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In order to interpret measured intensity autocorrelation functions obtained in evanescent wave scat-
tering, their initial decay rates have been analyzed recently [P. Holmqvist, J. K. G. Dhont, and P. R.
Lang, Phys. Rev. E 74, 021402 (2006); B. Cichocki, E. Wajnryb, J. Blawzdziewicz, J. K. G. Dhont,
and P. R. Lang, J. Chem. Phys. 132, 074704 (2010); J. W. Swan and J. F. Brady, ibid. 135, 014701
(2011)]. A theoretical analysis of the longer time dependence of evanescent wave autocorrelation
functions, beyond the initial decay, is still lacking. In this paper we present such an analysis for very
dilute suspensions of spherical colloids. We present simulation results, a comparison to cumulant
expansions, and experiments. An efficient simulation method is developed which takes advantage of
the particular mathematical structure of the time-evolution equation of the probability density func-
tion of the position coordinate of the colloidal sphere. The computer simulation results are compared
with analytic, first and second order cumulant expansions. The only available analytical result for the
full time dependence of evanescent wave autocorrelation functions [K. H. Lan, N. Ostrowsky, and
D. Sornette, Phys. Rev. Lett. 57, 17 (1986)], that neglects hydrodynamic interactions between the
colloidal spheres and the wall, is shown to be quite inaccurate. Experimental results are presented
and compared to the simulations and cumulant expansions. © 2012 American Institute of Physics.
[http://dx.doi.org/10.1063/1.4720069]

I. INTRODUCTION

The dynamics and microstructural ordering of macro-
molecules near interfaces is a fundamental scientific theme
that has drawn much attention in the last few years, and is
of importance in many industrial and technological applica-
tions. Examples are coating processes or any process where
particles are deposited onto surfaces,1 membrane filtering, or
any other process where dispersed particles migrate in porous
media,2 and more recently micro-3 and optofluidics.4 Interfa-
cial effects also play an important role in biological processes,
like protein adsorption,5 biofilm formation6 or the collective
motion of sperm cells near planar surfaces.7

In order to improve our understanding of these very com-
plex processes, we have, as a first step, to develop techniques
which allow us to study the underlying physics in detail on
model systems. In the present contribution, we are focus-
ing on evanescent wave dynamic light scattering (EWDLS)8, 9

as a method to study the near-wall dynamics of colloidal
spheres. In EWDLS experiments a laser beam is totally re-
flected off the interface between a glass wall and the sam-
ple solution, thereby creating an evanescent wave, which is
used to illuminate a region close to the wall. The extent of
the near-wall scattering volume is determined by the evanes-
cent wave penetration depth. By changing the incident angle
of the laser beam with respect to the interface, the penetra-
tion depth can be tuned, so that a system can be probed on
different length scales. Like for standard bulk dynamic light

a)Electronic mail: Maciej.Lisicki@fuw.edu.pl.

scattering, the scattered light intensity autocorrelation func-
tion (IACF) is measured. In case of suspensions of colloids
in contact with a wall, the near-wall dynamics of the colloids
is to a large extent determined by hydrodynamic interactions
with the wall which are mediated via the solvent. The hydro-
dynamic friction forces differ for motion of a colloid along
and perpendicular to the wall.10–12 This anisotropy in the hy-
drodynamic interactions with the wall in combination with
the evanescent illumination profile renders the interpretation
of EWDLS experiments much more involved as compared to
bulk scattering experiments. As a first step towards the inter-
pretation of EWDLS-correlation functions, Lan, Ostrowsky,
and Sornette8 derived an analytic expression for the EWDLS-
correlation function for spherical colloids and a hard wall, at
very low concentrations of colloids, with the neglect of hydro-
dynamic interactions. The deviation of this expression from
that for the bulk correlation function within their approxima-
tion is thus entirely due to direct interactions. Hydrodynamic
interactions, however, have a pronounced effect on the form of
the correlation function, and must therefore be accounted for.
It seems not feasible to derive a similar analytic expression
for the EWDLS-correlation function when hydrodynamic in-
teractions of the colloidal sphere with the wall are included.
It is possible, though, to derive explicit expressions for the
first cumulant, that is, the initial slope of the time depen-
dence of the EWDLS-correlation function, which expressions
have been verified experimentally.13, 14 A general expression
for the first cumulant for arbitrary concentrations of colloids
can be derived, which has been evaluated explicitly within a
leading order virial expansion, and by simulations for higher
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concentrations in an attempt to interpret earlier experimental
results at equally high concentrations.15–17

The first and second cumulant can be expressed in terms
of the hydrodynamic mobilities of a colloidal particle, where
a distinction must be made for motion perpendicular and par-
allel to the wall. The problem of determining friction and
mobility coefficients of a spherical particle near an interface
has a history dating back to works of Lorentz18 and Faxén.19

In the 1960’s, solutions of the Stokes equation, either nu-
merical, or in bipolar coordinates, have been given for cer-
tain types of motion by O’Neill and co-workers,20–22 who
also investigated the lubrication regime of the solution, and
by Brenner et al.10–12 In such a confined system the transla-
tional components of the mobility matrix μ tend to zero when
approaching the wall. This effect dominates in the dynam-
ics of the system. These predictions are verified in a num-
ber of experimental studies, using particles of different sizes,
and employing various techniques: optical trap microscopy,23

nano-PIV,24, 25 dynamic light scattering in presence of
two walls,26 low coherence DLS,27 resonance enhanced
DLS,28, 29 and EWDLS in a system bounded by one or two
walls.8, 13, 14, 30–32

In this work, we will need the values of the mobility ma-
trix elements for a single sphere as a function of the particle-
wall distance. To this end, Padé approximant representation
will be used, as outlined by Cichocki and Jones34 and ear-
lier works of Perkins and Jones.35, 36 This is a very convenient
tool, since it allows for analytic differentiation of the hydro-
dynamic mobilities in the whole range of distances from the
wall with high precision.

The initial temporal decay of EWDLS-correlation func-
tions for colloids near a wall with hard-core interactions, as
quantified by the first cumulant, has thus been addressed in
some detail (although some issues remain to be resolved).
Nothing has been done so far concerning the full time depen-
dence of correlation functions, beyond the time regime that is
described by the first cumulant expansion. In this paper, we
take the first step toward an understanding of the full time
dependence of EWDLS-correlation functions, where very di-
lute dispersions of spherical colloids are considered. Numer-
ical simulation results are compared to analytical first- and
second-cumulant approximations, and to experiments.

This paper is organized as follows. In Sec. II we present
the general theoretical framework on which the analytical cu-
mulant expansion as well as the simulations are based. In
Sec. III the cumulant expansion is discussed, and explicit ex-
pressions for the first two cumulants are derived. Numerical
results for the various contributions for varying penetrations
depths are given in the form of a table to enable easy and
accurate evaluation of first and second cumulants. The new
simulation method is presented in Secs. IV and V contains a
comparison of experimental results with the predictions from
simulations and the cumulant expansions.

II. ONE-PARTICLE ELECTRIC FIELD CORRELATION
FUNCTION

In an EWDLS experiment the illumination profile is
nonuniform. The evanescent wave enters the suspension (at

the location of the wall), and its intensity varies with the per-
pendicular distance z from the wall as exp (− κz). Typically,
the penetration depth κ−1 is comparable to the size of col-
loidal particles. Given an ensemble of spherical colloids in the
configuration {Rj }, the instantaneous scattered electric field
can be written as

E ∼
∑

j

exp
(
−κ

2
zj

)
exp(iq · Rj ), (1)

where q is the scattering vector. We assume that there are suf-
ficiently many colloidal particles within the volume that is il-
luminated by the evanescent wave and from which scattered
intensities are collected, that the scattered electric field is a
Gaussian stochastic process with mean zero, thus fulfilling
the assumptions of Wick’s theorem. This allows to express
the measured intensity correlation function

gI (t) = 〈I (t)I (t = 0)〉 = 〈E(t)E∗(t)E(t = 0)E∗(t = 0)〉
(2)

as a combination of averaged bilinear products of the scat-
tered field strength. As the system is translationally invariant
in the direction parallel to the wall, the average 〈E(t)E(t = 0)〉
equals 0. The resulting expression for the intensity correla-
tion function in terms of the electric field correlation function
is known as the Siegert relation, which reads

gI (t) = I 2(q)[1 + |ĝ(t)|2], (3)

where I (q) is the average light intensity value, which is time
independent, as the stochastic process E(q, κ; t) is station-
ary. Furthermore, the normalized electric field autocorrelation
function (EACF) is defined as

ĝ(q, κ; t) = 〈E(q, κ; t)E∗(q, κ; 0)〉
I (q)

, (4)

where 〈···〉 denotes equilibrium ensemble averaging. From
this definition, the initial value of the EACF is

ĝ(q, κ; t = 0) = 1. (5)

According to Eq. (1), the correlation function ĝ(q, κ; t), for
the general N-particle case, is proportional to

ĝ(q, κ; t) ∝ 1

N

N∑
i,j=1

〈
exp

{
− κ

2
(zi(t) + zj (0))

}

× exp{−iq · (Ri(t) − Rj (0))}
〉
. (6)

For κ = 0, corresponding to an unbounded fluid, the ther-
modynamic limit lim∞ of the right-hand side of the above
expression is well defined. However, for nonzero κ , the prob-
lem is more subtle and has been properly treated in Ref. 15.
As it has been shown there, one should then consider a cubic
box of volume V = LxLyLz, touching the wall with its side
with surface area A = LxLy. In the thermodynamic limit all
dimensions of the box are simultaneously stretched, keeping
the density of particles n constant. To assure existence of the
right-hand side of Eq. (6), a factor V/A must be added.

In a dilute system the description reduces to a one-
particle problem and we can neglect the terms with i �= j in
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FIG. 1. Geometry of the system. The conditional probability density depends
on the distance from the wall and length of the parallel displacement vector ρ.

the sum above. Restricting to one-particle contributions to ĝ

and expressing the average using the conditional probability
P (R, t |R0, 0) of a particle being in position R at time t, given
its position R0 at t = 0, we have

ĝ(q, κ; t) ∝ lim∞
V

A

∫
dR

∫
dR0e

− κ
2 (z+z0)e−iq·(R−R0)

×Peq (R0)P (R, t |R0, 0). (7)

The equilibrium distribution Peq(R) ∼ exp(−β�(z)) is deter-
mined by the interaction potential �(z), depending only on
the wall-particle distance z, and β = 1/kBT, where T is the
temperature and kB is the Boltzmann constant.

Because of translational invariance in the xy-plane, the
conditional probability P (R, t |R0, 0) will be denoted by P(ρ,
z, z0, t). The probability can only depend on the z positions,
the distance perpendicular to the wall, and the length of the
horizontal displacement vector ρ = |ρ|, defined by the rela-
tion

R − R0 = ρ + (z − z0)êz, (8)

and marked in Fig. 1. We similarly decompose q into compo-
nents parallel and perpendicular to the wall

q = q⊥ êz + q‖. (9)

Next, we introduce new variables (R + R0)/2 and R − R0 in
Eq. (7), and integrate over (x + x0)/2 and (y + y0)/2. This
leads to a factor A.

Since the normalization factor in Peq(R) is of the order of
V , after performing the thermodynamic limit, the right-hand
side of Eq. (7) becomes∫ ∞

a

dz

∫ ∞

a

dz0e
− κ

2 (z+z0)e−iq⊥(z−z0)e−β�(z0)

×
∫

dρe−iq‖·ρP (ρ, z, z0, t). (10)

Here, the lower integration limit is the radius a of the
spherical colloid, which corresponds to the closest approach
of the sphere to the wall. Using that the initial value
of the conditional probability distribution P (R, t = 0|R0, 0)
= δ(R − R0), we find the initial value of (10) as∫ ∞

a

dze−κze−β�(z). (11)

Using the normalization condition (5), we express the
EACF as

ĝ(q, κ; t)

=

∫ ∞

a

dz

∫ ∞

a

dz0e
− κ

2 (z+z0)e−iq⊥(z−z0)e−β�(z0)P̃ (q‖, z, z0, t)∫ ∞

a

dze−κze−β�(z)
,

(12)

where we introduced a two-dimensional Fourier transform of
the probability density function (pdf)

P̃ (q‖, z, z0, t) =
∫

dρe−iq‖·ρP (ρ, z, z0, t). (13)

This expression will be used as a basis for the Brownian dy-
namics simulation in order to obtain numerical values for the
EWDLS-correlation function. Note that in case of a hard-
core interaction potential (� = 0 when there is no overlap
and � = ∞ otherwise), the denominator in (12) reduces to
κ−1 exp(−κa), where a is the radius of the colloidal sphere,
yielding

ĝ(q, κ; t) = κ exp(κa)
∫ ∞

a

dz

∫ ∞

a

dz0e
− κ

2 (z+z0)e−iq⊥(z−z0)

× e−β�(z0)P̃ (q‖, z, z0, t). (14)

In order to explicitly evaluate the EACF in Eq. (14), the time
dependence of the (partially Fourier transformed) conditional
pdf P̃ (q‖, z, z0, t) must be specified. For this purpose we will
return to Eq. (7), in which the conditional probability distri-
bution P (R, t |R0, 0) satisfies the Smoluchowski equation for
a single colloidal sphere in presence of a wall

∂P (R, t |R0, 0)

∂t
= DP (R, t |R0, 0). (15)

Taking an arbitrary phase-space function h(R) and again de-
noting the potential of interactions with the wall by �, the
Smoluchowski operator D is given by

Dh(R) = ∂

∂R
· D(z) ·

[
∂

∂R
+ β

∂�

∂R

]
h(R). (16)

The diffusion matrix D(z) is connected with the mobility ma-
trix via the relation

D(z) = kBT μ(z). (17)

The mobility matrix μ, which relates the force acting on a
spherical particle to its velocity, has the following structure in
the considered frame of reference (z axis perpendicular to the
wall, pointing into the fluid)

μ(z) =
⎛⎝μ‖(z) 0 0

0 μ‖(z) 0
0 0 μ⊥(z)

⎞⎠ , (18)

where the elements μ‖, ⊥ depend only on the wall-particle
distance z.

As already discussed in the Introduction, the z-
dependencies of the scalar mobilities are well known.10, 11, 20
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For large distances from the wall (z → ∞), the mobility
functions μ‖, ⊥(z) tend to the bulk mobility coefficient μ0,
which is related to the bulk diffusion coefficient D0 = kBTμ0.
In the limit of infinite penetration depth (κ → 0), there are
no effects of interaction with the wall and expression (14)
reduces to the standard exponential expression ĝ(q, κ; t)
= exp{−D0q

2t} for free diffusion.
In Sec. IV we discuss how the Smoluchowski equation,

in combination with expression (14), will be used in a simu-
lation scheme to obtain numerical results for the correlation
function. These results will be compared to a cumulant ex-
pansion, which is discussed in Sec. III.

III. CUMULANT EXPANSION OF THE EACF

Using the formal solution of the Smoluchowski equa-
tion (15)

P (R, t |R0, 0) = eDtP (R0) = eDt δ(R − R0), (19)

the EACF can be expanded in powers of the time evolution
operator D, which leads to the cumulant expansion. Inserting
Eq. (19) into the expression for the EACF leads to

ĝ(q, κ; t) ∝
∫

dR
∫

dR0e
− κ

2 (z+z0)e−iq·(R−R0)

× exp{Dt}δ(R − R0)e−β�(z0). (20)

It is convenient to introduce the adjoint Smoluchowski opera-
tor defined by the scalar product∫

z>a

dRf (R)Dh(R) =
∫

z>a

dRh(R)D†f (R), (21)

where f and h are arbitrary phase-space functions. From
Eq. (16), the adjoint operator is found after partial integra-
tions, using that the hydrodynamic mobility functions vanish

on contact with the wall, and reads

D†h(R) =
[

∂

∂R
− β

∂�

∂R

]
· D(R) · ∂

∂R
h(R). (22)

Since D† does not act on the variable R0, we can perform
the integration over R0 in Eq. (20), due to the presence of the
Dirac delta distribution, to obtain

ĝ(q, κ; t) ∝
∫

dRe−β�(z)eiq·Re−κz/2 exp{D†t}e−iq·Re−κz/2.

(23)

Expanding the exponential for small times, the EACF can be
written as

ĝ(q, κ; t) = 1 + μ1t + μ2t
2

2
+ o(t2), (24)

where two first moments are equal to

μ1 = 〈ϕ∗D†ϕ〉
〈e−κz〉 , (25)

μ2 = 〈ϕ∗D†D†ϕ〉
〈e−κz〉 , (26)

with ϕ ≡ e−iq·Re−κz/2. Re-exponentiation of Eq. (24) thus
leads to

ĝ(q, κ; t) = exp

(
−	1t + 1

2
	2t

2 + o(t2)

)
, (27)

where the first and second cumulants 	1 and 	2 are related to
the moments in Eq. (26) as

	1 = −μ1, (28)

	2 = μ2 − μ2
1, (29)

the first moment takes the form

μ1 = 	1 =

∫ ∞

a

dz exp{−κz} exp{−β�(z)}
[
D‖(z)q2

‖ + D⊥(z)

(
q2

⊥ + κ2

4

)]
∫ ∞

a

dz exp{−κz} exp{−β�(z)}
. (30)

Introducing the penetration-depth averaged diffusion co-
efficients for dilute suspension, defined for an arbitrary
z-dependent function by

〈B〉κ =
∫ ∞
a

dz exp{−κz} exp{−β�(z)}B(z)∫ ∞
a

dz exp{−κz} exp{−β�(z)} , (31)

in correspondence with the averages defined for arbitrary con-
centrations in Ref. 15, we may conveniently write the first
cumulant as

	1 = q2
‖ 〈D‖〉κ +

(
q2

⊥ + κ2

4

)
〈D⊥〉κ . (32)

The second moment, needed for calculation of the second cu-
mulant, may be then derived from Eq. (26) as

μ2 =q4
‖
〈
D2

‖
〉
κ
+

(
q2

⊥+κ2

4

)2〈
D2

⊥
〉
κ
−2q2

‖

(
κ2

4
−q2

⊥

)
〈D‖D⊥〉κ

+ κq2
‖

〈
D‖

(
dD⊥
dz

− D⊥β
d�

dz

)〉
κ

− κ

(
q2

⊥ + κ2

4

) 〈
D⊥

(
dD⊥
dz

− D⊥β
d�

dz

)〉
κ

+
(

q2
⊥ + κ2

4

) 〈(
dD⊥
dz

− D⊥β
d�

dz

)2
〉

κ

. (33)
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This expression corrects the one given in the appendix of Ref.
14, which contains an erroneous sign in the fourth and fifth
term on the right-hand side.

We will now restrict to hard-core interaction potential

�(z) =
{

0 z > a,

∞ z ≤ a.
(34)

Evaluation of Eq. (33) for a hard-core potential �(z) is subtle.
The expression

−D⊥(z)β
d�

dz
e−β� = D⊥(z)

d

dz
(e−β�), (35)

within the averages, reduces then to D⊥(a)δ(z − a). With the
neglect of hydrodynamic interactions we have D⊥(z = a) �= 0,
and the last term on the right-hand side of Eq. (33) diverges,
and therefore the second cumulant does not exist. The short-
time expansion of the exact solution in this (unphysical) case,
which is discussed in Appendix B, shows that the first term
in the series is of order t, which guarantees the existence of
the first cumulant, while the next term is of order t3/2. Due to
hydrodynamic interactions, however, D(z) → 0 when z → a.
This assures that the right-hand side of Eq. (33) exists and has
a finite hard-core limit.

In this case the derivation, as we show in Appendix A,
leads to the second moment in the form

μ2 = q4
‖
〈
D2

‖
〉
κ
+

(
q4

⊥−κ4

16

) 〈
D2

⊥
〉
κ
−2q2

‖

(
κ2

4
−q2

⊥

) 〈
D‖D⊥

〉
κ

+ κq2
‖
〈
D′

⊥D‖
〉
κ

+
(

q2
⊥ + κ2

4

) 〈(
D′

⊥
)2

〉
κ
, (36)

where the prime denotes a derivative with respect to z. In addi-
tion, the penetration-depth average (see Eq. (31)) for the hard-
core potential (34) reduces to

〈B〉κ = κ

∫ ∞

a

dz exp{−κ(z − a)}B(z). (37)

The Appendix A contains also the proof that 	2, constructed
using μ1 and μ2 as in (29), is non-negative.

We calculated values of the coefficients appearing in both
cumulants in Table I using the method given by Cichocki and
Jones.34 In this method, Padé approximant representation is
used for the friction matrix, which relates velocity and angular
velocity to the force and torque acting on the sphere. By in-
version of the friction matrix we obtain the mobility matrix.37

Then, using Eq. (17), we calculate D⊥(z) and D‖(z).
For convenience, in Table I we rescaled the diffusion co-

efficients by the single-particle bulk diffusion coefficient D0

= kBT/6πηa, introducing

D̄⊥ = D⊥
D0

, D̄‖ = D‖
D0

, (38)

with the temperature T and η being the solvent viscosity. Once
the experimental parameters κ , q‖, q⊥, are known, the table al-
lows for a fast and straightforward calculation of two approx-
imations to the EACF (4) – by means of the first cumulant

ĝ(1)(t) = exp(−	1t), (39)

TABLE I. Components of first and second cumulant of the EACF for hard-
core interaction between the wall and the particle. The values of the cumu-
lants can be reproduced from Eqs. (32) and (36) by using the above averaged
values of the diffusion coefficients. The prime denotes derivative with respect
to z, and the bar denotes the diffusion coefficients rescaled by the single-
particle bulk diffusion coefficient D0, D̄⊥,‖ = D⊥,‖/D0.

First cumulant Second cumulant

κa
〈
D̄‖

〉
κ

〈
D̄⊥

〉
κ

〈
D̄2

‖
〉
κ

〈
D̄2

⊥
〉
κ

〈
D̄‖D̄⊥

〉
κ

a
〈
D̄′

⊥D̄‖
〉
κ

a2
〈
(D̄′

⊥)2
〉
κ

0.1 0.884 0.781 0.796 0.652 0.715 0.053 0.029
0.2 0.831 0.682 0.708 0.516 0.597 0.088 0.055
0.3 0.791 0.612 0.647 0.429 0.517 0.115 0.079
0.4 0.761 0.559 0.600 0.367 0.459 0.137 0.101
0.5 0.736 0.516 0.563 0.321 0.414 0.155 0.121
0.6 0.715 0.481 0.533 0.284 0.377 0.171 0.141
0.7 0.697 0.451 0.507 0.254 0.347 0.184 0.159
0.8 0.681 0.425 0.485 0.230 0.322 0.195 0.176
0.9 0.667 0.403 0.466 0.209 0.300 0.206 0.192
1 0.654 0.383 0.449 0.191 0.281 0.214 0.208

1.1 0.643 0.365 0.434 0.176 0.264 0.222 0.222
1.2 0.632 0.349 0.420 0.163 0.249 0.230 0.236
1.3 0.622 0.335 0.408 0.151 0.236 0.236 0.249
1.4 0.614 0.322 0.396 0.141 0.224 0.242 0.262
1.5 0.605 0.310 0.386 0.131 0.213 0.247 0.274
1.7 0.591 0.288 0.368 0.116 0.194 0.256 0.297
1.9 0.578 0.270 0.352 0.103 0.179 0.264 0.318
2 0.572 0.262 0.345 0.097 0.172 0.268 0.328
5 0.473 0.140 0.236 0.031 0.078 0.311 0.518
7 0.442 0.108 0.206 0.019 0.056 0.317 0.587
9 0.420 0.088 0.186 0.013 0.043 0.319 0.636

and the second cumulant approximation

ĝ(2)(t) = exp(−	1t + 1
2	2t

2). (40)

For hard-core interactions, the cumulant expansion (24)
can be performed only up to the third order for the following
reason. The diffusion coefficients are non-analytical at z = a,
and their lubrication asymptotic behaviour can be expressed
in terms of the dimensionless gap width between the surface
of the sphere and the wall ε = (z − a)/a as34

D̄⊥ ∼ ε + 1
5ε2 log ε, (41)

D̄‖ ∼ −2(log ε)−1. (42)

The adjoint Smoluchowski operator D† contains two deriva-
tives with respect to z, so that consecutive terms in the cu-
mulant expansion contain averages of higher order deriva-
tives of D⊥ and D‖. Careful analysis of the integrals in these
averages, taking into account the non-analytic behaviour of
the diffusion coefficients in the proximity the wall, given
by (41) and (42), leads to a conclusion that the third cumu-
lant exists, while the fourth cumulant and all higher ones do
not exist.

It is worth noticing that when the penetration depth
is small (which corresponds to large values of κa), the
penetration-depth averages of the diffusion coefficients in
Table I become small as well. The reason for such behaviour
is that in this case only the particles that are very close to the
wall contribute to the average. Moreover, for those particles,
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their diffusion coefficients decrease due to the hydrodynamic
interactions with the wall (see Eqs. (41) and (42)).

IV. SIMULATION PROCEDURE

A fast numerical scheme for the calculation of the EACF
for all times relies on the structure of the hydrodynamic mo-
bility matrix μ. Because of translational invariance in the xy-
plane parallel to the wall, the structure of the probability dis-
tribution function (pdf) in that plane is purely Gaussian, with
a z-dependent diffusion coefficient D‖(z). This leads to the
idea that the pdf for the Brownian particle can be recovered
by tracing only the trajectory in the z-direction, where the dif-
fusion coefficient is given by D⊥(z), and account for the Gaus-
sian evolution in the parallel plane in a different way. We start
from the Smoluchowski equation (15), written in a more ex-
plicit form as

∂P (ρ, z, z0, t)

∂t
= ∂

∂z

(
D⊥(z)

∂P (ρ, z, z0, t)

∂z

)
+D‖(z)

(
∂2

∂x2
+ ∂2

∂y2

)
P (ρ, z, z0, t). (43)

Because of symmetry, the pdf P depends only on the initial
and final vertical coordinates z and z0, and displacement in
the xy-plane parallel to the wall, represented by the vector ρ

(see Fig. 1).
Performing the Fourier transformation in the xy-plane,

and denoting the transformed pdf by P̃ ≡ P̃ (q‖, z, z0, t), as
in Eq. (13), we obtain an equation of the form

∂P̃

∂t
= ∂

∂z

(
D⊥(z)

∂P̃

∂z

)
− q‖D‖(z)P̃ . (44)

This can be regarded as a one-dimensional diffusion-reaction
equation, or a diffusion equation with a probability sink. The
reduction from the three-dimensional Smoluchowski equation
to one dimension allows for significant acceleration of the
simulation.

Putting Eq. (44) in the following form

P̃ (q‖, z, z0, t) = eLt P̃ (q‖, z, z0, t = 0), (45)

we can decompose the evolution operator L into two dis-
tinct parts: the diffusion operator L1 = ∂z[D⊥(z)∂z(·)], and
the probability-sink operator L2 = −q2

‖D‖(z). To obtain a
suitable numerical scheme, we use the Trotter identity33 and
treat each part in a different way. The evolution according
to L1 can be obtained from a Brownian dynamics numeri-
cal scheme. We generate trajectories of Brownian particles in
the z-direction. Obtained trajectories build the corresponding
probability distribution and are then used as an ensemble for
calculating averages. Every Brownian dynamics step is fol-
lowed by application of L2. We account for this type of evo-
lution by introducing a decay of P̃ , according to

P̃ (q‖, z, z0, t + 
t) = eL2
t P̃ (q‖, z, z0, t)

= P̃ (q‖, z, z0, t)e
−q2

‖ D‖(z)
t . (46)

The weight a particle contributes to the probability distribu-
tion is dependent on its trajectory. For evaluation of the dif-

fusion coefficients D‖(z) and D⊥(z), we use the results of Ci-
chocki and Jones.34

Results are presented in terms of dimensionless quanti-
ties, where lengths are scaled to the particle radius a, while the
timescale is set by the structural relaxation time τD = a2/D0,
i.e., the time needed for the particle to diffuse over its own
radius. For comparison with experiments, D0 is calculated for
given experimental conditions and the hydrodynamic radius
of the particles is determined from bulk measurements.

To generate the trajectories of Brownian particles, we
employ the first-order Ermak-McCammon scheme,38 modi-
fied by the presence of the sink term. Particle positions in the
z-direction are updated in each time step according to

z(t + 
t) = z(t) + D′
⊥(z)
t +

√
2D⊥(z)
t n, (47)

where n is a Gaussian random variable with zero mean and
unit variance. Next, we account for the probability-sink term,
according to Eq.(46). This procedure is repeated in every step
of the simulation. The reduction of a full three-dimensional
diffusion problem to a one-dimensional diffusion-reaction
equation allows for fast and efficient calculation of the EACF.
To obtain the correlation functions, N = 105 particle trajecto-
ries have been generated. For typical values of the parameters,
the relative error is of order of 0.3% at t = τD and of order
0.8% at t = 3τD. Therefore, the error bars are smaller than the
size of points and were not marked in the graphs.

Hydrodynamic interactions are of essential importance to
describe the dynamics of spherical colloids near walls. This
can be seen from Fig. 2, where a comparison of EACF’s is
made as obtained from our simulations, which account for hy-
drodynamic interactions, and the analytical solution8 (which
we will call LOS for Lan-Ostrowsky-Sornette), where hydro-
dynamic interactions are completely neglected. Figures 2(a)
and 2(b) are for two different penetration depths. The data
points are the simulation results and the lowest curve are the
results for a constant diffusion coefficient where hydrody-
namic interactions are neglected. As can be seen, there is a
large deviation between the results with and without hydro-
dynamic interactions, also for the initial slope.

Also included in Fig. 2 are the results from the first and
second order cumulant approximation. In Table II the accura-
cies of the first- and second-cumulant approximations (given
by Eqs. (39) and (40), respectively) are quantified as a func-
tion of the penetration depth. The two right columns give the

TABLE II. Values of the EACF ĝ, for varying penetration depth (left col-
umn), at which the deviation of the first cumulant approximation ĝ

(1)
1 (middle

column) and two-cumulant approximation ĝ
(2)
1 (right column) from the simu-

lation results are 5 %. The values of the scattering vector components are q‖a
= q⊥a = 1.

κa ĝ
(1)
1 ĝ

(2)
1

0.3 0.36 0.04
0.5 0.40 0.14
0.7 0.43 0.22
1 0.45 0.3
1.2 0.46 0.31
1.5 0.47 0.36
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FIG. 2. Numerical values for the EACF for two penetration depths at fixed
values of the wave-vector components parallel and perpendicular to the wall,
typical for experiments. The square points are simulation results. The dotted
curve is the EACF obtained by neglecting hydrodynamic interactions (LOS
solution). The dashed curve is an approximation by means of the first cu-
mulant, while the solid line is the second cumulant approximation, given by
Eqs.(39) and (40), respectively.

values of the EACF at which the first- and second-cumulant
expansion deviates by 5 % from its numerically calculated
value, respectively. For smaller values of the EACF the de-
viations are larger than 5%. Apparently, the second cumulant
approximation is almost exact for sufficiently large penetra-
tion depths, typically of order κa ∼ 1, and becomes less accu-
rate for small penetration depth (large κa). Then the cumulant
values calculated for large κa with the help of Table I can be
used to predict the initial decay rate of the EACF.

V. EXPERIMENTAL

The EWDLS experiments were performed on
poly(methyl methacrylate) particles, which were sterically
stabilized by a thin poly-12-hydrohystearic acid layer (pur-
chased from Andrew Schoffield, University of Edinburgh),
in a refracting index matching solvent mixture (n2 = 1.498)
consisting of cis-decaline and tetraline (20/80 w/w). The
solvent was chosen to minimize suspension turbidity and
thereby multiple scattering, as well as van der Waals interac-

FIG. 3. Sketch of an EWDLS setup. The sample cell is illuminated by the
evanescent wave of a totally internally reflected beam. The geometry of
beams determines the scattering vector q and the penetration depth 2/κ . The
magnitudes of the incident and scattered wave vectors are equal |ke| = |ks |.

tions. The particle concentration was determined by drying a
small aliquot of the suspension and weighing the remaining
polymer. We employed standard DLS measurements to
determine the particles hydrodynamic radius, where we used
three different methods to analyze the IACF namely cumulant
analysis, stretched exponential fitting, and inverse Laplace
transformation. The three methods gave a hydrodynamic
radius of RH = 98 nm varying less than 1 nm and indicated
a size polydisperisty of less than 5%. The latter finding is
confirmed by the observation that the suspensions crystallize
at sufficiently large particle volume fractions, which is
usually regarded as indication, that polydispersity effects can
be excluded. As the particles are not charged, and suspended
in a non-polar solvent with matching dielectric properties,
DLVO (Ref. 15) interactions between the particles as well
as between the wall and the particles can be neglected to a
good approximation and the system may be regarded as a
suspension of hard spheres.

The EWDLS experiments were performed with a home
built instrument, based on a triple axis diffractometer, which
has been described in detail elsewhere.14 As a light source
we used a frequency doubled Nd/Yag Laser (Excelsior; Spec-
tra Physics) with a vacuum wavelength of λ = 532 nm and a
nominal power output of 150 mW. In a typical EWDLS ex-
periment, a laser beam is incident on the interface between
the sample and the glass wall at an angle αi greater than the
critical angle, resulting in total reflection which is accompa-
nied by an evanescent wave within the sample (Fig. 3). The
wave penetrates the medium, and the penetration depth can
be expressed as

2

κ
= λ/2π

√
(n1 sin αi)2 − n2

2, (48)

where λ is the laser vacuum wavelength, n1 and n2 are the re-
fractive indices of glass and solvent, respectively. The angle
of incidence is as in Snell’s law, i.e., the angle between the
interface normal and the incident beam. The scattering vector
q = ks − ke is the wave vector difference between the scat-
tered wave and the evanescent wave. The components q‖ and
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FIG. 4. Experimental correlation functions at a volume fraction of 0.106, for two penetration depths κ = 1.30/a and 0.77/a. Here, q⊥ = 1.49/a is the same for
all experiments while q‖ varies from 1.06/a to 1.92/a, as indicated in the figures. The square symbols refer to simulation predictions, while the empty triangles
are the experimental results. The solid lines refer to the second cumulant approximation, and the dashed lines are the LOS predictions where hydrodynamic
interactions are neglected.

q⊥ parallel and perpendicular to the wall, respectively, can be
varied independently through variation of the angles αr and θ ,
where αr is the angle between the unit vector along ks , and the
wall, while θ is the angle between the projection of ks onto
the interface and ke. The two scattering-vector components
are related to these two angles as

q‖ = 2πn2

√
1 + cos2 αr − 2 cos αr cos θ/λ, (49)

q⊥ = 2πn2 sin αr/λ. (50)

The time dependence of the correlation function varies with
the penetration depth and the two components of the scatter-

ing vector. For smaller penetration depths the near-wall dy-
namics is probed, while for large penetration depths the form
of the correlation function will resemble that of the bulk cor-
relation function. For relatively large q‖ the diffusive dynam-
ics along the wall is primarily probed, while for large q⊥ the
diffusive motion from and away from the wall is probed.

It turns out that there are huge fluctuations in the scat-
tered intensity when the volume fraction of colloids is less
than about 0.1. This is probably due to a too small number
of colloids within the scattering volume. These huge fluctu-
ations render accurate measurements of the IACF long time
part unfeasible at very low concentrations. We therefore have
to restrict the experiments to a volume fraction of 0.1. At this
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FIG. 5. Experimental EACF showing a long time decay as described in the
text (symbols) together with the second cumulant (full line) and the LOS
(dashed line) predictions.

concentration the effects of inter-colloidal interactions can not
be fully neglected, so that only a semi-quantitative compari-
son to the theory is feasible.

Experimental results are given in Fig. 4, marked as empty
triangles, for a concentration corresponding to a volume frac-
tion of 0.106. The left panel of plot is for a small penetra-
tion depth (κa = 1.3), and the right panel is for a large pen-
etration depth (κa = 0.77). From top to bottom, the parallel
component of the scattered wave vector increases (from q‖a
= 1.06, 1.49, to 1.92). For all plots, the perpendicular compo-
nent of the scattered wave vector is fixed to q⊥a = 1.49. The
filled squares are the simulation results, the solid lines corre-
spond to the second cumulant approximation, and the dotted
lines to the LOS predictions, where hydrodynamic interac-
tions are neglected. As can be seen, the simulation results for
infinite dilution are in reasonable agreement with the exper-
iments. There are deviations at later times, which can have
two reasons. First of all the concentration is not low enough
to be able to completely neglect inter-colloidal interactions.
Bulk DLS measurements actually show that in the relevant q-
range the IACF decay rates measured at φ = 0.106 are about
30% smaller than those obtained at infinite dilution. Second,
in many EWDLS experiments a long time decay of the IACF,
as shown in Fig. 5, is observed, which so far is not yet well
understood. A possible reason is,40 unavoidable heterodyne
stray-light originating from surface defects which is scattered
by colloids in the bulk of the suspension into the detector. Due
to the scattering optics, only the light scattered from particles
which are located in the solid angle defined by the position
of the defect and the detector aperture will be detected. This
corresponds to scattering vectors in the range smaller than
�10−4 nm−1 for the given setup. Taking into account the par-
ticles bulk diffusion constant this will lead to relaxation times
around 10 s and above. This might partly explain the slower
decay of the experimental data as compared to the simulations
at longer times. In view of the good agreement between sim-
ulation data and the second cumulant expansion, as discussed
in Sec. IV, it is no surprise that the second cumulant ap-
proximation also describes the experimental data quite accu-

rately. Again, the correlation functions without hydrodynam-
ics (the dotted lines) are far off from both experiments and
simulations.

VI. CONCLUSIONS

Due to the complicated hydrodynamic interactions of
colloids and a wall, it is not possible to derive a closed
analytical expression for EWDLS-correlation functions.
At infinite dilution, where inter-colloidal interactions can
be neglected, the EACF for spherical colloids in bulk is
simply equal to exp {−q2 D0 t}, where q is the scattering
wave vector and D0 is the Einstein diffusion coefficient.
A similar expression for the full time dependence of the
EWDLS correlation, also at infinite dilution, has so far not
been reported. It seems that the full time dependence of
EWDLS-correlation functions, even for very dilute suspen-
sions of spherical colloids, requires cumulant approximations
and/or simulations. We made a comparison between first- and
first-two-cumulant approximations and results obtained from
a new simulation algorithm (with numerical errors that do not
exceed the size of points in Figs. 2 and 4). These results are
also compared to experiments on hard-sphere like colloids,
where the penetration depth and scattering wave vectors
are varied. The lowest volume fraction at which reliable
experimental results for the full time dependence of EWDLS-
correlation functions can be obtained is about 10%. The
first-two-cumulant approximation is surprisingly accurate,
especially for somewhat larger penetration depths. We quanti-
fied the accuracy of cumulant approximations as a function of
the penetration depth in Table II. This is important, since one
can rely on an analytic form for the correlation function based
on the known forms of the first two cumulants. Furthermore,
there is reasonable agreement between the simulations and
experiments. There are some deviations at long times, which
can be due to inter-colloidal interactions and/or to heterodyne
stray light that is scattered in forward direction by colloids
residing in the bulk. For future experiments it would be
desirable to use sample cells where the path length of stray
light through the bulk of the sample is minimized.

Now we have an understanding of the EWDLS-
correlation function for very dilute suspensions of spherical
colloids, the next step would be to include colloid-colloid
interactions, and to extend the present approach to non-
spherical colloids. This is work in progress.
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APPENDIX A: CALCULATION OF THE SECOND
CUMULANT

Using the definition of the adjoint Smoluchowski opera-
tor (21) and the property

DP eq(...) = P eqD†(...), (A1)

where Peq ∼ e−β� is the equilibrium probability distribution,
we can write the average in the second moment (26) in a very
convenient form

μ2 = 〈|D†ϕ|2〉
〈e−κz〉 . (A2)

We will now restrict ourselves to the hard-core interaction
potential, but generalization to arbitrary potential is straight-
forward. With α = κ

2 + iq⊥, and with ϕ defined as under
Eq. (26), we have

D†ϕ = ϕC, (A3)

where

C = (−αD′
⊥ + α2D⊥ − q2

‖D‖). (A4)

For the second moment we get then an expression in the form

μ2 = 〈e−κz|C|2〉
〈e−κz〉 = 〈|C|2〉κ ≥ 0. (A5)

Clearly, μ2 is non-negative. By direct substitution of C from
Eq. (A4) into the above equation and using the fact that by
partial integration it follows that

〈D′
⊥D⊥〉κ = 1

2
〈(D2

⊥)′〉κ =κ

2
〈D2

⊥〉κ (A6)

we arrive at an expression for the second moment (36). The
coefficients accompanying the combinations of powers of κ

and q‖, ⊥ have been tabulated to provide a convenient tool for
approximating the EACF (see Table I).

We will now show that the second cumulant 	2 is positive
in this case. Consider the following non-negative expression

(�) = 〈| − α(D′
⊥ − 〈D′

⊥〉κ ) + α2(D⊥ − 〈D⊥〉κ )

− q2
‖ (D‖ − 〈D‖〉κ )|2〉κ ≥ 0. (A7)

Again, by partial integration it can be shown that 〈D′
⊥〉κ

= κ〈D⊥〉κ . The above formula can be then rewritten using
the first cumulant (32) and Eq. (A4) as

(�) = 〈|C − 	1|2〉κ = 〈(C − 	1)(C∗ − 	1)〉κ
= 〈|C|2〉κ + 	2

1 − 2	1〈Re(C)〉κ = 	2, (A8)

where we have used the fact that 〈Re(C)〉κ = 	1. The second
term in the cumulant expansion is therefore non-negative, as
it should be.

APPENDIX B: SHORT-TIME EXPANSION OF EACF
WITH NO HYDRODYNAMIC INTERACTIONS

In the 1980s Lan, Ostrowsky, and Sornette,8 in an early
attempt to analyze the experimental data, developed an exact
expression for ĝ(κ, q; t) in case where the hydrodynamic in-
teractions with the wall are neglected, i.e., D is constant in the

half space occupied by the fluid and equals the single-particle
bulk diffusion coefficient D0. Their solution factorizes into
terms corresponding to the decay in the direction parallel and
perpendicular to the wall,

ĝ(q, κ; t) = g‖(q‖; t)gz(q⊥, κ; t) (B1)

The “parallel” part is the usual expression for ĝ in an un-
bounded fluid

g‖(q‖; t) = exp{−q2
‖D0t}, (B2)

while the “perpendicular” part can be conveniently writ-
ten in terms of error function for complex argument39 w(x)
= e−x2

erfc(−ix) as

gz(q⊥, κ; t) = 1

2

[(
1+ iκ

2q⊥

)
w (iZ) +

(
1− iκ

2q⊥

)
w(iZ∗)

]
,

(B3)

using a dimensionless quantity

Z =
√

D0t
(
iq⊥ + κ

2

)
= κ

√
D0t

2

(
1 + 2iq⊥

κ

)
. (B4)

The variable Z depends on two dimensionless parameters:
κ
√

D0t/2 compares the electric field penetration depth with
the distance diffused by the particle, and 2q⊥/κ compares the
penetration depth with the length scale on which the system
is probed. In case of no hydrodynamic interactions one can
obtain an exact short-time expression of the EACF using the
following representation of the error function for complex
argument39

w(x) =
∑∞

n=0

(ix)n

	(1 + n/2)
, (B5)

where 	 denotes the Euler Gamma function. Subsequent
terms of the expansion of g⊥ are of the order tn/2, as Z ∼ √

t .
Expanding both parts of ĝ up to the order t2, we get

g(q, κ, t) = 1−D0

(
κ2

4
+q2

⊥+q2
‖

)
t+4D

3/2
0

3
√

π

(
κ2

4
+ q2

⊥

)
t3/2

+D2
0

2

[
q4

‖ + 2q2
‖

(
κ2

4
+ q2

⊥

)
−

(
κ2

4
+ q2

⊥

) (
3κ2

4
− q2

⊥

) ]
t2 + O(t5/2). (B6)

From this expansion, one identifies the first cumulant as

	1 = D0

(
q2

‖ + q2
⊥ + κ2

4

)
, (B7)

which is in agreement with Eq. (32) when D⊥, ‖ = D0. The
next term contributes as t3/2. Therefore, the second cumulant
of ĝ(q, κ; t) does not exist and cannot be obtained as a special
case of Eq. (36). The reason for this is the boundary condition
on the wall, which is different in case where D = D0 on the
wall and D(z) → 0 as z → 0 in presence of hydrodynamic
interactions, as described in Sec. III.
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