au) was
investigated with the help of the hyperbolic heat conduction equation. It
was shown that when the memory of the hot electron gas in metals is taken

into account, then the HHC is the dominant equation for heat transfer. The

hyperbolic heat conduction equation for heat transfer in an electron gas has

the form (1.24)
1 9°T 1 oT

+ =
2
() 7 )
If we consider an infinite electron gas, then the Fermi velocity can be cal-

culated?

V2T (1.45)

v & be (1.46)

In Eq. (1.46), c is the light velocity in vacuum and b ~ 1072, Considering
Eq. (1.46), Eq. (1.45) can be written in a more elegant form:
1 0*T N L ar bQVQT (1.47)
o2 crrat 3 '
In order to derive the Fourier law from Eq. (1.47), we are forced to break
the special theory of relativity and put in Eq. (1.47) ¢ — oo, 7 — 0.
In addition, it can be demonstrated from HHC in a natural way, that in
electron gas the heat propagation with velocity v, ~ v in the accordance

with the results of the pump probe experiments [1.23, 1.2].

2The detailed discussion of the formula (1.46) in Chapter 2
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1.6 The thermal wave as the solution of HHC

The importance of the existence of thermal waves in engineering applications
was investigated in the paper [1.12]. The propagation of the thermal front
in metals has attracted a lot of attention and presents a unique feature of
thermal wave propagation.

Considering the importance of the thermal wave in future engineering
applications and simultaneously the lack of the simple physics presentation
of the thermal wave for engineering audience in the following we present the
main results concerning the wave nature of heat transfer.

Hence, we discuss Eq. (1.47) in more detail. Firstly, we observe that the

second derivative term dominates when:
CZ(At)z < AT (1.48)

i.e., when At < 7. This implies that for very short heat pulses we have

a hyperbolic wave equation of the form:

10T b _,
B Ve A 1.4
2 Jt? 3 v (1.49)
and the velocity of the thermal wave is given by
1
C. b~1072 (1.50)

Uth ™~ 7§57
The velocity vy, Eq. (1.50) is the velocity of the thermal wave in an infinite
Fermi gas of electrons, which is free of all impurities. The thermal wave,
which is described by the solution of Eq. (1.49), does not interact with the
crystal lattice. It is the maximum value of the thermal wave obtainable
in an infinite free electron gas. If we consider the opposite case to that in
Eq. (1.48)
A(AL)? > *TAt (1.51)
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i.e., when

Al > (1.52)

then, one obtains from Eq. (1.47):

— = VT (1.53)

Eq. (1.53) is the parabolic heat conduction equation—Fourier equation.

The solutions of Eq. (1.47) for the following input parameters: 7 =
0.12 ps, vy, = 0.15 pm ps™', At = 0.02 ps,0.06 ps,0.1 ps are presented in
Figs. 1.3-1.5.

The value of the thermal wave velocity vy, is taken from paper [1.13].
Isotherms are presented as a function of the thin film thickness (length)
[ [pm] and the delay times. The mechanism of heat transfer on a nanometer
scale, can be divided according to Fig. 1.3 (At = 0.02 ps) into three stages:
a heat wave for ¢ ~ Lv;', mixed heat transport for Lv;' < ¢ < 3L3;' and
diffusion for ¢+ > 3Lv;'. The thermal wave moves in a manner described
by the hyperbolic differential partial equation, z = vyt. For ¢ < zv;;' the
system is undisturbed by an external heat source (laser beam).For longer
heat pulses, Figs. 1.4-1.5 the evidence of the thermal wave is gradually
reduced — but the retardation of the thermal pulse is still evident. In
Fig. 1.6 the solution of the parabolic heat conduction (1.53) is presented.
In this case, contrary to the solution of the HHC, heating of the film starts

at t = 0.
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Figure 1.3: The solution of the HHC Eq. (1.47) “H-Temperature” for ther-

1

mal wave velocity vy, = 0.15 pm ps™, relaxation time 7 = 0.1 ps, and pulse

duration At = 0.02 ps.
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Figure 1.4: The same as in Fig. 1.3 but for At = 0.06 ps.
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Figure 1.5: The same as in Fig. 1.3 but for At = 0.1 ps.
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Figure 1.6: The solution of parabolic heat conduction equation (1.53)
Fourier law. “F-Temperature” for vy, = 0.15 pmps™, 7 = 0.12 ps,
At =0.02 ps.
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1.7 Slowing and dephasing of the thermal

waves

If heat is released in a body of gas liquid or solid, a thermal flux trans-
ported by heat conduction appears. The pressure gradients associated with
the thermal gradients set a gas or liquid in motion, so that additional en-
ergy transport occurs through convection. In particular, at sufficiently large
energy releases, shock waves are formed in a gas or liquid which transport
thermal energy at velocities larger that the speed of sound. Below the crit-
ical energy release, nearly pure thermal wave may propagate owing to heat
conduction in a gas or liquid with other transport mechanisms being neg-
ligible [1.24]. Solids metals provide an ideal test medium for the study of
thermal waves, since they are practically incompressible at temperature be-
low their melting point and the thermal wave pressures are small compared
to the classic pressure (produced by repulsion of the atoms in the lattice)
up to large energy releases. In accordance with this picture, the speed of
sound in a metal is independent of temperature and given by ¢, = (E/p)'/?
where F is the elasticity modulus and p is the density.

Using the path-integral method developed in paper [1.25], the solution
of the HHC can be obtained. It occurs, that the velocity of the thermal
wave in medium is lower than the velocity of the initial thermal wave. The
slowing of the thermal wave is caused by the scattering of heat carriers in
medium. The scatterings also change the phase of the initial thermal wave.

In one-dimensional flow of heat in metals, the hyperbolic heat transport
equation is given by (1.18)

o*T  oT o*T 1

- L D Dy = —v2 1.54
"o T T VT r=3rn (154)
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where 7 denotes the relaxation time, D7 is the diffusion coefficient and
T is the temperature. Introducing the non-dimensional spatial coordinate

z = x/X, where X = \/27 denotes the reduced mean free path, Eq. (1.54)

can be written in the form:

1 9T 20 0T  9°T

—_—— - = 1.
/2 Jt2 + v’2 Ot 0z2 (1.55)
where
, U 1
_ = - 1.
v 3 a o ( 56)

In Eq. (1.56) v denotes the velocity of heat propagation [1.3], v = (D/7)"/2,
In the paper by C. De Witt-Morette and See Kit Fong [1.25], the path—
integral solution of Eq. (1.55) was obtained. It was shown, that for the

initial condition of the form:

T(z,0) = ®(2) an “arbitiary” function

o7 (z,1
(=0 (1.57)
o _,

the general solution of the Eq. (1.54) has the form:

T(1) = %[q)(z,t) D (z, —1)] e
+ 27 [ anfa(z, ) + (=, —) (1.5%)
2 2N\1/2 l 2 2N\1/2
+ [o(a(t* = n*)'/%) + mh(@(t — )]

In Eq. (1.58), Io(z) and [;(z) denote the modified Bessel function of zero

and first order respectively.
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Let us consider the propagation of the initial thermal wave with veloc-
ity v', i.e.,

O(z —v't) = sin(z —v't) (1.59)

In that case, the integral in (1.58) can be computed analytically, ®(z, ¢) +

O(z, —t) = 2sinzcos(v’ t) and the integrals on the right-hand side of (1.58)
can be done explicitly [1.25]; we obtain:

F(z,t)=e* uiylsin(wlt) + cos(wlt)] sinz, v' > a (1.60)
and

F(z,t) = e [U%sinh(wgt) + cosh(wgt)] sinz, v' < a (1.61)
12 and wy = (a? — v")'/2,
In order to clarify the physical meaning of the solutions given by for-

mulas (1.60) and (1.61), we observe that v = v/X and w; and wy can be

1 2\ 1/2
’U1:/\’UJ1 = ’L)(l—(%)) 5 27w > 1

1 2 1/2
Vg = A wy = v ((—) — 1) \ 21w < 1 (1.62)

where w; = (v"* — a?)

written as:

2TwW

where w denotes the pulsation of the initial thermal wave. From for-
mula (1.62), it can be concluded that we can define the new effective thermal
wave velocities vy and vy, Considering formulas (1.61) and (1.62), we ob-
serve that the thermal wave with velocity v, is very quickly attenuated in

1

time. It occurs that when w™" > 27, the scatterings of the heat carriers

diminish the thermal wave.
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Figure 1.7: (a) Solution of HHC Eq. (1.54) for the following input parame-
tersv =1nm fs7!, 7 = 1 fs, wr = 2. (b) Solution of HHC equation for the
following input parameters v = 1 nm fs7!, 7 = 1 fs, wr = 0.45.
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It is interesting to observe that in the limit of a very short relaxation
time, i.e., when 7 — 0, v; — o0, because for 7 — 0 Eq. (1.54) is the Fourier
parabolic equation.

It can be concluded, that for w™' > 27, the Fourier equation is relevant
equation for the description of the thermal phenomena in metals. For w™! <
27, the scatterings are slower than in the preceding case and attenuation of

the thermal wave is weaker. In that case, 7 # 0 and vy is always finite:

o= v (1 _ (ﬁ)jm < (1.63)

For 7 — oo, i.e., for very rare scatterings vy — v and Eq. (1.54) is a nearly
free thermal wave equation. For 7 finite the v < v and thermal wave
propagates in the medium with smaller velocity than the velocity of the
initial thermal wave.

Considering the formula (1.60), one can define the change of the phase

of the initial thermal wave 3, i.e.:

a 1 1
T = — =
nlfl = G = g e

, 217w > 1 (1.64)

We conclude that the scatterings produce the change of the phase of the
initial thermal wave. For 7 — oo (very rare scatterings), Tan[3] = 0.

In Figs. 1.7 (a) and (b), the solutions of the Eq. (1.54) for the follow-
ing input parameters are presented. In Fig. 1.7 (a) v = 1 nm fs™! [1.3],
7 = 1 fs, wr = 2 and the solution of the Eq. (1.54), formula (1.60) repre-
sent the damped thermal wave which propagates with velocity v; = 0.97v.
Fig. 1.7 (b) represent the solution of Eq. (1.54) formula (1.61) for the fol-
lowing input parameters v = 1 nm fs~™! and w7 = 0.45. In that case, the
thermal wave is very quickly attenuated and the solutions of Eq. (1.54),

formula (1.61) represent the diffusion of the initial thermal wave.
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Chapter 2

Causal thermal phenomena,

quantal description

2.1 Discretization of the thermal excitation

in high excited matter

There is an impressive amount of literature on hyperbolic heat transport in
matter [2.1]-[2.5]. In Chapter 1 we developed the new hyperbolic heat trans-
port equation which generalizes the Fourier heat transport equation for the
rapid thermal processes. The hyperbolic heat conduction equation (HHC)
for the fermionic system has be written in the form (1.23)

1 0*T 1 aT

12) 0 + (1,2 a = VQT’ (21)
() (vF)
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where T' denotes the temperature, 7 the relaxation time for the thermal
disturbance of the fermionic system, and vg is the Fermi velocity.

In what follows we develop the new formulation of the HHC, considering
the details of the two fermionic systems: electron gas in metals and the
nucleon gas.

For the electron gas in metals, the Fermi energy has the form

n2/3h2
Ef = (37)° 2.2
p= (2.2
where n denotes the density and m. electron mass. Considering that
hQ
-1/3
n ~ap (2.3)
and ag = Bohr radius, one obtains
2/3h2 h?
E5 ~ n ~— a*m.c?, (2.4)
me ma

where ¢ = light velocity and « = 1/137 is the fine-structure constant for

electromagnetic interaction. For the Fermi momentum pr we have

. h
Py~ — ~ am.c, (2.5)
ap
and, for Fermi velocity vp,
v~ PF . ac. (2.6)
me

Formula (2.6) gives the theoretical background for the result presented in
Chapter 1. Comparing formulas (1.46) and (2.6) it occurs that b = «.
Considering formula (2.6), Eq. (1.47) can be written as

1 0*T 1 9T o? 9
- —t— — = —V"T. 2.
c? Ot2 + cir ot 3 Vv (2.7)
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As seen from (2.7), the HHC equation is a relativistic equation, since it
takes into account the finite velocity of light.

For the nucleon gas, Fermi energy equals

2/3h2
gy = W00 (2.8)

2
8mrg

where m denotes the nucleon mass and ro, which describes the range of

strong interaction, is given by

h
o = s (29)

myC

wherein m, is the pion mass. From formula (2.9), one obtains for the

nucleon Fermi energy

2
EN ~ (ﬁ) me?. (2.10)

m

In analogy to the Eq. (2.4), formula (2.10) can be written as

EY ~ o’md?, (2.11)

mx

where a; = 7= = (.15 is the fine-structure constant for strong interactions.

Analogously, we obtain the nucleon Fermi momentum

h

P ~ — ~ azme (2.12)
To
and the nucleon Fermi velocity
pF
vl = Ly asc, (2.13)
m

and HHC for nucleon gas can be written as

1 9°T 1 0T o
— 4+ — = =T 2.14
c? 02 + cir Ot 3 ( )
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In the following, the procedure for the discretization of temperature T'(7,¢)
in hot fermion gas will be developed. First of all, we introduce the reduced

de Broglie wavelength

X e h [ 1
= ) v, = —= ac,
B mevi h \/g
h 1
Ay = —— V= —=a 2.15
B mv}]LV’ Uh \/g asC, ( )
and the mean free paths A\® and A\
A = ;T8 MV = NN (2.16)

In view of formulas (2.15) and (2.16), we obtain the HHC for electron and

nucleon gases

X 92T g OT ho_,

— = = = T° 2.1

vf ot A Ot meV ’ (2.17)
AN TN AN TN h
— b = VAT, 2.18
ol Ot? AN ot m (2.18)

Equations (2.17) and (2.18) are the hyperbolic partial differential equations
which are the master equations for heat propagation in Fermi electron and
nucleon gases. In the following, we will study the quantum limit of heat
transport in the fermionic systems. We define the quantum heat transport

limit as follows:
2= X5, M = x4, (2.19)
In that case, Eqgs. (2.17) and (2.18) have the form
L 0*Te  OTe h

2me
T e A (2.20)
9*TN 9TV h
Tt e = YT (2.21)
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where . .
= N ————. 2.22
Tt T T m)y (2.22)

Equations (2.20) and (2.21) define the master equation for quantum heat
transport (QHT). Having the relaxation times 7¢ and 77, one can define

the “pulsations” w§ and w!’

w}i = (Te)_17 w}]L\f = (TN)_la (2'23)
or
o me(vp)? m(v))?
wh — h M) wh — h M)
i.e.,
e e\2 m5a2 2
wih = me(v;)” = 5 ¢
2
w}]LVh = m('U}JLV)2 = m?)ozs . (2.24)

The formulas (2.24) define the Planck-Einstein relation for heat quanta Ej,

and BN

B = wih = m(of)?
Ei\] = w}]l\]:mN(v}]lV)Q. (2.25)
The heat quantum with energy E; = hw can be named the heaton, in

N o0,

complete analogy to the phonon, magnon, roton, etc. For 7° T
Eqgs. (2.20) and (2.24) are the Fourier equations with quantum diffusion

coefficients D¢ and DN

ore h

= D°V*T* Df = 2.2
ot VAT me’ (2.26)
™ h
0 DNVATN DN = —, (2.27)

o m
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The quantum diffusion coefficients D® and DV were introduced for the first
time by E. Nelson [2.6].
For finite 7¢ and 7V, for At < 7°, At < 7V, Egs. (2.20) and (2.21) can

be written as

1 9T e
1 9*ry
CERrES viTy. (2.29)

Equations (2.28) and (2.29) are the wave equations for quantum heat trans-
port (QHT). For At > 7, one obtains the Fourier equations (2.26) and
(2.27).

In what follows, the dimensionless form of the QHT will be used. Intro-

ducing the reduced time ¢’ and reduced length z’,

X

=t/ =, (2.30)
VLT
one obtains, for QHT,
o*Te  aTe
=+ 5 VT2, (2.31)
o*rN - aTN
W + W viTN (2.32)
and, for QFT,
aTe
5 = ViTe, (2.33)
TN
o7 _ gopw, (2.34)

at
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Figure 2.1: (a) The numerical solution of the QHT (2.31) for the initial
(b) The numerical solution of the

Gaussian temperature profile (2.35).
QFT (2.33) for the initial Gaussian temperature profile (2.35).
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In Figs. 2.1 (a) and 2.1 (b), the solution of QHT and QFT, respectively,
for the initial Gaussian temperature pulse
aT (t'z")
at' |,

t'=0

T(0,2") = exp(—3z"), =0 (2.35)

are presented. Isotherms are presented as the functions of the reduced
length and reduced time (2.30). As can be seen from Fig. 2.1 (a) the initial
Gaussian temperature pulse (2.35) propagates as the thermal wave to the
left and right with the same velocity (“two arms” picture represents the
front of the thermal wave). By contrast, in the case of QFT (Fig. 2.1 (b)),
the heat transfer is the heat diffusion from the thermal Gaussian source.
The possible interpretation of the heaton energies can be stated as
follows. For an electron gas, we obtain from formulas (2.15) and (2.25),

for m, = 0.51 MeV/c?, and v), = (1/\/§)ac,
Ef = 9eV, (2.36)

which is of the order of the Rydberg energy. For nucleon gases (m =
938MeV/c?, as = 0.15) one finds, from formulas (2.15) and (2.25),

EY ~ 7MeV (2.37)

i.e., the average binding energy of the nucleon in the nucleus (“boiling”
temperature for the nucleus).

When the ordinary matter (on the atomic level) or nuclear matter (on
the nucleus level) is excited with short temperature pulses (At ~ 7), the
response of the matter is discrete. The matter absorbs the thermal energy
in the form of the quanta Ef or B,

It is quite natural to pursue the study of the thermal excitation to the

subnucleon level, i.e., quark matter. In the following, we generalize the
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QHT equation (2.7) for quark gas in the form
1 0*T? 1 aT"  (a?)?
2

ot? +c27' a3

with a? denoting the fine-structure constant for strong quark-quark inter-

V2T, (2.38)

[

action, v} the thermal velocity

(2.39)

1
v = 7 ale,
and 7 is relaxation time for quark gas.

Analogously to electron and nucleon gases, we obtain for quark heaton
Bl = %(oﬂ)%z, (2.40)

where m, denotes the mass of the average quark mass. For a quark gas,

the average quark mass can be calculated according to formula [2.7]

my = Z(my+mg+m;)

3
1
= 5(350 4350 4 550) MeV = 417 MeV, (2.41)

where m,,, my, m, denotes the mass of the up, down and strange quark,
respectively. For the calculation of the a? we consider the decays of the

baryon resonances. For strong decay of the ¥°(1385 MeV) resonance
K™ +p— ¥°(1385MeV) — A + 7°,
the width I' ~ 36 MeV and lifetime
h
Ty = T ~ 10725,

For electromagnetic decay,

20(1192MeV) — A + 7,
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7. ~ 107" 5. Considering that

q 1/2
(Z)~ ()~
o Ts

one obtains for a? the value

al ~ 1, (2.42)

S

Substituting formulas (2.41) and (2.42) into (2.40), one finds
B! ~ 139 MeV ~ m,, (2.43)

where m, denotes the m-meson mass. It occurs that where one attempts to
“melt” the nucleon in order to obtain the free quark gas, the energy of the
heaton is equal to the m-meson mass (which consists of two quarks). It is
the simple presentation of quark confinement.

The contemporary results of the investigation of have ion interactions
seems to support the above considerations. With the advent of ultra-
relativistic heavy-ion collisions in the laboratory, at CERN and Brookhaven
a new interdisciplinary field has emerged from the traditional domains of
particle physics and nuclear physics. In combining methods and concepts
from both areas, the study of heavy-ion interactions at very high energies
a new and orginal approach in investigating the properties of matter and its
interactions. Combining the elementary-interactions aspect of high energy
physics with the macroscopic-matter aspect of nuclear physics, the subject
of heavy-ion collisions is the study of bulk matter consisting of strongly in-
teracting particles (hadrons). Thermodynamics would be an ideal language
to be used in this field, so that complex multiparticle states can be described
in terms of a few macroscopic variables: temperature, density, etc.

For the first time the discretization of the temperature field in high

excited hadronic matter was described in paper [2.57]. It is interesting
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to observe that the linear dependence of the temperature on the mass of
hadrons emitted in S+S, Pb+Pb reactions was described in paper [2.58].
This observation supports the existence of the heaton in hadron gas excited

to high temperature (7' ~ 200 MeV).

2.2 Brownian representation of quantum

heat transport in attosecond domain

The advent of the ultrashort duration laser pulses particularly those in
attosecond (107'% s) domain [2.8] open new experimental possibilities in the
study of the details of the quantum heat transport, e.g. the quantum path
of the heat carriers.

The quantum heat transport equation (QHT), formulas (2.20), (2.21)
describe the quantum limit of heat transport. From a mathematical point
of view, the Eqs. (2.20), (2.21) are the telegrapher type equation. In
paper [2.9], it was shown that the hyperbolic diffusion equation (telegra-
pher equation) can be obtained within the frame of the correlated random
walk (CRW) theory of the Brownian motion. As was shown in paper [2.9],
the average displacement of the Brownian particle is described by the for-

mula

ca? s 2T t/r—(1—em)]. (2.44)

Me
In deriving the Eq. (2.44), the diffusion coefficient D = h/m was used,
according to formula (2.26). Eq. (2.44) has important consequences for the
understanding the quantum heat transport. Can we define the trajectory
of the heatons? To find the answer, let us discuss the two time limits of

the Eq. (2.44). First of all, let us assume ¢ >> 7. Then, from formula, one
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obtains

ohr [t 2%
<>z 2T (— - 1) ==y (2.45)

me \T me
Equation (2.45) describes the quantum diffusion of the heatons with quan-

tum diffusion coeflicient D = h/m, i.e.:
<a?>=2Dt. (2.46)

It is interesting to observe, that Eq. (2.46) can be interpreted as describing
the random walk of a Brownian particles (heatons) and that the heaton path
has fractal dimension dy = 2, because the “mass” segment with duration ¢

is related to the “radius” = by the relation (2.46) [2.10]
L~z (2.47)

The fractal dimension of the quantum path was investigated by Abbot and
Wise [2.11]. They showed that the observed path of a particle in quantum
mechanics is a fractal curve with the Hausdorff dimension two.

For ¢t ~ 7, one obtains from Eq. (2.44)

2h 12 h
ca?>2 (e (1=l +tfr— — ] = =2, (2.48)
m 272 mr
which in view of formula (2.22) gives
< a?>=vpt (2.49)

Equation (2.49) describes the free motion of a heaton with velocity v, =
% ac and considering Eq. (2.47), the path of quantum particle has a fractal
dimension dy = 1 i.e. the straight line. Now, we show that the analogy

between quantum paths and random walks of quantum particles (heaton)
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can be extended. As was shown in paragraph 2.1, for At < 7 the QHT has

the form of the quantum wave equation

0*T h —,
— T 2.
T 52 o V (2.50)
l.e. o
1 2
— — =V"-T. 2.51
v Ot? Vv (2.51)

The maximum value of the thermal wave velocity can be equal ¢ — the

velocity of light

vy = C. (2.52)
In that case, the relaxation time is described by formula
h h
= — — —. (2.53)
muvyj, me

The relaxation time 7,, for v;, = ¢ is given by
T = AJe, (2.54)

where A denotes the reduced Compton wave length for electron,

h

mec

A= (2.55)

Having established the expression for relaxation time 7, the “pulsation” w,

can be defined as

1 2.56
b= = (2.5
i.e.

Ef = wh = m.ct (2.57)

Considering that m. = 0.511 MeV/¢?, the heaton internal energy can be
calculated

Ef = 0.511 MeV, (2.58)
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and diffusion coefficient D = h/m can be written as

h I
D=—=—c=Ac. (2.59)

m mc

It is well known from quantum electrodynamics that quantum void fluc-
tuations create and destroy virtual electron-positon pairs. These virtual
electron-positon pairs have a characteristic lifetime of the order A/e. This
is the typical time scale over which collisions occur between the heaton and
the virtual electron-positon pairs. It is clear that the Compton wavelength A
can be identified as the new mean free path since it is the typical distance
covered by the virtual pair before its anihilation. The Eq. (2.59) for diffu-
sion coefficient relates the D to A in the same manner as in kinetic theory
of gases i.e.

D= )\v — D = Ac. (2.60)

For the relativistic regime, the average displacement < z? > has the form

of equations (2.46) and (2.48)
< z*>=2Dt (2.61)

for t >> 7, and,
<z >=c*?
for ¢t < 7,.

As in nonrelativistic regime, for ¢ >> 7, the quantum path has the
fractal dimension dy = 2 and for ¢t < 7, the quantum path is the straight
line but now with velocity v, = .

The advent of ultrashort duration pulses, particularly those in attosec-
ond domain, has opened up new experimental possibilities in the study of

structure of the matter in subnanometer scale. Conditions in this new field
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of investigation are markedly different from those in for longer pulse dura-
tion. The distinction being that at longer pulse duration (~ 1ps) excited
particles and their surroundings have had sufficient time to approach ther-
mal equilibrium. For temporal resolution ~ 1fs, it is possible to resolve the
dynamics of the nonequilibrium excited carrier. The time resolution of the
order 1 attosecond (107'®s) offers the possibilities of observing the path of
the quantum heat carriers — heatons.

For a temporal resolution At of the order of the relaxation time 7 ~ 10717 s,
the erratic Brownian motion of the individual heatons for At >> 7 can be
observed. For At < 7, the heatons move along straight lines. Lasers with
attosecond laser pulses open up quite new possibilities for studying these dis-
crete thermal phenomena. For the contemporary laser technology, the time
resolution At of the order of relaxation time 7, ~ 102! s (formula (2.58)) is
out of technological possibilities. Nevertheless, it is important to take into
account the fact that for At < 107%!'s the heatons move with the velocity
of the light! It is worthwhile to realize that there exist models of elemen-
tary particles in which it is assumed that the electron propagates with the
speed of light with certain chirality, except that at random times it flips
both the direction of propagation (by 180°) and handedness, the rate of
such flips is precisely the mass m (in units 2 = ¢ = 1) [2.12]-[2.15]. In the
frame of the model developed in the present paper, the relaxation time for
the interaction of heatons with voids is described by the formula (2.58) as

T =h/mdc*.
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2.3 The fundamental solution of the quan-

tum heat transport equation

In what follows, we will describe the one-dimension hyperbolic heat transfer
with the help of Eqgs. (2.20) and (2.21). To that aim, let us consider the

following transformation of the temperature field T'(x, )
__t
T(x,t)=e 27V UN(z,1). (2.62)

When applied Eq. (2.62) to the Eqgs. (2.20) and (2.21) one obtains the new
QHT
D*USN (z,1)
ot?

N ORUSN (2,1 1 .
B (U};N)Q @;ﬁ( : B 4(7‘6,N)2U N(z,t) = 0. (2.63)

For the Cauchy boundary conditions
AUN(z,t)

USN(z,0) = foN (), = ¢V (), (2.64)
ot 0
the solution of Eq. (2.63) has the form [2.16]
e,N e,N e,N e,N
Nz — Ny 4 o Ny
U67N($7 t) — f ($ Uh ) —I_ f (l’ —I_ U}L ) (265)

2

1 z—}—uZ’Nt 1
+ / o, 9o [W\/(UZ’NW—(:E—OQ] d¢
T ’Uh

QUZ’N z—v

L gt [tV = (= 0]
* g |
27N Joyo Ny \/( eth)Q —(z—¢)?

Uh

dg,

and the solutions of Eqs. (2.20), (2.21) are

TN (z,t) = 7N USN (2,1). (2.66)
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For 7 — oo (ballistic quantum heat transport) Eq. (2.63) can be written
e a*ueN o*ueN

’ e,N\2 o

g ) g =0 (267)

and for Cauchy boundary conditions (2.64) the wave equation (2.67) has
the solution [2.16]

1 . . 1 z—}-ve’Nt
UsN(,t) = 5 [f‘*N(:z: + oM + f(z — vh’Nt)} + 5w / e;t g(¢)dC.
h r—v
(2.68)

h

In that case the solutions of Eqs. (2.20) and (2.21) are
TN (2, t) = UN (z,1). (2.69)

Both solutions (2.66) and (2.69) exhibit the domains of dependence and
influence on the hyperbolic equations. These domains which characterize
the maximum speed at which disturbances or signals travel are determined
by the principal parts of the given equations (i.e. the second derivative
terms) and do not depend on the lower order terms. These results show
that the QHT and the wave equation have identical domains of dependence
and influence.

Now, let us consider the static field limit UV (z,¢) — VeV (z) of the
Eq. (2.63)

D*Ve(x) B 1 /mevi\? . .
ox? T4 < h ) Vi(=),
O*VN(z) 1 (moM\? .

If we require spherically symmetric solutions of Eqgs. (2.70), i.e. one that

solely depends upon || (in 3 dimension) then we can write

1 . e 2
Vi) = - () v,
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V) = (m’”év)QvN(r). (2.71)

The spherically symmetric solutions of Eq. (2.71) are

e

Ve(r) = —g—e_r/Re,
r
g~ N

VN('I“) = 7 e r/RT (2.72)
r

where gV denotes the coupling constants (“charges”) for electromagnetic
and strong interactions respectively. The parameters R® and RV are the

ranges of the interactions. Following formula (2.72), one obtains

2h
Rt = ,
mevy,
2h
N
= — . 2.
f myvy ( 73)

For electromagnetic interactions, the range R® can be written in the form

2h 2h 2

~d s —
mevy  Pp k%

12

RS

(2.74)

where kjf, denotes the Fermi wave vector for the electrons. Substituting

formula (2.74) to Eq. (2.72), the potential V°(r) can be written as

Ve(r) = —Le (2.75)

r

Formula (2.75) is the well known equation for Debye — Hiickl Coulomb
potential with screening [2.17, 2.18], where ¢¢ is equal ahc.
For strong interactions, potential V¥ (r) has the form of the Yukawa
nucleon — nucleon potential [2.19]
N
VV(r) = —g—e_RLN, g~ = a,he, (2.76)

r
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with the range RV, where

2h 2h
RV =—= : (2.77)
muvy, MmyQsC

where a, = 7n7rm]_\,1 is the fine-structure constant for strong interactions. In

that case, formula (2.77) can be written as

2h
RY = : (2.78)

myC

i.e. RV is of the order of Compton wavelength for meson 7, which defines
the range of strong interactions. Following formulas (2.25), (2.73), (2.74),
(2.78) the numerical values for heaton energies EV and ranges of interactions

are calculated and presented in Table 2.1.

Table 2.1: The ranges and heaton energies for

electromagnetic and strong interactions

Fermions Re, RN [m] | E°, EN [eV]
electrons 10-10 ~ 10
nucleons 1015 ~ 107

In Fig. 2.2(a) the Debye — Hiickl potential, formula (2.75) is presented
(thick curve). In the same figure, the Coulomb potential (thin curve) is also
presented. The nucleon — nucleon Yukawa potential, formulas (2.76), (2.78)
is presented in Fig. 2.2(b). As it is well known [2.19] for r < 0.8fm the
nucleon — nucleon potential has the hard core term. In Fig. 2.2(b) the hard

core term is represented by the vertical line.
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Figure 2.2: (a) The Debye — Hiickl potential, formula (2.75) — thick curve
and Coulomb potential — thin curve. (b) The Yukawa potential, formula
(2.76) with hard core term.
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The formulas (2.76) and (2.78), which describe the range of strong force
can be formulated in the spirit of Skyrme model [2.20]. Skyrme introduced
a model of nucleons as distributions of pion fields. In our case, the strong

force is mediated by meson 7, which is a “part” of nucleon, i.e. m, =~ 0.15m.

2.4 The distortionless quantum thermal

waves

Efficient conversion of electromagnetic energy to particle energy is of funda-
mental importance in many areas of physics. The nature of intense, short
pulse laser interactions with single atoms and solid targets has been sub-
ject of extensive experimental and theoretical investigation over the last
15 years [2.21]. Recently, the interaction of femtosecond laser pulses with
Xe clusters was investigated [2.22, 2.23] and strong X-ray emission and
multi-keV electron generation were observed. Such experiments have be-
come possible, owing to recently developed high peak power lasers which
are based on chirped pulse amplification and are capable of producing fo-
cused light intensity of up to 10 — 10" Wem ™2

In intensely irradiated clusters, optically and collisionally ionized elec-
trons undergo rapid collisional heating for short time (< 1ps) before the
cluster disintegrates in the laser field. Charge separation of the hot elec-
trons inevitably leads to a very fast expansion of the cluster ions. Both
electrons and ions ultimately reach a velocity given by the speed of sound
of the cluster plasma [2.24].

When the intense laser pulse interacts with atomic clusters ionization

to very high charge states is observed [2.24]. The high Coulomb field cer-
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tainly influences the thermal processes in clusters. In the chapter, the new
QHT equation is formulated in which the external — not only thermal forces
are included. The solution of the new QHT for Cauchy boundary condi-
tions will be derived. The condition for the distortionless propagations of
the thermal wave will be formulated.

Now, we develop the generalized quantum heat transport equation which
includes the potential term. In this way, we use the analogy between the
Schrodinger equation and quantum heat transport equations (2.31), (2.32).
Let us consider, for the moment, the parabolic heat transport equation i.e.

the Eqs. (2.33), (2.34), with the second derivative term omitted [2.25, 2.26]

T h
%—t = VT (2.79)

When the real time t — % and T'— W, Eq. (2.79) has the form of a free

Schrodinger equation

ov h*
h—— = —— V0. 2.
"ot va (2:80)
The complete Schrodinger equation has the form
oV h?
h— = —— VU + VU 2.81
o 2m + ’ (2:81)

where V' denotes the potential energy. When we go back to real time { —

—2it and ¥ — T, the new parabolic quantum heat transport is obtained
aor  h 2V

— = VT - T 2.82
ot mV h (8)

Equation (2.82) describes the quantum heat transport for At > 7. For heat
transport initiated by ultrashort laser pulses, when At < 7 one obtains the

generalized quantum hyperbolic heat transport equation

PT OT  h_, . 2V
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Considering that 7 = h/mv? [2.25, 2.26], Eq. (2.83) can be written as fol-

lows:

2
%%—g + %%—f + QVTmT — VT, (2.84)
Equation (2.84) describes the heat flow when apart from the temperature
gradient, the potential energy V operates.
In the following, we consider the one-dimensional heat transfer phenom-

ena, i.e.

LW_T _|_ E@_T _|_ 2va — aZT
v? 012 h Ol h - Ox?’

For quantum heat transfer equation (2.85), we seek solution in the form

(2.85)

T(x,t)= e_t/%u(:z:,t). (2.86)

After substitution of Eq. (2.86) into Eq. (2.85), one obtains

1 %u  O%*u

where
2Vm muo 2
0= (5) (2.88)

In the following, we will consider the constant potential energy V = V4.

The general solution of Eq. (2.87) for Cauchy boundary conditions,

B Ju(x,t) _
R T (2.89)
has the form [2.27]
u(z,t) = flz = vt) ; flz +vt) + %/g::t O(x,1,2)dz, (2.90)
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where

(I)(CU,t,Z) = lF(Z)JO (é\/(z _ $)2 B U2t2) + btf(z) JO(\U/E/(Z;)::ZQ)’

v v
mv?) > 2Vm
b = <2h> 2 v? (2.91)

and Jo(z) denotes the Bessel function of the first kind. Considering formu-
las (2.86), (2.87), (2.88) the solution of Eq. (2.85) describes the propagation
of the distorted thermal quantum waves with characteristic lines + = tvt.
We can define the distortionless thermal wave as the wave which preserves
the shape in the field of the potential energy V5. The condition for conserv-

ing the shape can be formulated as

2Vm muv 2
When Eq. (2.92) holds, Eq. (2.87) has the form
0*u(z,t) 0*u

Equation (2.93) is the quantum wave equation with the solution (for Cauchy

boundary conditions (2.89))

flz —ot)+ f(x +ovt) 1 potot
2 o

u(z,t) = F(z)d=. (2.94)

—vt
It is quite interesting to observe, that condition (2.92) has an analog in the
classical theory of the electrical transmission line. In the context of the
transmission of an electromagnetic field, the condition ¢ = 0 describes the
Heaviside distortionless line. Eq. (2.92) — the distortionless condition —
can be written as

Vor ~ h, (2.95)
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We can conclude, that in the presence of the potential energy V one can
observe the undisturbed quantum thermal wave only when the Heisenberg
uncertainty relation for thermal processes (2.95) is fulfilled.
The generalized quantum heat transport equation (GQHT) (2.85) leads
to the generalized Schrédinger equation. After the substitution ¢ — it /2,
T — Vin Eq. (2.85), one obtains the generalized Schrodinger equation (GSE)
ov h* 0*w

N 2 B b
1h 5 va v+ VU —27h 577 (2.96)

Considering that 7 = i/mv? = h/ma*c® (a = 1/137 is the fine-structure
constant for electromagnetic interactions) Eq. (2.96) can be written as
v h? 2h* 9°V
zha— =——VV 4+ VY- 0

o = "om ot 9 (2.97)
One can conclude, that for time period At < ii/ma%c? ~ 10717 s the de-
scription of quantum phenomena needs some revision. On the other hand,
for At > 107'7 in GSE the second derivative term can be omitted and as

the result the SE is obtained, i.e.

ov K2
h— = —— VU v, 2.
1 T va +V (2.98)

It i1s quite interesting to observe, that GSE was discussed also in
papers [2.25, 2.28] in the context of the sub-quantal phenomena.
Concluding, a study of the interactions of the attosecond laser pulses
with matter can shed the light on the applicability of the SE to the study
of the ultrashort sub-quantal phenomena. The structure of the Eq. (2.87)
depends on the sign of the parameter ¢q. For quantum heat transport phe-
nomena with electrons as the heat carriers parameter ¢ is the function of

potential barrier height (V5) and velocity v. Considering that velocity v
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equals [2.25]

L (2.99)

v = \/gac =1.26 —, .
parameter g can be calculated for typical barrier height V4 > 0. In Fig. 2.3
the parameter ¢ as the function of V4 is calculated. For ¢ < 0, i.e., when

Vo <1.125 eV, Eq. (2.87) is the modified telegrapher’s equation [2.14].

MTE[q<0], WE[q=0], K-GE[g>0]

20}- /

10

g[nm”-2]

. e

A

0 0.5 1 15 2

Barrier height [eV]

Figure 2.3: Parameter ¢ (formula (2.88)) as the function of the barrier
height (eV).

For Cauchy initial condition

Ju(z, o)

u(z,0) = f(z), ot = g(), (2.100)
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the solution of the Eq. (2.87) has the form

u(z,t) = f(m_vt);rf(ﬁvt) (2.101)

+ % /:+Ut9(é“)lo [\/—Q(v2t2 — (v - 4)2)] d¢

—vt

N @ /z-l-vt 10 I, [\/—q(v2t2 —(z— C)Q)}

dc.
2 —ut \/v2t2 —(z— () ¢

When ¢ > 0 Eq. (2.87) is the Klein-Gordon equation (K-G) [2.14] well known
from application to elementary particle and nuclear physics.

For Cauchy initial condition (2.100), the solution of (K-G) equation can

be written as

w(z,t) = L0 ;r UChAD (2.102)

s [ g0 [atw = e - o) de

>—ut

o gt et Jo[ya(w? = (= ()]
== )

dc.
—vt \/v2t2 —(z—()?

Both solutions (2.101) and (2.102) exhibit the domains of dependence
and influence on modified telegrapher’s equation and Klein—-Gordon Fqua-
tion. These domains, which characterize the maximum speed at which ther-
mal disturbance travel are determined by the principal parts of the given
equation (i.e., the second derivative terms) and do not depend on the lower
order terms. It can be concluded that these equation and the wave equation

(for m = 0) have identical domains of dependence and influence.
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2.5 Metastable thermal quantum states

The concept of metastable states in quantum mechanics dates back to the
beginning of the century. The interaction between a quantum system and an
external electromagnetic field was described by Planck using the concept of
a metastable state. The metastable is distinguished from a stationary state
which is “infinitely” long lived. The metastable state is an unstable state
and has finite lifetime [2.28].

In this paragraph, the metastable thermal states created in quantum
structures by the ultrashort thermal pulses are investigated. When the
ultrashort laser pulses interact with an inhomogeneous quantum structure,
the potential energy barriers on the edges of discontinuities influence the
thermal energy transport.

The master equation which describes the thermal perturbation propa-
gation is the Klein-Gordon equation (2.87), with ¢ > 0 which is the hy-
perbolic partial differential equation. In complete analogy to the quantum
Klein-Gordon equation, the thermal Klein-Gordon equation has the peri-
odic solution — thermal waves. For the thermal wave which propagates in
an inhomogeneous structure the transmission and the reflection phenomena
as well as formation of metastable state can be investigated.

The existence of metastable thermal states can be very important in
the modeling of the thermal energy dissipation in quantum inhomogeneous
structures, in which ultrashort electromagnetic pulses generate the ultra-
short thermal harmonic perturbations.

The generalized heat transport equation, which includes the potential

has the form

10T moT 2Vm
- 4+ 4+ T =V?T. 2.1
wor Tha T 'Y (2.103)
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For constant potential barrier V' = Vj and in the case of the one-

dimensional heat transfer phenomena, Eq. (2.103) can be written as

iaQ_T_|_@6_T+2%mT—62_T
v2 O12 h Ol h? o 0x?’

In the generalized quantum heat transport equation (2.104), we seek a so-

(2.104)

lution in the form

T(x,t)= e_t/%u(:z:.t), (2.105)

where the relaxation time, 7, equals

h

r=— (2.106)
muv
After substituting Eqs. (2.105) and (2.106) into Eq. (2.104), one obtains
1 0% 0%
where v ,
2Vom muv

= — =) . 2.1

17 52 <2h ) (2.108)

For ¢ > 0, Eq. (2.108) is the Klein-Gordon equation. In the following, we
will consider the heat transport through the double Dirac delta potential

barrier

Vo(z) = ad(x) + ad(x — d), (2.109)
where a is the barrier strength and d is the barrier separation. Let u(z,t)
determine harmonic plane thermal wave

u(z,t) = e “o(x). (2.110)

The function ¢(z) fulfills the time independent equations

%di;i(f) + o(x) l(h”)Z + va] =0 (2.111)

2mov? 8
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when Vo = 0, and

B d*¢(x) (hw)*  mo?
2m  da? #(2) 2mu? 8

—Vo| =0 (2.112)

when V4 # 0.

In the potential free region, the plane harmonic thermal wave ¢(x) has the

form

P(x) = '*”. (2.113)

After substituting Eq. (2.113) into Eq. (2.111) one obtains

2mQ? 2mQ2\ '/
e ”};‘2 —0; k= ( ”};‘2 ) : (2.114)
where ) .
gr = mv | () (2.115)

8 2muv?’

The solution of Eq. (2.112) in three different regions can be expressed as

follows:
ér(z) = €% 4 Re=he 1 <0,
prr(z) = Ae™ + Be™™ 0 <z <d, (2.116)
brir(z) = Ce™ x> d.

Here R and C' are the reflection and transmission amplitudes respectively.
The transmission coefficient equals |C|?. The boundary conditions at z = 0
and x = d are used to determine the amplitude C' and the transmission
coefficient |C'|2. At the locations of the delta barriers, the wave functions

¢(x) are continuous, that is

¢1(0) = ¢11(0), o11(d) = ¢rr1(d). (2.117)
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The slope of the wave functions at * = 0 and = = d is discontinuous, and it

can be shown by carrying out the following integrals:

) 1l R d? ,
7171_I>1% B l—%ﬁ—l-aé( )—I—a5(x—d)] dr = 7171_r>1%/ DV o(x
(2.118)
or
h?
— 5.~ [611(0) = ¢4(0)] + ady(0) = 0 (2.119)
and
. d+n h2 d2 5 5 J J . d+n QQ J
nl—% i [—%ﬁ—l-a (z) 4+ ad(z — )] ¢(z)dz = lim " é(x)dz,
(2.120)
or
h2
o [6711(d) — &71(d)] + adrrr(d) = 0. (2.121)

From Egs. (2.119) and (2.121), the discontinuity of the first-order derivatives
at x =0, and d can be observed.

By substituting Eqgs. (2.116) into Eqgs. (2.117), (2.119) and (2.121) one

obtains

1+ R=A+B,
Aeikd 4 Beikd = (eikd (2.122)
W [ikA — Bik — ik + Rik] + a(1 + R) = 0,

— L ikCe™ — ik Ae™ + Bike=™] 4 aCe™ = 0

When the dimensionless parameter ¢ = 2ma/kh* is defined, Eqs. (2.122)
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can be written as
1+ R=A+B,
Aettd 4 Bemthd = (Cethd, (2.123)
A-B-1+R-%(1+R) =0,
—Ae™ 4 Bemh 4 Cetti(1 — £) = 0.
After rearrangement of the Eqs. (2.123), transmission amplitude C' can be

calculated

4
C = T e o (2.124)

With the transmission amplitude C, (formula 2.124), we can define the

transmission coefficient, K

K =|C (2.125)

For a quantum two-barrier structure (2.109) the residence time r, the time
which harmonic thermal pulse spends inside the structure, can be defined

as

d
r= )
Kv

The residence time, formula (2.126), was first defined by

(2.126)

B. R. Mottelson [2.29] in connection with tunneling phenomena in nuclear
physics.

In Figs. 2.4 and 2.5, the residence time and the ratio of the residence
time r, (2.126), to the relaxation time 7, (2.106), of the thermal harmonic

pulse are presented.
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Figure 2.4:
double — barrier structure.

a) The residence time, r, formula (2.126) for double — barrier
structure with @ = 2 eVA and v = 1.26 nm/fs.

b) The ratio r/7 for the
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(a) a=2 eV A, v=12.6 Alfs

Figure 2.6: (a), (b) The same as in Figs. 2.4(a), (b).
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In Fig. 2.4(a), the residence time was calculated for the quantum struc-

ture with potential
V(z) = 2eVA§(z) + 2eVAS§(z — d) (2.127)

and the thermal wave velocity v = 1.26 nm/fs = 12.6 AAfs. The resonant
peaks corresponding to the metastable states become broadened at higher
energy indicating the decreasing lifetime of the metastable thermal states.
In Fig. 2.4(b), the ratio r/7 for the same quantum potential (2.127) was

calculated.

The results for quantum structure
V(z) = 5eVAS§(z) + 5eVAS§(z — d) (2.128)

are presented in Figs. 2.5(a), (b).

It is quite interesting to observe, that for thermal harmonic pulse with an
energy hw < 5 eV, the residence time depends strongly on potential strength
parameter a and linear dimension d of the quantum structure. Moreover,
for discrete values of thermal harmonic pulse energy the metastable (with
long residence time) states are generated. In these metastable states, the
thermal energy is stored inside the structure and is not transmitted out-
ward. In complete analogy to the quantum mechanics for greater energy
of the thermal harmonic pulse, the quantum structure is transparent for
thermal pulse. The results for Aw > 5 eV are presented in Figs. 2.6(a), (b).
In that case, we observe small “ripples” on the smooth background. The

background is described by the traversal time, d/v.
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2.6 Quantum heat transport on the molecu-

lar scale

Molecular electronics is a new field of science and technology, which is evolv-
ing from the convergence of ideas from chemistry, physics, biology, electron-
ics and information technology [2.30, 2.31, 2.32]. It considers, on the one
hand molecular materials for electronic/optoelectronic applications, on the
other hand attempts to build electronics with molecules at the molecular
level. It is this second viewpoint which concerns us here: describing the
heat transport at the level of single or few molecules.

The heat and charge transport phenomena on the molecular scale are the
quantum phenomena and electrons constitute the charge and heat carriers.
We argue, that to describe the heat transport phenomena on the molecular
level the quantum heat transport equation is a natural reference equation.

The quantum heat transport equation for the atomic scale has the

form (2.20, 2.21)
o*r ar
— + — = DV*T 2.129
EERErT ! (2.129)
where 7 is the relaxation time, D is the heat diffusion coefficient and T'
denotes temperature. For the atomic scale heat transport, the relaxation

time equals

h 1
mvzv Up = \/g

where m is the electron mass and vy, is the velocity of the heat perturbation.

ac, (2.130)

T =

Moreover, on the atomic level the temperature field 7'(r) is quantized by

a quantum heat of energy, the heaton. The heaton energy equals

By = mov?. (2.131)
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Due to formula (2.131), the heaton energy is the interaction energy of elec-
tromagnetic field with electrons (through the coupling constant «).
At the molecular level we seek energy of interactions of the electromag-

netic field with a molecule. This energy is described by the formula [2.33]

EM = a2, (2.132)
myp
where m,, m, are the masses of electron and proton, respectively.
Considering the general formula for heaton energy (2.131), one obtains

from formula (2.132) for velocity of the thermal perturbation

1/2
m.
v, = ac ( ) ) (2.133)

my

Comparison of formulas (2.130) and (2.133) shows, that v, scales with ra-
tio (me/mp)l/2 when the atomic scale is changed to the molecular scale; vy,
is the Fermi velocity for molecular gas.

Quantum heat transport equation (2.129) has as a solution, for short
time scale, (short in comparison to relaxation time 7) the heat waves which
propagate with velocity v,. One can say that on the molecular level, the
heat waves are slower in comparison to the atomic scale.

From formulas (2.130) and (2.133), the relaxation time can be calculated

m, h

T =

(2.134)

Me Mecto?

It occurs, that relaxation time on the molecular scale is longer (ratio m,/m.)
than the atomic relaxation time. For standard values of the constants of

the Nature

1
=13 me = 0.511 MeV /c?, m, = 938 MeV/c*,  (2.135)
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one obtains the following numerical values for vy, 7 and Fj: vy = 0.05nm/fs,
7 = 44fs and E, = 1072 eV. With those values of v, and 7, the mean free
path

A = TU} (2.136)

can be calculated and A = 2.26 nm. It is interesting to observe, that in the
structure of the biological cells, some elements have the dimension of the
order of the nanometer [2.30].

With the help of the heaton energy one can define the heaton tempera-
ture, i.e., the characteristic temperature of the heat transport on the molec-
ular scale, viz.:

T = 0> Sm.c® 1.16 10" K & 103 a2m.c? ~ 316 K. (2.137)

myp

This defines what we generally term “room temperature”. At temperatures
far below T),, the hydrogen bond becomes very rigid and the flexibility of
atomic configurations is weakened. Most substances are liquid or solid below
T,,. Biology occurs in environments with ambient temperature within an
order or magnitude or so of T,,.

In Figs. 2.7, 2.8, the results of the theoretical calculations for the quan-
tum heat transport on the molecular scale are presented. In Fig.2.7(a) the
solution of Eq. (2.129) in one-dimension case

o*r  orT 0*T

for the following input parameters v, = 0.05nm/fs,7 = 44fs, Ty = 300K

(initial temperature) and At duration of laser pulse = 0.2 7 is presented.



84 Chapter 2. Causal thermal phenomena, quantal description
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Figure 2.7: (a) The solution of QHT equation (2.138) for the following
input parameters v, = 5 1072 nm/fs,7 = 44fs, Ty = 300K and At = 0.27.
(b) The solution of QPT (2.139) with the same input parameters.
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Figure 2.8: (a, b) The same as in Fig. 2.7(a, b) but for At = 7.
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In Fig. 2.7(b) the solution of quantum parabolic heat transport equation
(QHT), (Fourier equation)

oT O°T

with the same input parameters is presented.

In Figs. 2.8(a, b), the solutions of Eqs. (2.138), (2.139) for the same
input parameter but for At = 7 are presented.

From the analysis of the solutions of hyperbolic and parabolic quantum
heat transport equation, the following conclusions can be drawn. In the
case of QHT equation the thermal wave dominates the heat transport for
At = 0.2 7, 7. The finite value of v, involves the delay time for the
response of the molecular system on the initial temperature change. In the
case of QPT, instantaneous diffusion heat transport is observed. From the
technological point of view, the strong localization of thermal energy in the

front of thermal wave is very important.

2.7 Electron thermal relaxation in metallic

nanoparticles

Clusters and aggregates of atoms in the nanometer size (currently called
nanoparticles) are systems intermediate in several respects, between simple
molecules and bulk materials and have been objects of intensive
work [2.34]-[2.36]. The main motivation for the growing interest in these
systems is related to the possibility of tailoring, to a considerable extent,
their physical behavior on the basis of the size [2.37, 2.38].

In paper [2.34], the novel experimental approach to investigate the dif-
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ferent mechanism leading to the electron thermalization in nanoparticles
was presented. The femtosecond pump-probe measurements on gallium
nanoparticles in both the liquid and solid phases was performed. The sam-
ples were prepared by evaporation — condensation of high purity gallium in
ultrahigh vacuum on sapphire substrates. The nanoparticle shape was of
a truncated sphere. The measurements were performed on three gallium
samples with radii r = 5 nm, 7nm and 9 nm. Transient transmissivity and
reflectivity measurements were performed by using a standard pump-probe
configuration. The laser system consists of a T's: sapphire laser with chirped
pulse amplification which provides pulses of 150 fs duration at 780 nm with
an energy up to 750 pJ at 1 kHz repetition rate.

The main results of the paper [2.34] are: (i) the temporal behavior of the
electron energy relaxation is similar in both phases, (ii) the time constant
for thermal relaxation is of the order 600 — 1600 fs.

In this paper, we investigate the thermal relaxation phenomena in the
nanoparticles in the frame of quantum heat transport equation formulated
in papers [2.39, 2.40]. In paper [2.39], the thermal inertia of materials
heated with laser pulses faster than the characteristic relaxation time was
investigated. It was shown, that in the case of the ultrashort laser pulses
the hyperbolic heat conduction (HHC) must be used. For Ga nanoparticles
the mean free path of the electron is larger than the maximum radius of the
nanoparticles [2.34]. Moreover, the mean free path is of the order of the de
Broglie wave length. In that case, the classical hyperbolic heat conduction
equation (HHC) must be replaced by quantum hyperbolic heat transport
equation (QHT) (2.20)

JPTT 9T h

= vire 2.140
ot? + ot Me ’ ( )

T
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where T'° denotes the temperature of the electron gas in nanoparticle, 7° is
the relaxation time and m. denotes the electron mass. The relaxation time
7° is defined as

h
= —— (2.141)

Y
mevi

where vy, is the thermal pulse propagation velocity

1
v = —=ac. (2.142)

V3

In formula (2.142) a is the fine-structure constant, a = €*/hc and ¢ denotes
the light velocity in vacuum. Both parameters 7¢ and v, completely charac-
terize the thermal energy transport on the atomic scale and can be named
as “atomic relaxation time” and “atomic” heat velocity.

Both 7¢ and vj, are build up from constant of Nature, e, h, m.,c. More-
over, on the atomic scale there is no shorter time period than 7. and smaller
velocity build from constant of the Nature. In consequence, one can name
7¢ and v, as elementary relaxation time and elementary velocity, which
characterize heat transport in the elementary building block of matter, the
atom.

In the following, starting with elementary 7¢ and vy, we intend to de-
scribe thermal relaxation processes in nanoparticles which consist of the NV
atoms (molecules) each with elementary 7¢ and vj,. To that aim, we use the

Pauli-Heisenberg inequality [2.41]
ArAp > N#h, (2.143)

where r denotes characteristic dimension of the nanoparticle and p is the
momentum of energy carriers. The Pauli-Heisenberg inequality expresses

the basic property of the N-fermionic system. In fact, compared to the
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standard Heisenberg inequality
ArAp > h, (2.144)

we notice that, in this case the presence of the large number of identical
fermions forces the system either to become spatially more extended for
fixed typical momentum dispension, or to increase its typical momentum
dispension for a fixed typical spatial extension. We could also say that
for a fermionic system in its ground state, the average energy per particle
increases with the density of the system.

A picturesque way of interpreting the Pauli-Heisenberg inequality is to
compare Eq. (2.143) with Eq. (2.144) and to think of the quantity on the

right hand side of it as the “effective fermionic Planck constant”
h!(N) = Nsh. (2.145)

We could also say that antisymmetrization, which typifies fermionic am-
plitudes amplifies those quantum effects which are affected by Heisenberg
inequality. It does so to a degree, what becomes significant if the number
N of identical fermions is large [2.41].

According to formula 2.145, we recalculate the relaxation time 7, for-
mula (2.141) and thermal velocity vy, formula (2.142) for nanoparticle con-

sisting N fermions

h— h/(N)= N<h (2.146)
and obtain
2
f € 1

= —— = —vp, 2.147
Uh hf(N) N3 Uh ( )

ht
f = = Nr. (2.148)
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Number N particles in nanoparticle (sphere with radius r) can be calculated
according to the formula (we assume that density of nanoparticle does not

differ too much from bulk material)

I p3pAZ
N=3"P"7 (2.149)
7]
and for spherical with semiaxes a,b, ¢
LabcpAZ
]

N = , (2.150)

where p is the density of the nanoparticle, A is the Avogardo number, u is
the molecular mass of particles in grams and Z is the number of the valence
electrons.

With formulas (2.147) and (2.148), we calculated de Broglie wave length

)\{3 and mean free path )\{nfp for nanoparticles

ht )
My = —5 = Ndg, (2.151)
mvth
)‘ilfp = U{h th;z = N3Xnsp, (2.152)

where Ag and A, denote the de Broglie wave length and mean free path
for heat carriers in nanoparticles.

In the following, we will study the thermal relaxation process in gallium
particles [2.34]. For Ga, density p = 5.9 g/cm® and u = 70 g. In Fig. 2.9 we
present the calculation of the relaxation time 7/ formula (2.148) and thermal
wave velocity vtfh (2.147) for Ga nanoparticles, when axes a = b = r and

¢ =dr,d <1 (symmetric spheroid). In that case

4%drSpAZ
o

N = (2.153)
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(a) Ga RELAXATION TIME

15000
12500 /
10000 v

7500 -
5000 -

2500 // ——
=

4 5 6 7 8 9 10

tau [fs]
\

r [nm]

(b) Ga THERMAL WAVE VELOCITY

SAN

v [nm/fs]
o
o
(o]

N\
N
\\ ~——_

\
0.04 = ~—_
\
e
4 5 6 7 8 9 10
r [nm]

Figure 2.9: (a) Experimentally determined relaxation times for Ga nanopar-
ticles [2.34]. Curves denote the calculated relaxation times for d = 0.19
(=), d =08 (—) and d = 1 (—). (b) Calculated thermal wave velocities

for nanoparticles with d = 0.19(=), d = 0.8 (—) and d = 1 (—).
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Fig. 2.9(a) shows the calculations of the 7/ for d = 0.19, 0.8 (spheroid shape)
and for d = 1 (sphere). As can be seen the fairly good agreement is obtained
for spheroid with semiaxes a = b = r and ¢ = 0.19r. Fig. 2.9(b) shows the
calculated velocities of the thermal waves. The reduction of the thermal
wave velocity is caused by electron-electron scattering and reflecting of the

thermal wave from the surface of the nanoparticles.

2.8 Velocity spectra of the relativistic elec-

trons

The implementation of chirped pulse amplification (CPA) systems in high
power lasers has made available new intensity regimes previously inaccessi-
ble in the laboratory. At intensities of 10'® W cm™?2 the electron oscillatory
velocity for 1 gm radiation becomes relativistic and the radiation pressure
reaches 300 Mbar. Interesting, new physical phenomena have been pre-
dicted in this regime, such as emission high energetic electrons, ions and
MeV x-ray.

In the physical picture of a relativistic gas, we think of the world lines
of the particles as a discrete complex. For a particle with mass m the four
momentum relationships M, fulfills the relations M, M, = —m? for massive
particles and M,.M, = 0 for photons. If n is the number of world lines
for particles which cross the space volume element dS = dxidrydxs and

momentum volume df2 = dM;dM,ydMs;, then n equals [2.42]
n=NdSdf2, (2.154)

N being independent of the sizes of dS and df2. We call N the relativistic
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distribution function. For massive particles with mass m, the four mo-
mentum components are related to three velocity component ugs by the

equations

Mg = 2015 = (1 . “—) , (2.155)

[

where ¢ is the velocity of light. The relation between df2 and dU =

duiduydus reads

a2 ="_1qu. (2.156)

3
In the rest frame of the relativistic gas container, the distribution function NV

has the form

NoT-!
0 m”] (2.157)

= it O T
In formula (2.157), Ny is the numerical density (number of particles per
volume in the rest frame of the container), T' is the relativistic gas temper-
ature (in energy units) and Ky(m/T) is the modified Bessel function of the
second kind. From formulas (2.154) and (2.157), the number of particles
in dSdU, in the rest frame of gas is

NOmT_l

= 340 —mAyT ™| dSdU. 2.1
4#[&’2(%)6 ~ exp{ my } SdU. (2.158)

dn
The number of particles in the volume dS in the range (u, u+du) is obtained

by equating 47u®dU to dU and is therefore

mT 1
KQ(%)

If we define 8 = u/e, then formula (2.159) reads

d?]:NO

3y u? exp {—m’yT‘l} dSdU. (2.159)

5 92 —1
= my 3% exp {—m’yT } dsSdg, (2.160)



94 Chapter 2. Causal thermal phenomena, quantal description

and describes the number of particles in the volume dS in the range (3, 5+
dpg).

For low temperatures, i.e., for mT~! >> 1, K»(m/T) has an approximate

form
Ky(z) = 27; e r=mT" (2.161)
Considering formula (2.161), Eq. (2.160) reads
4 me?\ mc*(y — 1)
dn = ——= No | — 532 —— | d 2.162
== o(T) vﬁeXp[ T ]ﬂ, (2.162)

where F = mc*(y — 1) is the kinetic energy of the particle with mass m.
Formula (2.162) is the relativistic analog of the Maxwell formula for non-
relativistic particles, i.e. for particles with 7' << mc?.

Since the exponential falls off rapidly with increasing 7', u/c is small for
vast majority of the particles and for them we may replace v by 1 and F
by nonrelativistic kinetic energy F ~ 1/2mu?; then (2.162) reads

2\ 3/2 2
dn = 427;3 No (m; ) 3% exp [— ng ] dg. (2.163)

This is precisely a Maxwellian distribution and so we are assured that 7' is,

in fact, the absolute temperature in the ordinary sense.

Note, however, that we obtained (2.163) from (2.162) merely in order
to make contact with Maxwellian theory; formula (2.162) is a much better
expression relativistically, because it corresponds to the range (0, ¢) for u,
whereas (2.163) corresponds to the range (0,00). On account of this differ-
ence in ranges, it is not quite correct to say that for low temperatures the
relativistic theory is reduced to the Maxwellian case. In the case of high

2

temperatures T' ~ mc?, we derive from formula (2.160)

gy = o (met’ g exp |- 25| asas (2.164)
n= || VB exp |- : :
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for Ky(z) ~ 2272 when z is small.

Recent advances in high intensity sub-pico-seconds laser technology en-
ables new regimes of hot dense matter to be investigated [2.43]-[2.48]. Dense
high temperature plasmas are typically studied by x-ray spectroscopy. Time
of flight (TOF) measurements have been used to determine suprathermal
electron temperatures of plasmas produced by lasers with pulse length
Ips [2.49] to 1ns [2.50]. Spatially and temporally averaged x-ray spec-
tra of sub-ps laser produced plasmas have shown electron temperatures of
a few hundred eV [2.51]. Spatially and temporally localized measurements
of 500eV electron temperatures were reported in [2.52].

For electrons with temperatures of the order of hundred eV (10° K), the
quantum heat transport equation (QHT)

T a;—g + aa_f;r = %VQT (2.165)
must be used for the description of the transport phenomena.

The solution of the QHT shows the temperature oscillations for the time
period of the few relaxation times [2.25]. The predicted oscillations propa-
gates as a thermal wave with velocity vy, ~ ac where a is the fine structure
constant. The temperature oscillations as well as the thermal waves are
a true relativistic effect. For a nonrelativistic transport description, ¢ is

infinite and relaxation time 7 = 0. In that case the quantum heat transport

is the parabolic equation (QPT), viz

ar  h 0°T
— = — (2.166)
ot m 0t?
and oscillations as well as the thermal waves are completely attenuated. The
relativistic oscillations of the temperature strongly influence the velocity of

the emitted particles.
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Figure 2.10: (a) The solution of the QHT equation (2.165) “QH-
Temperature” for v, = 1.510%nm/ps relaxation time 20fs, At = pulse
duration = 7, energy density 10'® Wem™2 (b) The solution of QPT equa-
tion (2.166) “QP-Temperature” for the same value of v, 7 and energy

density.
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Figure 2.11: (a) The Maxwellian distribution function (2.163) for ¢ =
3.3107%ps (—), t = 107 ps (—) and 1.7107' ps (—). (b) The relativis-

tic distribution function (2.160) for the same values of time.
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Subsequently the electron spectra emitted after irradiation of 5 nm Au film
will be calculated. The following input parameters are assumed: initial en-
ergy density 10 W/cm? and 15% of the light absorbed. The thermal wave
velocity vy, = 0.15 yumps~' [2.12] and relaxation time 7 = 20 fs.

Fig. 2.10(a) shows the solution of QHT equation (2.165) and Fig. 2.10(b)
the solution of QPT. In Fig. 2.11 the velocity spectra of the particles
emitted when the temperature is calculated from QHT equation for ¢t =
3.3107% ps, 107 ps and 1.7107" ps. Fig. 2.11(a) shows the velocity spectra
calculated from formula (2.163) — Maxwell-Boltzmann distribution func-
tion and Fig. 2.11(b) the relativistic distribution function — formula (2.160).
The Maxwellian distribution function gives the wrong result for particle
spectra when the temperature 7 lies in the range of electron mass (m, =
0.511 MeV) as the one obtains u/c > 1 for emitted electrons. On the other
hand, the relativistic distribution function (2.160) shows the localization of
the electron velocity in the vicinity u — ¢. Moreover, the velocity spectra

oscillate as the function of time.

2.9 Ballistic and diffusion thermal pulse
propagation in the attosecond time do-
main

For the first few decades after the invention of the laser in 1960, the record
for the shortest laser pulses fell by a factor of two every three years or
so. Each development provided new insight into the microworld of atoms,
molecules and solids. In 1986, however, this trend essentially stopped when

the pulse length reached 6 femtoseconds. For visible light this corresponds
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to just three oscillations of the electromagnetic field in the laser.

Since the mid - 1980’s, there have been many advances in the laser sci-
ence, but the minimum pulse duration has decreased only slightly. In order
to break significantly the current record, a 4.5 femtosecond pulse from the
laser with a wavelength of 800 nanometers, a completely different approach
is needed. Physicists at the Foundation for Research and Technology — Hel-
las (FORTH) on Crete have recently demonstrated one such approach [2.53].

One place to look for inspiration is the method currently used to measure
femtosecond pulses. Basically, we ask the pulse to measure itself. Practically
this means that we take the pulse, split it in two, delay the replicas in the
arms of an interferometer by amounts that we can control, and then direct
each replica onto a material with nonlinear optical properties. If the two
arms have exactly the same length, the pulses arrive at the same time and
their intensity is higher than if the path are unbalanced and one pulse
arrives before the other. Observing the nonlinear response allows us to
measure the extent of the overlap as we change the difference between the
two path lengths, Az. The pulse duration 7, is simply 7 = Az/ec.

The FORTH group produced replica pulses by splitting the pulse when
it is easy to do so — before the high harmonics are produced. And they use
the ionizing gas which produces the high harmonics for a second purpose.
It also serves as the nonlinear medium needed to measure the length of
the pulses in the train. In a result, an isolated less than 100 as (1 as =
1 attosecond = 107'® s) sharp feature, indicative for the production of the
trains of sub-fs XUV pulses, is clearly observable in the resulting temporal
trace [2.53].

In the paper [2.53], the time structure with the line width of the order of

100 as was obtained. This debut of attosecond science opens new avenues
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for investigating atomic and molecular structures. As was shown in papers
[2.54] and [2.55] for these two levels of complexity the relaxation times are
of the order of 7, ~ 70 attosecond [2.54] and 7,, ~ 10% attosecond [2.55].
In both cases the line width is of the order of /or longer than the relaxation
times. For these circumstances the parabolic Fourier equation cannot be
used [2.54, 2.55]. Instead, the new equation, QHT is the valid equation.
The QHT can be written as

1 0*T moT  0°T

2o T h ol dar
In Eq. (2.167) v denotes the velocity of the thermal pulse propagation, m

(2.167)

is the heat carrier mass. In this paper, we will consider the Fermi gas of
electrons and m = 0.511 MeV, v = %ac, where « is the electromagnetic
fine-structure constant, ¢ = light velocity. The Cauchy initial condition for

Eq. (2.167) can be written as
T(xz,0)=0, T(0,t) = f(1). (2.168)

For initial conditions (2.168) the solution of Eq. (2.167) has the form [2.27]

T(z,1) = {f <t—%) eV (2.169)

t T 2 _ % %
T R Y T}

: (y? = )7
In formula (2.169) p = 0 = =, 7 = -5 and H(t — Z) is the UnitStep
function:
H(t—f)zl for th,
v v
Hit-5)=0 for 1< 2, (2.170)
v v
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Figure 2.12: (a) The solution of QHT (Eq.2.169) for ¢, = 50 as. (b) The
solution of QHT for ¢, = 7400 as.
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(a) LINE WIDTH=50 as, BALLISTIC COMPONENT

(b) LINE WIDTH=50 as, DIFFUSION COMPONENT

Figure 2.13: (a) The ballistic component of the heat pulse for t; = 50 as.
(b) The diffusion component for t; = 50 as.
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Figure 2.14: (a), (b) The same as in Fig. 2.13 but for ¢, = 74 as.
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(a) LINE WIDTH=100 as, BALLISTIC COMPONENT

(b) LINE WIDTH=100 as, DIFFUSION COMPONENT

Figure 2.15: (a), (b) The same as in Fig.2.13 but for ¢; = 100 as.
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(a) LINE WIDTH=740 as, BALLISTIC COMPONENT

(b) LINE WIDTH=740 as, DIFFUSION COMPONENT

Figure 2.16: (a), (b) The same as in Fig. 2.13 but for ¢, = 740 as.
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(a) LINE WIDTH=7400 as, BALLISTIC COMPONENT
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(b) LINE WIDTH=7400 as, DIFFUSION COMPONENT

Figure 2.17: (a), (b) The same as in Fig. 2.13 but for ¢, = 7400 as.
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As can be seen from formula (2.169), the temperature field T'(z,t) has

two components, Tg(z,t)-ballistic and Tp(x,t)-diffusion, i.e.,

Ip = f(t—%)e_%mH(t_%)v
ox [t Lo(y? — % 2 Zz
Tp = {7/%f(t—y)e—yp [(yQy_ I_)) ]dy}H(t—;)- (2.171)

In the Figs. 2.12-2.17, the solution of the Eq. (2.169) for the initial
condition (2.168) with [2.32]

f(1) = Sech? H (2.172)

are presented. The numerical integration in the formula (2.169) was per-
formed with the Mathematica code, for t; = 50, 74, 100, 740 and 7400
as. In Fig. 2.12 the solution of Eq. (2.169) for t; = 50 as (Fig. 2.12(a))
and t; = 7400 as (Fig. 2.12(b)) is presented. The line width ¢, = 50 as is
smaller than the relaxation time 7 = 74 as and ¢, = 7400 = 1007,. The
change of the structure of the solutions is evidently seen. Figs. 2.13-2.17
represent the analysis of the heat pulse according to formula (2.171). The
ballistic (Figs. 2.13(a) to 2.17(a)) and diffusion components (Figs. 2.13(b)
to 2.17(b)) have quite different shapes.

The results presented in Figs. 2.12-2.17 describe the heat transport on
the atomic scale (z ~ 0.5 nm). For times of the order of the atomic relax-
ation time (ballistic propagation), the heat pulse preserves its shape and
only the amplitude is diminished due to scattering. On the other hand,
for the longer time periods a new structure develops. Multiple scatterings
distort the shapes of the initial pulse. One can says that for ¢t; > 7 the

information contained in the initial pulse is lost as the time — oo.
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2.10 The polarization of the electrons emit-
ted after ultrashort laser pulse interac-

tion with spin active solids
Let us consider the quantum heat transport equation for dissipative medium
with potential V (2.84)

1o mol Vim0
v2 Jt2 h Ot K2  Qx?’

(2.173)

In Eq. (2.173), v denotes the velocity of heat propagation, m is the mass of
heat carrier and T denotes the temperature. For quantum heat transport

equation (2.173), we seek solution in the form
T(x,t) = e o u(z,t), (2.174)

where 7 denotes the characteristic relaxation time

h
= . 2.1

= (2.175)

After substitution of Eq. (2.174) into Eq. (2.173), one obtains
0*u(z,t) ,%u

where

mv2\’  2Vmo?

b= \l ( o7 ) - (2.177)

For particles with spin (e. g., electrons), potential V' will contain the term

describing the spin-orbit interaction. In that case, potential V' equals

<ls >

V() = Vaenteat(r) + Vislr) 5= (2.178)
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where Vientral(r) denotes the potential part which does not depend on spin.
The combination of the orbital angular momentum I and electron spin s
leads to a total angular momentum jh = [h + /2 and hence to the expec-
tation values: l |
<ls >{ (Hl% ior ]jJr? (2.179)
I A )
Substituting formula (2.179) to formula (2.178), one obtains the splitting

for potential V:

I : l
V+(T) = ‘/Central(r) + ‘/15(7“)— if 7= [+ —,

[N]
[N]

[+1 1
V() = vceml(r)—vls(r)(; ) j=1-5 (2180)
and for parameter b (formula(2.177))
o mv2\?  2V+mo?
B 2h R
B mv2\> 2V -mov?
b= (%) - (2.181)

One concludes, that existence of the spin-orbit term splits the Eq. (2.176)

into two equations:

Putlal) L)
o = VI (B (1), (2.182)
Pu(x,t) 0% (x,1) N2

In the following, we will consider the constant potentials: Viepgra and Vis.
The general solution of Eqs. (2.182) and (2.183) for Cauchy boundary con-

ditions:

Ju(z,t)

u(z,0) = f(x), = F(x)

t=0
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has the form:

N (G B R D

Ot (2,1, 2)dz,
2 2

—vt

where

b‘;’_) \/(z — 2)? — v22
\/(z —z)? — v??

and J,(z) denotes the Bessel function of the first kind. The interaction of

+007f(2) . <

(2.184)

laser beam with solid creates hot electrons with temperatures described by

formulas (2.174) and (2.184):

t

TH(z,t) = e zut(a,t),
T (x,t) = e 7u(x,1). (2.185)
The velocity spectra of the emitted hot electrons are described by formula
m(TH (z,t))7"
Kz (7+2m)

In formula (2.186) 8 = v/e,v = 1/+/1 — 3%, Np is the numerical density —
initial number of particles per volume in the rest frame of the solid, and

K3[m/T]is the modified Bessel function of the second kind. Formula (2.186)

d?]+’_ = NO

V8 exp [~my (T (2,1))7'] - dVdj. (2.186)

describes the number of particles with temperatures 77,7~ in the volume
dV in the range (3,03 + dj3).

The particles with temperature 7% have the total angular momentum
=1+ % and particles with temperature 7'~ have the total angular mo-

mentum j = [ — 1/2. One can define the degree of the polarization of the
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emitted electrons (after solid irradiation by an energetic laser beam)

N*t(z,t) — N~ (z,1)

Pz, t) = ’ ’ 2.1
) = N ) ¥ N (2 0) (2.187)
where
+— _ dn*~
dv g’

Considering formulas (2.186) and (2.187), one concludes, that existence of
the spin-orbit term in potential V' (formula(2.178)) creates the polariza-
tion of the emitted electrons. For Vis(r) = 0, N*(z,t) = N~ (z,t) and
P(x, t)=0.
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Chapter 3

Causal thermal phenomena in a Planck Era

3.1 The Time Arrow in a Planck Gas

The enigma of Planck era i.e., the event characterized by the Planck time,
Planck radius and Planck mass, is very attractive for speculations. In this
paragraph, we discuss the new interpretation of the Planck time. We define
Planck gas — a gas of massive particles all with masses equal the Planck
mass M, = (he/G)Y? and relaxation for transport process equals the Planck
time 7, = (AG/c®)Y/2. To the description of a thermal transport process in
a Planck gas, we apply the quantum heat transport equation (QHT) derived
in Chapter 2. The QHT is the specification of the hyperbolic heat conduc-
tion equation HHC [3.1, 3.2] to the quantum limit of heat transport i.e.,
when the de Broglie wave length Ag equals the mean free path, .

In the following, we will describe the thermal properties of

119
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the Planck gas. To that aim, we use the hyperbolic heat transport
equation (HHC) (2.31), (2.32)

Mg 0*T \g OT h _,
EW—I_TE_EVT' (3.1)

In Eq. (3.1), M, is the Planck mass, Ag the de Broglie wavelength, and A
— mean free path for Planck mass. The HHC equation describes the dissi-
pation of the thermal energy induced by a temperature gradient VT'. Re-
cently, the dissipation processes in the cosmological context (e.g., viscosity)
were described in the frame of EIT (Extended Irreversible Thermodynam-
ics) [3.2, 3.3]. With the simple choice for viscous pressure, it is shown that
dissipative signals propagate with the light velocity, ¢ [3.2]. Considering

that the relaxation time 7 is defined as [3.1]

h
T = m, (32)
for thermal wave velocity v, = ¢, one obtains
h hG\ '
T M (c—5) = Tp> (3.3)
P

L.e., the relazalion lime is equal lo the Planck lime 7,. The gas of massive
particles with masses equal to the Planck mass M,, and relaxation time for
transport processes which equals Planck time 7, we will define as the Planck
gas.

According to the result of the paper [3.1], we define the quantum of the
thermal energy, the heaton for the Planck gas, as

ho (he)'?
E, = hw:T_p:<E) ¢ = M,c*,

Ey, = Myc* = EF'™"* = 10" GeV. (3.4)
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With formula (3.2) and v, = ¢ we calculate the mean free path, A, viz.
RG\'? (RGN
A=vpT, =cT, =c¢ (0_5) = (0_3) . (3.5)
From formula (3.5), we conclude that mean free path for a Planck gas
is equal to the Planck radius. For a Planck mass, we can calculate the
de Broglie wavelength
h h an\'"?
B Myv,  M,c ( c3 ) (3.6)
As it is defined in paper [3.1], Eq. (3.6) describes the quantum limit of heat
transport. When formulas (3.5) and (3.6) are substituted in Eq. (3.1), we

obtain

2 ,

Tp aaT;F + @a_]; = % V°T. (3.7)

Equation (3.7) is the quantum hyperbolic heat transport equation (QHT)
for a Planck gas. It can be written as

1T (SN\ar

EE (ﬁ) a

It is interesting to observe that QHT is the damped wave equation, and

= VT, (3.8)

gravitation influences the dissipation of the thermal energy. In paper [3.4],
P. G. Bergman discussed the conditions for the thermal equilibrium in the
presence of the gravitation. As it was shown in that paper, the thermal
equilibrium of spatially extended systems is characterized by the “global”
temperature and a “local” temperature which is sensitive to the value of
the gravitational potential.

On the other hand, Eq. (3.8) describes the correlated random walk of

Planck mass. For mean square displacement of random walkers we have
2h i/
ﬁp{t/’rp— (1—6 t/ p)}. (39)

<2t>=
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From formula (3.6), we conclude that for ¢ ~ 7,

<z’ > 12 (3.10)

M,T
or
<z’ > AP (3.11)

and we have thermal wave with velocity ¢. For ¢t >> 7, we have

2ht 2h
<z >~ T ()7, — 1) = 1 = 2D"1*eky, (3.12)
M, P M,
where L2
h hG
DPlaan — ﬁ — (T) (313)
P

denotes the diffusion coefficient for a Planck mass.

We can conclude that, for time period of the order of the Planck time,
QHT describes the propagation of a thermal wave with velocity equal ¢ and,
for a time period much longer than 7,, QHT describes the diffusion process
with diffusion coefficient dependent on the gravitation constant G.

The quantum hyperbolic heat equation (3.7), as a hyperbolic equation
sheds light on the time arrow in a Planck gas. When QHT is written in the

*T or  (hG\'’_,

then, for a time period shorter than 7,, we have preserved time reversal for

equivalent form

thermal processes, viz,
1 0*T 9

and for ¢t >> 7,

1/2
%—f = (E) VT (3.16)
C
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the time reversal symmetry is broken.

These new properties of QH'T open up new possibilities for the inter-
pretation of the Planck time. Before 7,, thermal processes in Planck gas
are symmetrical in time. After 7, the time symmetry is broken. Moreover,
it seems that gravitation is activated after 7,, and it creates an arrow of

time (formula (3.16)).

3.2 The smearing out of the thermal initial

conditions created in a Planck era

In paper [3.5], the QHT for a Planck gas was discussed. On time scales
of Planck time, black holes of the Planck mass spontaneously come into
existence. Via the process of Hawking radiation, the black hole can then
evaporate back into energy. The characteristic time scale for this to occur
happens to be approximately equal to Planck time. Thus, the Universe at
t, = 107* s in age was filled with a Planck gas.

In the subsequent paper, we develop the generalized quantum heat trans-
port equation for Planck gas, which includes the potential energy term. The
condition for conserving the shape of the thermal wave created at the Planck
time is developed and investigated.

For a long time the analogy between the Schrodinger equation and the
diffusion equation was recognized [3.6]. Let us consider, for the moment,
the parabolic heat transport equation for a Planck gas, i.e., Eq. (3.16),

ar  h

— = —VT. 1
ot =Y (3.17)

When the real time ¢t — % and 7' — W, Eq. (3.17) has the form of the free

2
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Schrodinger equation

ov h*
h—— = — U, 1
th= QMPV (3.18)
The complete Schrodinger equation has the form
ov h?
h— = — 2y 1\ 1
th— ZMPV + VY, (3.19)

where V' denotes the potential energy. When we go back to real time
t - —2it and ¥ — T, the new parabolic quantum heat transport is ob-
tained o7 . oy

i EVQT - T (3.20)
Equation (3.20) describes the quantum heat transport in a Planck gas for
At > 1,. For heat transport in the period At < t,, one obtains the general-

ized hyperbolic heat transport equation [3.5] with potential term added

9T h 2
4 + or _ — VT — Vo (3.21)

t ——
Poiz ot M, h

Considering that ¢, = i/ M,c* [3.5], Eq. (3.21) can be written as

1 0*°T M,0T 2VM,
S et e W et iy AR v/ 3.22
R T R T ’ (3.22)
where ¢ denotes light velocity in vacuum.
In the following, we consider the one-dimensional heat transport phe-

nomena with constant potential energy V = V4

LT My 0T | 2VoM, . O°T

—_ 2= P — . 2
c? Ot? + h Ot K2 0z2 (3.23)

For quantum heat transport equation (3.23), we seek a solution in the form

T(xz,t) = e ru(a,t). (3.24)
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After substituting Eq. (3.24) in Eq. (3.23), one obtains
0?u(z, 1) ,Pu
where
M,2\*  2VM,
b= L — e, 2
J( N 326)
The general solution of Eq. (3.26) for Cauchy initial conditions
0 t
u(z,0) = f(z), Unl g, (3.27)
at |,
has the form [3.7]
—ct yA 1 r+ct
u(x,t):f(x C)—Ql_f($+c)_|_5/ CI)(:I:,t,z)dz, (328)
4 Jr—ct
where
1 b
O(z,t,z) = —F(z)Jo (—\/(z —z)’ — c2t2>
c c
g (%\/(2 —z)’ — cQtQ)
+blf(2) (3.29)

\/(z — .TL‘)2 — %12

and Jo(z) denotes the Bessel function of the first kind. Considering formu-
las (3.24 — 3.27), the solution of Eq. (3.23) describes the propagation of the
initial state f(z) of the Planck gas as the thermal wave with velocity c. It is

quite interesting to formulate the condition at which these waves propagate

without the distortion, i.e., conserving their shapes. The conditions for this

to happen can be formulated as

M,e2\* 2V,M

(3.30)
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When Eq. (3.30) holds, Eq. (3.25) assumes the form
u(z,t) 0%

orr  C dar
Equation (3.31) is the wave equation with the solution (for Cauchy initial

conditions (3.27))

(3.31)

r—ct z4ect) 1 pue
u(z,t) = flz—ct) + f(z +ct) + —/ F(z)d=. (3.32)
2 2¢ Jo—ct
Equation (3.30), the distortionless condition, can be written as
h
Vot, = 3~ h. (3.33)

We can conclude that in the presence of the potential V4, one can “observe”
the undisturbed quantum thermal wave (created at ¢ = 0) only when the
Heisenberg uncertainty relation (3.33) is fulfilled.

On combining Eq. (3.24) and (3.32), the complete solution of Eq. (3.23)
(for b =0) can be written as

wa:e%mpf@—df;ﬂ$+d%+%1ijgm4. (3.34)

One can say that the formula (3.34) is a very pessimistic one, because the
initial conditions (which operate at the Beginning) are smeared out over

a time scale of the order of the Planck time.

3.3 Klein-Gordon thermal equation for

a Planck Gas

As was shown in paper [3.5], the thermal properties of the Planck gas can
be described by hyperbolic quantum heat transport equation, viz.,
10*T M,0T 2VM,
- _I_ -
c? 0t? h Ot h?

T = V°T. (3.35)
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In Eq. (3.35), t, denotes Planck time, M,, is the Planck mass and V' denotes
the potential energy.

For the uniform Universe it is possible to study only one-dimensional
heat transport phenomena. In the following ,we will consider the thermal
properties of a Planck gas for constant potential V = V4. In that case, the

one-dimensional quantum heat transport equation has the form

LT M, 0T 2VeM, . 9°T
_ - _r- T = .
c? Ot2 + h Ot + h? ox?’ (3.36)

where formula for ¢, = i/M,c* was used [3.5]. In Eq. (3.36) ¢ denotes the
light velocity. As ¢ # oo, we cannot omit the second derivative term and

consider only Fokker-Planck equation

M, T | 2VoM, . _ 0°T

L 3.37
h Ot K2 0x? ( )
for heat diffusion in the potential energy Vg, or free heat diffusion
oT h O°*T
— = 3.38
ot M, 0z? ( )

It occurs that only if we retain the second derivative term we have the

chance to study the conditions in the Beginning.

Some implications of the forward and backward properties of the parabo-

lic heat diffusion equation were beautifully described by J. C. Maxwell [3.7]:
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“Sir William Thompson has shown in a paper published in the
Cambridge and Dublin Mathematical Journal in 1844 how to de-
duce, in certain cases the thermal state of a body in past time
from its observed conditions at present.

If the present distribution of temperature is such that it may
be expressed in a finite series of harmonics, the distribution of
temperature al any previous time may be calculated but if (as
in generally case) the series of harmonics is infinite, than the
temperature can be calculated only when this series is convergent.
For present and future time it is always convergent, but for past
time it becomes ultimately divergent when the time is taken at
a sufficiently remote epoch. The negative value of t for which the
series becomes ultimately divergent, indicates a certain date in
past time such that the present state of things cannot be deduced
from any distribution of temperature occurring previously to the
date, and becoming diffused by ordinary conduction. Some other
event besides ordinary conduction must have occurred since that

date in order to produce the present stage of things”.

As can be easily seen, the second derivative term in Eq. (3.35) carriers
the memory of the initial state which occurred at time ¢ = 0. If we pass
with ¢ — oo we lose the possibility of studying the influence of the initial
conditions at the present epoch as it is explained above by J. C. Maxwell.
It means that by limiting procedure ¢ — oo we cut off the memory of the
Universe.
For hyperbolic quantum heat transport, Eq. (3.36), we seek a solution
of the form
T(xz,t) = e /vu(z,t). (3.39)
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After substitution of Eq. (3.39) in Eq. (3.36), one obtains

1 %u  0%*u
— =0 3.40
¢z Jl?2  0x? 7 ’ ( )

where

2VoM, (Mpc)2
h? 2h

In the following, we shall consider positive values of Vg, V5 > 0, i.e., as well

q= (3.41)

as the potential barriers and steps.

The structure of the Eq. (3.40) depends on the sign of the parameter gq.
Let us define the Planck wall potential, i.e., potential for which ¢ = 0. From
Eq. (3.41), one obtains

h
Vp=—=1.2510" GeV, (3.42)
8tp
where tp is a Planck time. In Fig. 3.1, the parameter ¢ is calculated as

the function of V5. For ¢ < 0, i.e., when Vi < Vp Eq. (3.40) is the modified
telegrapher equation(MTE) [3.3]. For the Cauchy initial condition

aug’; 0) _ g(2), (3.43)

u(z,0) = [ (),

and the solution of Eq. (3.39) has the form [3.3]

w(z,f) = f(x—ct)—Ql-f(x—l—vt)_l_i x+ut Ol [\/ .

20 r—ct

(e/=q)t [o+et I [\/ q(c*t? — (x — ()2)} y 344
+ L [ Voo C. (3.44)

In Eq. (3.44), Iy, I denotes the Bessel modified function of the zero and

one, respectively.

— ()|
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Figure 3.1: Parameter ¢ (formula 3.36) as the function of the barrier height
(GeV).

When ¢ > 0, i.e., for V5 > Vp Eq. (3.40) is reduced to the Klein-Gordon
Fquation (K-GE), well known from its application in elementary particle

and nuclear physics.

For the Cauchy initial condition (3.43), the solution of K-GE can be

written as [3.3]

[(z—ct) + [(z + ct)
2

oo [ a0 [Vater = on] e (3as)

—ct

u(z,t) =

(¢

dc.

) /z-l-ct J1 {\/q(cth —(z— ()2)}

q
2 —ct \/c2t2 — (z— ()
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The case for ¢ = 0 was discussed in paper [3.5] and described the dis-
tortionless quantum thermal waves.

Both solutions (3.44) and (3.45) exhibit the domains of dependence and
influence on the modified telegrapher’s equation and Klein-Gordon equa-
tion. These domains, which characterize the maximum speed, ¢, at which
the thermal disturbance travels are determined by the principal terms of
the given equation (i.e., the second derivative terms) and do not depend on
the lower order terms. It can be concluded, that these equations and the
wave equation have identical domains of dependence and influence. Both
solutions (3.44) and (3.45) represent the distorted thermal waves in the field

of potential barrier or steps V.
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Chapter 4

Conclusions and perspectives

4.1 Quantum heat transport: from basics to

applications

The development of ultraintense laser pulses will allow the study of new
regimes of laser-matter interaction [4.1]. Lasers are now being designated [4.2]
which  will  eventually lead to light intensities, such that
IX2 >> 10" Wum?/cm?. Here [ is the laser intensity of the laser light
and A, is the wavelength in microns. In such intensities, the electron jitter
velocity in the laser electric field becomes relativistic: pg/me > 1, where
po 1s jitter momentum, m is electron rest mass and ¢ is the light velocity
in vacuum. When such lasers interact with an overdense plasma, it has

been shown, that a large number of relativistic superthermal electrons with

135
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energy Fpo
Ehot ~

1.410'8

X2
1+ E_ 1} mc? (4.1)

are produced [4.3]. Hence, Ej,; > mc* for [/\i > 410", For even higher
]/\i, FEhot can exceed the pair (e*, e™) production threshold. In the result,
the interaction of ultraintense laser beams with matter can produce copious
electron-positron pair, which represents a new state of matter with new ther-
mal and radiative properties drastically different from ordinary plasma [4.4].
For the moment, the production of electron-positron pair was realized in
SLAC experiment [4.5]. In that experiment a signal of 106 + 14 positrons
above background has been observed in collisions of a low-emittance 46.6
GeV electron beam with terawatt pulse from a Nd: glass laser at 527 nm
wavelength. The positrons are interpreted as arising from a two step process
in which laser photons are backscattered to GeV energies by the electron
beam followed by a collision between the high energy photon and several
laser photons to produce an electron-positron pair.

The creation of superthermal electron-positron pair is a relativistic ef-
fect. Both because the conversion of mass < energy and the relativistic
energies of created particle-antiparticle pairs. The natural frame to ana-
lyze the relativistic gases of particles is the quantum heat transfer equation
(QHT) [4.6].

The GeV energy of laser photons emitted in SLAC experiment are pre-
cursors of a new field of interdisciplinary applications of laser femtosecond
beams. This superenergetic photons can, in principle, create not only elec-
tron and nucleon fermionic gases but also the free quark-gluon gas (if it

exists!).
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In Chapter 2, the quantum heat transport equation (QHT) was formu-
lated. For electron and nucleon gases, the QHT has the form:

for electrons:

0T 9T*  h
T =

vire 4.2
ot? + ot Me ’ (4.2)

for nucleons: QTN apN .
N - = VTN, 4.
ot? ot mV (4.3)

In Egs. (4.2) and (4.3), m. and m are the masses of electron and nucleon

T

respectively and

h N h
Tf = — ™= 4.4
m.a2c?’ m(a®)2c?’ (44)
where 7¢ and 7V are the relaxation times for electrons and nucleons respec-
tively. The constants a = €*/hc,a® = m,/m (m, denotes the m meson
mass), are the fine-structure constants for electromagnetic and strong in-

teractions.

As was shown in Chapter 2, static spherically symmetric solutions of

Eqgs. (4.2) and (4.3) potentials has the form

Ve(r) = —g—e_R_e, g° = a hbarc (4.5)
r
gN

VN(r) = —Z—¢ Rn, gV = a’he, (4.6)
T

where the ranges of electromagnetic interaction (in solids) and strong inter-

action in nucleus equal

o
R. = : (4.7)
me.Qc
o
Ry = . (4.8)

masc
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The potentials Ve(r), VN(r) are the Debye-Hiickl potential and Yukawa
potential respectively [4.6].

It is quite natural to pursue the study of the thermal excitation to the
subnucleon level, i.e. quark matter. Analogously as for electron and nucleon
gases, for quark gas the QHT has the form

1 0*T1 1 aT11 a?)?
R (49

with af the fine-structure constant for strong quark-quark interaction. In

paper [4.7], a? was calculated, a? = 1. The heaton energy [4.6] for quark

gas can be defined as

My
3
where m, denotes the average quark mass and m, = 417 MeV [4.7]. With

(ah)? ¢, (4.10)

S

formula (4.10), the heaton energy for quark gas equals
El 2139 MeV = m,. (4.11)

It occurs that when we attempt to “melt” the nucleons in order to obtain the
free quark gas, the energy of the heaton is equal to the m - meson mass. This
is the thermodynamics presentation for the quark confinement. Moreover,
we conclude that only from hyperbolic quantum heat transport equation we
obtain finite mass for particle which mediates the strong interaction. For

parabolic heat transport equation ¥ — 0, i.e. (formula 4.4)

h hm
N
’ m(a®)?c?  mic? ’ (412)

hence, m, — co. Analogously from Fourier equation one can conclude, that
due to the fact that vy, — oo, all interactions must have zero range as from
formulas (4.7) and (4.8)

2h

RoNT— T 4,
m‘UZ’ 7q
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when vy, — o0.

Table 4.1: Ranges of interactions and heaton ener-
gies for quark, electron and nucleon gases

Range [m] Heaton energy [eV]

particles | QHT | Fourier | QHT Fourier

quarks 10-16 0 1.3910% 00

electrons | 10719 0 9 00

nucleons | 1071° 0 7108 00

In Table 4.1, the results for calculations of the ranges of interactions
and heaton energies for electron, nucleon and quark gases are presented.
From the inspection of the Table 4.1, we conclude that the Fourier equation
cannot be applied to study of the thermal processes on the atomic, nuclear

and quark scales.

4.2 Hierarchical structure of the thermal ex-

citation

In the book, the structure of thermal excitation induced by femtosecond
laser pulses was investigated. It was shown, that quantum of temperature
field, heaton, has the energy which depends on the two constants of nature
a = €e*/he, (fine-structure constant for electromagnetic infractions) and

B = m./m,, where m, is the electron mass and m, is the proton mass.
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Recently, the new field of thermal investigations of nanoparticles (i.e.,
particles with radius r of the order of nanometer) was developed [4.9]. In pa-
per [4.10] the model for the relaxation of thermal excitation of the nanopar-
ticles was derived and obtained to the study of Ga nanoparticles. It was
shown, that the thermodynamical properties of nanoparticle depend on its
geometrical dimensions.

The fact that the femtosecond thermodynamical properties of nanopar-
ticles depend on fine-structure constant a open the question: does the con-
stant « is really constant? Recently, [4.11] the search for fine-structure
constant was undertaken with positive results. It occurs that Aa/a ~ 107°.

In the paper [4.10], starting with atomic values of the relaxation time
7. and velocity of thermal wave vy, the microscopic model of the relaxation
processes in nanoparticles was formulated. Considering the quantum heat
transport equation

2pe e
reaag + a;; = ;i VATe (4.13)

and Pauli-Heisenberg inequality

Ar Ap > N'3h, (4.14)

the thermal velocity U}{ and relaxation time 7/ were calculated for nanopar-

ticles:
1
U}{ = N1/3vh (415)
™ = Nr. (4.16)

In formulas (4.15) and (4.16), N denotes the number of particles ( “partons”)

in a nanoparticle. For a nanoparticle with radius r, the number of “partons”
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equals
AT 3
r°pAZ
N=3"P77 (4.17)
]

where p is the density of nanoparticles, A is the Avogardo number, Z is
the number of the valence electrons and p is the molecular mass of the
nanoparticle material.

Two new interesting results can be concluded from formulas (4.15)-
(4.17). First of all, the radius of a nanoparticle is proportional to the number
of partons [4.9]:

r~ N3, (4.18)

In this aspect, the nanoparticle resembles the atomic nucleus in which [4.2]:
r~ AY3, (4.19)

In that case, A is the mass number of the nucleus (but not Avogardo num-
ber!). The formula (4.16) describes the quantization rule for the relaxation
time. It can be stated, that the 7 (atomic relaxation time) is the quantum
of relaxation time.

From the theoretical point of view there emerges a model of “free” elec-
trons in clusters as a system of Fermi (spin one-half) particles being quan-
tized in a global mean field. In a nanoparticle the global mean field is not
the screened Coulomb potential around the positive charge of the point —
like nucleus; it is more like cavity [4.10]. And the positive charge is smeared
out through the whole volume. The nanoparticles constitute a new family
of what may be called quasi-atoms or even more descriptively, giant atoms.
The analogy between real atoms and metallic nanoparticles has its limits.
First, the clusters can easily lose single atoms or be split into smaller clus-

ters. They are not indivisible the way atoms are. Unlike the atoms, where
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the positive charges are extremely hard frozen, the ionic charges in a clus-
ter may be highly excited thermally. As a result, the quantized electronic
motion is really taking place in a heat bath. The electrons may be ther-
mally excited (for example by ultrashort laser pulses) out of their ground
state [4.10] configuration and eventually build the thermal waves penetrat-

ing the nanoparticles.

Table 4.2: Hierarchical structure of the thermal excitation

Hierarchical T vy, Ey References
structures [s] [m/s] [eV]
h _ e 2
Atom — ac, o=z mev;y (a)
Molecule Z}LZ mevz ac( %)Z a? Z;L; mec? (b)
Nanoparticle
containing N mijvz N11/3 ac ]\7;;73 a2 (c)
N particles
Atomic nucleus h 5 a’c m,(a®c)? (d)
vah
s _ 2me
am,

a) J. Marciak-Kozlowska, M. Kozlowski, Lasers in FEngineering 5,
(1996) 79; b) M. Kozlowski, J. Marciak-Kozlowska, Lasers in Fn-
gineering 9 (1999) 103; ¢) M. Kozlowski, J. Marciak-Kozlowska,
Lasers in Engineering 10 (2000) 37; d) M. Kozlowski, J. Marciak-
Koztowska, Lasers in Engineering 7, (1998) 13.

At closer look, the giant atoms are conceptually hybrids between atomic
and nuclear quantum systems. The constant density (p) and the deforma-

bility are nuclear characteristic but the quantized constituents are electrons,
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as in atom. The quasi-atom can be looked at as an ordinary atom differing
only by having the nuclear charge distributed essentially through the whole
atom.

In Table 4.2, the hierarchical structure of the matter is presented. It
occurs that starting with nucleus, through the atom, the molecule and
the nanoparticle the relaxation time, the velocity of heat propagation and
heaton energy can be described with the help of two constants o = €?/he =
1/137, and 3 = m./m, = 1/1836.

We conclude, that despite the vast complexity of everything made out
of atoms and molecules the thermal properties of all entities are determined
by the values of just two numbers. Up to now we do not known why these
two numbers take the precise values that they do. Were they different
our Universe would be different, perhaps unimaginably different [4.12]. In
paper [4.13], the “ambient temperature” important for biological cells was

calculated

T ~ 1072 0moc? ~ 316 K = 40° C. (4.20)

In Fig. 4.1(a), the values of T, for different « are presented. When o
changes in the range -10% to 10%, the ambient temperature changes from
—20° C to 100° C. The problem “How constants are constants” is not an
academic one. A time-varying fine structure constant, «, can now be sought
with a new technique [4.11]. The inherent strength of the electromagnetic
force is characterized by «, the value of which determines how well atoms

hold together when heated up (compare heaton energies in Table 4.2).



144 Chapter 4. Conclusions and perspectives
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Figure 4.1: (a) Hierarchy of thermal excitation in nucleus, atom, molecule
and nanoparticle. (b) The ambient temperature as the function of the
change of fine structure constant. The experimental results of paper [4.11]
is also presented (lower circle).
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Now, a group of scientists led by John Webb has explored the possibility
of sampling the ancient light emitted by ancient atoms and comparing it
with modern light emitted by modern atoms. The researches looked at the
relative spacing of multiplets of absorption lines in quasar spectra, com-
paring lines of ionized iron with those of ionized magnesium. After taking
all corrections into account, the authors of the paper [4.11] place a limit
on Aa/a ~ —1.1 107°. In Fig. 4.1(b) the values of ambient temperature
for Aa/a = 0 (e = 1/137) and the Aa/a = 107*% (paper [4.11]) are

presented.
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Appendix A

Elliptic, parabolic and hyperbolic equations

The hyperbolic heat transport equation

1 9*T maT 2Vm, I’T

- —— 4+ T - — = Al
v2 Jt2 + h Ot + h? Ox? 0 (A1)

is the partial two dimensional differential equation (PDE). According to the
classification of the PDE, QHT is the hyperbolic PDE. To show this, let us
consider the general form of PDE, with only two independent variables &

and 7
(Aa—2 + Ba—2 + 08—2) V(¢ n) = (function of £&,n, W, 9 I
(A.2)

ov oV
o¢r " okn oy’ '
Then the equation is called
elliptic if B*—4AC <0,
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parabolic if B?*—4AC =0, (A.3)
hyperbolic if B*—4AC > 0.

For the Eq. (A.1) we have

i.e. B2—4AC = 4v~"' > 0 and according to (A.3) Eq. (A.1) is the hyperbolic
equation.

On the other hand, for the Fourier equation with potential term

maT 2Vm 0*T
—t+ —T — —— =0 A4
h Ot + K2 0z? (A4)

we have

A=0, B=0, C=-1,

i.,e. B?—4AC = 0 and Fourier equation is the parabolic PDE. One can say
that for heat transfer, described by Fourier equation, the velocity of heat

propagation v is infinite and A = 0.



Appendix B

Paradox of heat conduction

The fundamental problem of irreversible thermodynamics of fluids is the

determination of the 5 fields:

mass density px,t),
velocity vi(z,t), (B.1)
temperature T(x,t),

in all points of the fluids and at all times. For this purpose, we need field
equations and these are based upon the equation of balance of mechanism
and thermodynamics, viz. the conservation laws of mass and momentum
and the balance of internal energy

. a?}]‘
— =0
p+p 9z, ;
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6@5
i = 07 B.2
po Dz, (B.2)
. 0g; dv;
—L =
pe + aCL‘]‘ I 81:]-

where 1;; 1s the stress tensor, ¢; is the heat flux and e denotes a specific
internal energy. Assuming only linear relations between forces and fluxes

the phenomenological equations for heat flux can be written as

or
i = —K 9
7 0;1;2

(In the subsequent we limit ourselves to the thermal phenomena only).

Kk > 0. (B.3)

Insertion of (B.3) into the balance equation (B.2) leads to the temperature
field equation. The field equation is parabolic in character. In order to

emphasize this fact we investigate two special cases:

e the case of the fluid at rest with constant density; and

e the case of the fluid with constant density and temperature and with

velocity field of the form @ = (0, v(z',¢),0).

In these cases the system of Eq. (A.2) is reduced to a single partial differen-
tial equation for T'(z,t). Neglecting non-linear terms in gradients and time
derivatives, we obtain ’
aa—:: - p%AT, (B.4)
where e = (%)p is the specific heat at constant volume, a positive quantity.
The Eq. (B.4) is the diffusion equation.
We may write the solution of (B.4) for an initial value problem in infinite

space in the form

, _ 1 > (y —z)°
T(z,t)= m /_OO T(y,0)exp <_W) dy, (B.5)
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where D stands for x/per. This solution implies that 7'(z,?) is unequal
to zero for all © and ¢ > 0 even though 7'(x,0) may have support on a fi-
nite interval only. Thus, the temperature spreads through the whole space
infinitely fast, a phenomenon that has been called a paradox.

It is fair to say that few people had doubts about it, because the Eq. (B.5)
perfectly reflected the engineers’ and physicists’ interests. However, the de-
sire to have hyperbolic equation in thermodynamics and, hence, finite speeds
was main motivation for the development of extended thermodynamics. It
began with Cattaneo equation [1.1].

Cattaneo changed the formula for heat flux (B.3) and defined the non-

or  orT
¢4 = —kK (8:1;»_T8x»)' (B.6)

Finally, Cattaneo proceeds to modify Eq. (B.6), assuming that the operator
d

stationary Fourier law

7= is small such that
d\™ d
1—7— ~ 1 —. B.

( Tdt) T (B1)

In this approximation the Eq. (B.6) assumes the form (Cattaneo equation)
. oT

G +7q¢ = —KZ—. (B.8)
0@

If we combine Cattaneo equation with energy balance equation (B.2), we
obtain

— VAT, (B.9)

This is a hyperbolic heat transfer equation (if 7 > 0) and it predicts the
propagation of heat pulses at the finite speed (Appendix A)

v= ot ——. (B.10)
perT
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