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Abstract Interfaces and boundaries play an important role in numerous soft mat-
ter and biological systems. Apart from direct interactions, the boundaries interact
with suspended microparticles by altering the solvent flow field in their vicinity.
Hydrodynamic interactions with walls and liquid interfaces may lead to a signifi-
cant change in the particle dynamics in (partially) confined geometry. In these lec-
ture notes, we review basic concepts related to colloidal hydrodynamics and discuss
in more detail the effects of geometric confinement and the hydrodynamic bound-
ary condition which an interface imposes on a suspension of microparticles. We
start with considering the general characteristic features of low-Reynolds-number
flows, which are an inherent part of any colloidal system, and discuss the appropri-
ate boundary conditions for various types of interfaces. We then proceed to develop
a proper theoretical description of the friction-dominated, inertia-free dynamics of
colloidal particles. To this end, we introduce the concept of hydrodynamic mobility,
and analyse the solutions of the Stokes equations for single spherical particle in bulk
and in the presence of a planar solid-fluid, and fluid-fluid interfaces. Both forced and
phoretic motions are considered, with particular emphasis on the principles of elec-
trophoresis and the associated fluid flows. Moreover, we discuss the hydrodynamic
interactions of self-propelling microswimmers, and the peculiar motion of bacteria
attracted to slip and no-slip walls.
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1 Introduction

Mesoscale particles suspended in a viscous fluid are found in numerous technologi-
cal processes and products, including paints, cosmetics, pharmaceuticals, and food-
stuff. They are encountered also in biological processes involving complex fluids,
and animalcules such as eukaryotic cells and bacteria. Understanding the dynam-
ics of such systems, often referred to as passive or active soft matter systems, is
of importance not only for industrial development, materials science, microbiology
and health care, but also from the point of view of fundamental scientific prob-
lems such as in dynamic phase transitions. The importance of soft matter systems
derives also from their diversity, and the variety of tunable particle interactions giv-
ing rise to a plethora of phenomena that are partially still unexplored. An inherent
feature of such systems is the presence of a viscous solvent which transmits me-
chanical stresses through the fluid, affecting in this way the motion of suspended
particles. These solvent-mediated particle interactions are known as hydrodynamic
interactions (HIs). The presence of HIs affects the dynamic properties of soft matter
systems: In colloidal suspensions, e.g., they change the diffusion and rheological
suspension properties [1], and play an important role in the dynamics of DNA he-
lices and proteins in solution [2]. Moreover, HIs modify the characteristics of the
coiling-stretching transition in polymers [3], influence the pathways of phase sep-
aration in binary mixtures [4], alter the kinetics of macromolecules adsorption on
surfaces [5] and cell adhesion [6], and are at the origin of the flow-induced polymer
migration in microchannels [7].

There has been a growing interest in the physics of soft matter systems, particu-
larly triggered by the development of experimental techniques allowing for probing
soft matter on smaller length and time scales. The widespread use of advanced op-
tical microscopy and light scattering techniques in scientific and industrial labora-
tories has fostered the insight in the structure and dynamics of soft matter systems,
and has boosted the development of theoretical and numerical tools used in tackling
emerging problems. The complexity of the studied systems has considerably grown
over the past years. Yet, the underlying physical principles remain rather simple, so
that if not fully quantitative then at least qualitative predictions of dynamic proper-
ties can still be made.

Quite interestingly, many relevant hydrodynamic processes take place under (par-
tial) confinement such as in a vessel or channel, close to a cell wall, inside droplets,
in the presence of bubbles, or near macroscopic fluid interfaces. Since the confining
boundaries or interfaces can have a dominant effect on the system dynamics, it is
important to analyse in detail their effect on the fluid flow in their relative vicinity,
and on the motion of suspended particles.

The aim of these lecture notes is to give an elementary introduction into hydrody-
namic effects occurring in colloidal systems, with particular emphasis on interfacial
effects. There are various mathematical subtleties showing up in the theoretical and
computer simulation modelling of colloidal hydrodynamics. In this more elemen-
tary introduction, however, we leave these subtleties aside, focusing instead on the
physical principles without attempting to be mathematically rigorous.
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There exists a large number of overview articles and textbooks on the hydrody-
namics of soft matter systems, on different levels of complexity. As introductory
texts on colloid hydrodynamics, we recommend the textbooks by Dhont [1] and
Guazzelli and Morris [8], the lecture notes by Nägele in [9, 10], and the overview
articles by Hinch [11], Pusey [12], and Pusey and Jones [13]. More advanced top-
ics related to slow viscous flows are addressed in the excellent textbooks of Kim
& Karrila [14], Happel & Brenner [15], and Zapryanov & Tabakova [16]. Standard
textbooks on general hydrodynamics are the ones by Batchelor [17], and Landau
and Lifshitz [18]. We further recommend the textbook by Guyon et al. [19]. A set
of classical videos by G. I. Taylor [20] is recommended as an enjoyable illustration
of the general features of low-Reynolds-number hydrodynamics discussed in the
present notes.

Outline We start by introducing in Sec. 2 the Stokes (creeping flow) equations gov-
erning the low-Reynolds-number quasi-incompressible motion of a viscous fluid on
colloidal time and length scales. The linear Stokes equations are a special case of
the non-linear Navier-Stokes equations of incompressible flow, under the conditions
where inertia effects are negligible and the particle motion is viscosity dominated.
We show that these equations apply to flows related to the motions of suspended
colloids and unicellular animalcules. The Stokes equations are amended by bound-
ary conditions (BCs) on particle surfaces, confining interfaces and container walls.
In this context, we discuss as important examples the no-slip and Navier partial-slip
BCs for the fluid at a rigid surface, and the fluid-fluid BCs at a clean fluid-fluid
interface. In Sec. 3, we explain salient generic features of Stokes flows, namely
linearity, instantaneity, and kinematic reversibility. These features are used subse-
quently to infer some general knowledge on the motion of rigid microparticles in
a viscous liquid. In Sec. 4, we analyse the bulk hydrodynamics of an unbounded
colloidal suspension and the associated microparticles motion. For this purpose,
we introduce the important concept of hydrodynamic friction and mobility tensors.
Moreover, we discuss a versatile set of elemental solutions of the Stokes equations
from which the flow profiles in simple situations are readily constructed. As exam-
ples, we discuss the motion of a slender particle (a rod) where the shape anisotropy
results in anisotropic friction, and a spherical particle driven by body forces (i.e.
gravitational settling), or by external fields such as temperature or electric potential
gradient (phoretic motion). We introduce the notion of many-body hydrodynamic
interactions (HIs) between microparticles, and outline how these interactions can be
accounted for theoretically. The section is concluded by the lubrication analysis of
the motion of two nearly touching spheres, and of a sphere near a flat no-slip wall.

Sec. 5 is dedicated to single-particle dynamics in the presence of a flat interface.
We show how the solutions of the Stokes equations in (partially) confined geome-
try can be constructed using a superposition of the previously introduced elemental
flow solutions, and discuss the implications of various interfacial boundary condi-
tions on the dynamics of a suspended colloidal particle. In particular, we discuss
the translational and rotational motion of a spherical particle near a no-slip wall,
and comment on generalizations of this system to elastic particles and deformable
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interfaces. In Sec. 6, we explore the self-propulsion of microswimmers such as bac-
teria and spermatozoa, both in the bulk fluid and near to a confining surface. Our
concluding remarks are contained in Sec. 7.

2 Fluid-particle dynamics on microscale

In this Section, we elucidate some of the basic features of microscale flows. Due to
the typical small sizes and velocities of microparticles, the flow on these scales can
be treated as inertia-free and dominated by viscous effects. The neglect of inertia in
the Navier-Stokes equations of hydrodynamics leads to the linear Stokes equations.
These equations need to be supplied with appropriate boundary conditions at inter-
faces confining the fluid. We introduce and discuss the BCs for a no-slip rigid wall,
a clean fluid-fluid interface, and a partial slip surface.

2.1 Low-Reynolds-number flow

On length and time scales where continuum mechanics applies, the flow of an in-
compressible Newtonian fluid of shear viscosity η and constant mass density ρ f is
governed by the Navier-Stokes equations,

ρ f

(
∂u(r, t)

∂ t
+u(r, t) ·∇u(r, t)

)
= −∇p(r, t)+η∇

2u(r, t)+ f(r, t), (1)

∇ ·u(r, t) = 0, (2)

where u(r, t) is the velocity field at a point r at time t, and p(r, t) is the pressure
field. The shear viscosity η and the fluid mass density ρ f are constant for a New-
tonian fluid. The second equation follows from the continuity equation for a fluid
of constant mass density, and is referred to as the incompressibility condition. The
pressure in an incompressible fluid is determined only up to an additive constant, for
p appears in the Navier-Stokes equations in form of its gradient only. The external
body force field per unit volume acting on the fluid is denoted by f(r, t). It can be
due, e.g., to an applied electric or magnetic field, and to particle surfaces or system
boundaries confining the fluid. For the latter two cases, the body forces are singu-
larly concentrated on two-dimensional surfaces. For surface hydrodynamic bound-
ary conditions (BCs) involving velocities only, the effect of a constant gravitational
field on the fluid can be included conveniently by redefining the pressure according
to p→ p+ρ f g · r where g is the gravitational acceleration. A particle of uniform
mass density ρp and volume ∆Ωp experiences in the fluid the buoyancy-corrected
gravitational force

(
ρp−ρ f

)
∆Ωpg acting at its center-of-mass (Archimedes prin-

ciple).
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Fig. 1 Sketch of fluid flow
around a microparticle la-
belled i with translational
and rotational velocities Vi
and ΩΩΩ i, respectively, in the
presence of other immersed
particles. Even if the rigid
particles are free to trans-
late and rotate in response to
an externally imposed flow
(freely advecting particles),
they still modify the flow pat-
tern through the BCs on their
surfaces.

Consider now an ensemble of rigid, impermeable microparticles immersed in the
fluid (Fig. 1). In many but not all cases, the particles have no-slip surfaces. This
means that the velocity of the fluid at every point of a particle surface must match
the velocity of the particle at this point. The motion of the material on the surface
and inside a rigid particle i can be described by

u(r) = Vi +ΩΩΩ i× (r−Ri), (3)

where Vi and ΩΩΩ i are the particle’s translational and angular velocity vectors, re-
spectively, and Ri is a body-fixed reference point which can be taken, e.g., to be
the centre-of-mass position. The particles influence the flow outside through the
boundary conditions applied to their surfaces. Another influence on the fluid flow is
caused by the boundary conditions on external boundaries such as container walls,
or at infinity.

The Navier–Stokes Eqs. (1) include both inertial effects, represented by the two
terms on the left-hand side proportional to ρ f , and fluid viscosity effects which are
included in the viscous force density term term η∇2u on the right-hand side. The
relative importance of these effects can be read off from the dimensionless Reynolds
number Re. Suppose a sphere of radius a translates through the fluid with velocity
of magnitude V . The Reynolds number associated with the fluid flow caused by the
sphere’s motion is

Re =
ρ fVa

η
∼ |u ·∇u|
|η∇2u|

. (4)

For nano- to micrometer-sized particles, which includes in particular colloidal sys-
tems, the Reynolds number is typically of the order of 10−3 or even smaller [12].
This implies an important feature of so-called low-Reynolds-number flows: Iner-
tial effects can be neglected as compared to the viscous ones so that the non-linear
convective term u ·∇u in Eq. (1) can be taken as zero. In the absence of intrinsic
time scales originating from high-frequency oscillatory or ultra-strong forcing of
particles, the linear time derivative term on the left-hand-side of the Navier-Stokes
equation can be likewise neglected.
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The description of microparticle-induced hydrodynamics in a Newtonian fluid
reduces then to the Stokes equations,

−∇p(r)+η∇
2u(r)+ f(r) = 0, (5)

∇ ·u(r) = 0, (6)

also referred to as creeping flow equations. These equations have no explicit time
dependence and are linear in the velocity and pressure fields.

Eq. (5) expresses the balance, at any instant of time and for every fluid element,
of pressure gradient, viscous and external force densities. In the absence of external
force density, the instantaneous values of velocity and pressure, and consequently
the fluid stress field, depend solely on the momentary configuration and shape of
particles and system boundaries, and on the surface boundary conditions taken at the
particle surfaces and system boundaries. There is thus no dependence on the earlier
flow history. Note that motion under Stokes flow conditions can be unsteady, with
the velocities of particles and surrounding fluid changing as a function of time. An
important example illustrating this fact is the settling of a spherical particle towards
a stationary wall in its vicinity. This settling is discussed in Subsec. 4.7 in relation
to the effect of lubrication. At any instant, however, the net force and torque on each
particle and each fluid element are zero, with accordingly instantaneous linear force-
velocity relations characteristic of non-inertial fluid and immersed microparticles
motions. The flow and pressure fields pattern readjust quasi-instantaneously to the
moving system boundaries and particle surfaces.

In consequence, the hydrodynamic drag force Fh and torque Th acting on a par-
ticle due to its surface friction with the surrounding fluid are exactly balanced, ac-
cording to

Fh +F = 0 ,
Th +T = 0 , (7)

by a non-hydrodynamic ’external’ force F and torque T, respectively, caused by di-
rect interactions with other particles and system boundaries, and by external force
fields. Only a force-free and torque-free particle will move quasi-inertia-free. There
is an addition a so-called thermodynamic force contribution to F proportional to the
system temperature T which accounts for the on average isotropic thermal bombard-
ment of a microparticle by the surrounding fluid molecules. If viewed on the time
and length scales where creeping flow applies this bombardment leads to an erratic
Brownian motion of the particles which persists even in the absence of additional
force contributions to F.

The strength of the Brownian motion of a particle can be characterized by the
diffusion time τD which is the time required by a particle to diffuse by Brownian
motion over a distance comparable to its size. For a spherical particle of radius a,
this characteristic time is

τD =
a2

D0 ∝ η
a3

T
, (8)
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where
D0 =

kBT
Cηa

, (9)

is the single-sphere Stokes-Einstein translational diffusion coefficient. This coef-
ficient decreases with increasing particle size and fluid viscosity, and it increases
with increasing temperature T . The numerical coefficient C depends on the hydro-
dynamic boundary condition for the flow at the sphere surface. According to [1]〈

[R(t)−R(0)]2
〉
= 6D0t , (10)

where D0 quantifies the magnitude of the mean-squared displacement, after the time
span t, of the position vector R of an isolated Brownian particle immersed in an
unbounded fluid. The brackets denote here an average over an equilibrium ensemble
of non-interacting Brownian particles.

The diffusion time grows strongly with increasing particle size. For water at room
temperature as the suspending fluid, it increases from τD ∼ 5 ms for a = 0.1 µm to
τD ∼ 0.3 h for a = 5 µm. Brownian motion is thus negligibly small for particles of
several micrometers in size or larger. These particles are therefore referred to as non-
Brownian. A dispersion of non-Brownian particles requires external driving agents
to keep them in motion. This agent can be gravity, provided some of the particles
are lighter or heavier than the fluid, or an applied electric, magnetic or temperature
gradient field. Additionally, the particles are hydrodynamically moved by incident
flows created by moving system boundary parts (e.g., in cylindrical Couette cell
flow) or applied pressure gradients (e.g., in pipe flow).

The distinguishing and to some extent surprising properties of fluid flows de-
scribed by the Stokes equations, and of the associated microparticles motions, are
and important theme of the present lecture notes, in addition to interfacial effects
related to the fluid dynamics. In our discussion we will make ample use of stream-
lines pattern in order to visualize Stokes flow fields formed around particles in the
bulk fluid and at interfaces. A streamline is tangential to the local velocity field at
any fluid point, and for stationary flow it agrees with the pathway of a fluid element.
For each streamline segment dr, we have thus

dr×u(r) = 0 . (11)

The three Cartesian components of this vectorial equation form a coupled set of
differential equations, for given u(r), from which the streamlines can be determined.

2.1.1 Hydrodynamic stresses

To every solution, {u, p}, of the Stokes equations, referred to as a Stokes flow so-
lution, one can associate a fluid stress field described in terms of a stress tensor σσσ .
This symmetric second-rank tensor consists of nine elements σi j with i, j ∈ {1,2,3}
which at a given fluid position r have values depending on the considered (rectan-
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gular) coordinate system spanned by its three basis vectors {e1,e2,e3}. The stress
tensor has the following physical meaning: Imagine a small planar surface element
dS in the fluid with unit normal vector n. The hydrodynamic drag force, dF, exerted
by the fluid on this surface element, located on the side where n points to, is then
given by dF = σσσ · ndS. The tensor (matrix) element σi j is therefore the hydrody-
namic force component per unit area (referred to as stress) acting in the direction
ei on an areal element with normal vector equal to e j [17]. The stress field of an
incompressible Newtonian fluid is given in terms of the flow fields u and p by

σσσ(r) =−p(r)I+ηE(r), (12)

where I is the unit tensor, and

E(r) = [∇u(r)]+ [∇u(r)]T (13)

is the symmetric fluid rate-of-strain tensor, with the superscript T denoting the trans-
position operation.

While the polyadic tensor expression for σσσ(r) in Eqs. (12) and (13) applies to
all coordinate systems, the explicit form of its elements depends on the selected
coordinates [15]. In Cartesian coordinates where the orthonormal basis vectors
{e1,e2,e3} = {ex,ey,ez} are constant, the stress tensor elements are simply given
by

σi j =−pδi j +η

[
∂ui

∂ r j
+

∂u j

∂ ri

]
, (14)

where {r1,r2,r3}= {x,y,z} are the Cartesian components of the fluid element posi-
tion vector r.

The hydrodynamic stress field depends on the properties of the fluid flow which
in turn is influenced by the characteristics of the particles and confining walls,
namely their porosity and fluid permeability, and other non-hydrodynamic surface
properties such as surface charge density, van der Waals attraction etc. The knowl-
edge of stresses in the fluid is of importance, since it allows for the calculation of
hydrodynamic drag forces and torques acting on bodies immersed in the fluid. It is
also of key importance for the calculation of rheological properties such as the ef-
fective suspension viscosity of a fluid with immersed microparticles [21]. Once the
hydrodynamic stresses are known, the hydrodynamic drag force and torque, Fh and
Th, acting on a particle can be calculated as the sum (integral) of the local surface
force and torque contributions, respectively, according to

Fh =
∫

S
dSσσσ(r) ·n(r)

Th =
∫

S
dS (r−R)×σσσ(r) ·n(r) (15)

The surface S can be replaced by any fluid surface S∗ enclosing the considered
particle without intersecting another one, provided there is no body force density
acting on the enclosed fluid part, since the hydrodynamic force and torque on a
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particle are transmitted loss-free through the fluid [9]. The vector n is normal to the
surface of the particle and points into the fluid. See here Fig. 2.

 R

 S
 S

*

 n

r

 σ ⋅n

Fig. 2 Surface stress or traction (force per area), σσσ(r) · n(r), exerted by the fluid on a particle
surface element dS at position r. The surface normal vector n points into the fluid. The vector R
points to a particle-fixed reference point. For the calculation of drag force and torque, the surface
S∗ enclosing the particle can be chosen rather arbitrarily (see text).

It is important to realize that the arguments used to neglect the effects of inertia
and the explicit time dependence of the fluid velocity and pressure fields are not
applicable (i) if one studies processes on very short time and length scales where
the time-dependence of u and p becomes essential, such as sound propagation in the
fluid, and (ii) for processes which occur at different length scales so that the effective
Reynolds number becomes large as compared to one. For a detailed discussion of
the involved time and length scales of fluid and immersed microparticles, we refer
to [1, 8, 12].

2.2 Boundary conditions

Fluid flows close to interfaces are strongly influenced by the interfacial proper-
ties. There exists an abundance of soft matter systems in which interfacial effects
are highly influential on the dynamics. Notable examples of interfaces include: A
smooth solid wall or particle surface; an engineered nano-structured surface; an
interface between two immiscible fluids such as water and oil; liquid-gas free inter-
faces such as for gas bubbles in a liquid; surfactant-covered interfaces, and polymer-
coated and grafted particle surfaces. To describe and understand the effect of inter-
faces on the flow behaviour, one needs to consider the appropriate boundary condi-
tions imposed on the fluid at the surface or interface. The no-slip boundary condition
for rigid impermeable surfaces noted in Eq. (3), first described by Navier in 1823,
has been given considerable attention over the past two centuries, concerning in
particular its applicability and validity [22]. It is generally accepted as the proper
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Effective (partial) slipLiquid interface

Fluid I

Fluid II

Perfect slip

Fig. 3 Schematic flow profiles close to different interfaces as discussed in the notes. Left: A clean
interface between two immiscible fluids of different viscosities η1 < η2, where dux/dz changes
discontinuously. Middle: Flow above a stationary rigid partial-slip surface, characterized by the
Navier slip length ` equal to the distance to an apparent no-slip plane inside the stationary wall.
Right: Plug-like flow above a stationary (perfect) slip wall where `= ∞. The same flow is observed
near an ideal liquid-gas interface where η2/η1 = 0, and where the gas phase is situated in the lower
half-space z < 0.

boundary condition for smooth solid hard walls, and for rigid particles with smooth
non-permeable surfaces and sizes exceeding ∼ 30 nm.

We discuss in the following two additional types of boundary conditions which
are also frequently applied to soft matter systems. The first one concerns a clean
liquid interface between two immiscible Newtonian fluids of viscosity ratio

λ = η2/η1, (16)

with the associated near-interface flow sketched in the left part of Fig. 3. The ap-
propriate boundary conditions are here the continuity of tangential velocities and
tangential (shear) stresses of the two fluids at the interface, and the impermeabil-
ity of the interface. The latter condition implies the equality of the normal velocity
components of both fluids. Assuming a planar interface stretching out in the x− y
plane at z = 0, these continuity conditions read

u(1)z = u(2)z , u(1)x,y = u(2)x,y , E(1)
xz = λE(2)

xz , E(1)
yz = λE(2)

yz , (17)

where the E(i)
αβ

are the Cartesian elements of the rate-of-strain tensor E of the fluid
introduced in Eq. (13). The liquid-liquid BCs include as limiting cases firstly a free
interface (e.g., a water-air interface) where the viscosity of the second fluid is neg-
ligible, so that λ = 0, and secondly a fluid above a rigid no-slip wall with the latter
described as a fluid of infinite viscosity, so that λ →∞. In fact, λ = 0 implies a (per-
fect) slip surface of zero tangential stress while λ →∞ implies the no-slip condition
u(z = 0,x,y) = 0 for a stationary wall.

The equality of the tangential stresses of both fluids at their interface is valid
for uniform interfacial tension γ only, i.e. for constant free energy per area went
into the formation of the interface. Any mechanism creating a gradient, ∇γ , in the
interfacial tension breaks the shear stress continuity and drives motions in the two
fluids. These motions are referred to as Marangoni flows [23]. One possible way to
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cause Marangoni flow is to establish a sufficiently strong temperature gradient along
the interface [19].

For a planar liquid-liquid interface with zero motion of both fluids, the hydro-
static pressure on both sides is the same in order to maintain a stationary interface.
However, for a stationary spherical droplet of radius a in a stationary fluid. the hy-
drostatic pressure in its interior exceeds the outside fluid pressure by the capillary
(Laplace) pressure contribution γ/a. Any deformation of the droplet away from its
equilibrium spherical shape of constant curvature and minimal surface free energy
will cause flows and associated droplet motion which tend to re-establish its spher-
ical shape. See Ref. [23] for a lucid discussion of droplet motions and Marangoni
flow effects.

The second type of a boundary condition describes the partial-slip of fluid along
the surface of a fluid-impermeable solid material, as illustrated in the middle and
right parts of Fig. 3 where the solid extends to z < 0 with the fluid residing on top.
The so-called Navier BCs for a stationary partial-slip surface demand, in addition to
a vanishing normal velocity component at the surface, the proportionality of surface-
tangential fluid velocity and shear stress according to

t ·u =
`

η
t ·σσσ ·n, n ·u = 0 . (18)

Here, ` is the Navier slip length, and t and n are tangential and normal unit vectors
at a surface point. For the planar stationary surface at z = 0 depicted in Fig. 3, the
partial-slip BC for the surface-tangential velocity part simplifies to

ux,y = `
∂ux,y

∂ z
, uz = 0. (19)

The slip length ` is here the distance into the interior of the wall for which the near-
surface flow linearly extrapolates to zero, defining in this way an effective no-slip
plane at z = −`. In the limit ` = 0, the no-slip BC with zero surface slip velocity
is recovered. In the opposite limit `→ ∞, the free-surface boundary condition of
zero tangential stress is obtained, with fluid slipping perfectly along the surface in a
plug-flow-like manner.

The Navier partial-slip BCs can serve as an effective description for a hydropho-
bic wall, a rigid particle with surface roughness or corrugations [24], and to some
extent also for a wall grafted with polymer brushes acting as depletants [25]. More-
over, it can be used for a fluid-solid interface with free polymers in the fluid, and
a polymer depletion layer at the interface [26]. An effective (apparent) fluid slip is
also found in electrokinetic [21] and other phoretic flows where the no-slip boundary
condition holds right at the wall and particle surfaces. Outside a thin fluid boundary
layer with viscous flow, however, flow slip is observed [22]. In Subsec. 4.5, effective
slip is discussed in relation to phoretic motion of a microsphere.
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3 Generic features of Stokes flows

Creeping flows have interesting generic properties which appear counter-intuitive
from the perspective of our macroscopic world experience where inertia and high-
Reynolds-number effects prevail, with the flow governed by the non-linear Navier-
Stokes equations. The three generic features of the Stokes equations are linearity,
kinematic reversibility, and instantaneity. In this section, their implications for the
colloidal dynamics are described.

3.1 Linearity

The Stokes equations are linear in contrast to the underlying Navier-Stokes equa-
tions. This means that the pressure, velocity and stress field are linearly related. The
consequences of linearity are far-reaching. For instance, in a slow viscous channel
flow, on doubling the applied pressure gradient a doubling of the flow rate is ob-
tained. Moreover, a twofold increase in the rate of flow of viscous fluid through a
porous medium will results in an unchanged pattern of streamlines of the flow, but
with the magnitude of the fluid elements velocities doubled. For a sphere settling in
a viscous liquid, doubling the settling velocity gives rise to a correspondingly dou-
bled hydrodynamic drag force. The fact that the hydrodynamic force on a particle
and the associated velocity (increment) are linearly related is exploited further in
Subsec. 4.1, where we discuss the hydrodynamic friction and mobility coefficients
in many-particle dispersions.

For linear evolution equations such as the Stokes equations, the superposition
principle is valid: If u1 and u2 are two velocity solutions of the Stokes equations,
then

u = λ1u1 +λ2u2 (20)
∇p = λ1∇p1 +λ2∇p2 (21)

are likewise solutions with coefficients λ1 and λ2. Here, ∇pi is the pressure gradient
field solution to the Stokes equations associated with ui. For a given flow problem
boundary value problem, the unique velocity field u can be obtained from the lin-
ear superposition of two (simpler) flows with unchanged geometry, provided the
velocity BCs of the two partial flows superimpose correspondingly, with the same
coefficients, to the BCs of the full flow solution.

The linearity of the Stokes flow solutions can lead to rather unexpected con-
clusions; Consider a particle, moving through the fluid with the velocity V with
Cartesian components Vi, i = 1,2,3. The particle experiences then the drag force
−F which we can decompose into forces acting along the axes of the coordinate
system according to F = {Fi}. From linearity, we conclude that the force F1 acting
on a particle moving with velocity (V1,0,0) must be of the form F1 = αV1, with
α being a positive constant. Imagine now that the particle is a cube with its edges
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aligned along the coordinate axes. Then, from symmetry, F2 = αV2 and F3 = αV3,
and in general F = αV. Hence the drag force experienced by a cube does not de-
pend on its orientation, and it is collinear with the velocity. As everyday experience
teaches us, this is obviously not valid any more for large Re. In fact, a more general

Fig. 4 A cube translating through a viscous fluid with velocity V under the influence of force F
acting on its centre. For highly symmetric particles, linearity of Stokes equation implies that the
force and velocity are collinear, with the drag force being independent of the particle orientation.

statement is true: Any homogeneous body with three orthogonal planes of symmetry
(such as spheroids, rods, cylinders, disks, or rings), will translate under the action
of force without rotating, although in general with a sidewise velocity component
perpendicular to the driving force. The sidewise motion is absent only if the force
is acting along the rotational symmetry axis of the particle. In addition, force and
velocity are collinear independently of the particle orientation for highly symmetric
particles, namely for a homogeneous sphere and the five regular polyhedra (tetra-
hedron, cube, etc.), and also for homogeneous bodies made from the polyhedra by
equally rounding off their corners, provided the hydrodynamic BCs are homoge-
neous [9, 11]. For this statement to be true, the particle centre must be selected as
the reference point.

As noted earlier, linearity can be used to decompose a complex flow problem
into a number of simpler ones: one can for instance consider the problem of a spher-
ical particle translating and rotating in a viscous fluid as the two separate problems
of sole rotation and sole translation of a sphere, provided a corresponding linear
decomposition of the surface boundary conditions (3) is used. Such a decompo-
sition proves useful in various numerical schemes for the calculation, e.g., of the
hydrodynamic drag forces on an ensemble of spherical particles at a given fixed
configuration. One has to bear in mind, however, that the imposed BCs must be
simultaneously satisfied at the surfaces of all the particles. For more than two parti-
cles, this requires in general a complicated numerical analysis.

3.2 Instantaneity

On the time and length scales where significant motion of colloidal microparticles
is observed, the accompanying viscous flows are described by the quasi-stationary
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linear Stokes equations which have no explicit time dependence. As noted before,
this means that the pressure and velocity fields adjust themselves instantaneously, on
the coarse-grained colloidal time and length scales, to changes in the driving forces.
The flow disturbances propagate in the fluid with an (apparently) infinite speed. A
slight change in a particle’s position or velocity is instantaneously communicated
to the whole system. The fluid flow {u, p} at a given time is therefore fully de-
termined by the instantaneous positions and velocities of the particle surfaces and
wall boundaries, independently of how the momentary boundary values have been
reached (history independence). In particular, the instantaneous fluid flow pattern
does not depend on whether the boundary velocities will stay constant in the future
or change, such as in oscillatory motions.

This feature of Stokes flows appears counter-intuitive on the first sight. Yet, there
exist nice demonstrations highlighting its validity, provided the frequency of oscilla-
tory boundary motions and the probed distances are not too large. Otherwise, hydro-
dynamic retardation effects come into play reflecting the actually non-instantaneous
spreading of flow perturbations by pressure (sound) waves, and by the diffusional
spreading of flow vorticity in the viscous fluid with an associated vorticity diffusion
coefficient, η/ρ f , equal to the kinematic viscosity [19, 27].

3.3 Kinematic reversibility

Kinematic reversibility is a remarkable feature of viscosity-dominated flows. The
linearity of the Stokes equations in the flow fields {u, p} and the applied forces,
including the ones due to the fluid boundaries, implies that under the reversion of
the driving forces, the flow fields are also reversed to {−u,−p}. Moreover, if the
forces and also the history of their application is reversed, all fluid elements retrace
their motion in the opposite direction along the unchanged streamlines.

t1 t2 > t1 t3 > t2

Fig. 5 Ink-spreading experiment by G. I. Taylor. An ink droplet inserted in a high-viscosity New-
tonian fluid at time t1 is smeared out in a thin concentric filament when the inner cylinder is rotated
subsequently. The initial droplet shape is recovered after reversal of the rotation, independent of
the rotation rate.
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Kinematic reversibility was beautifully demonstrated in G. I. Taylor’s video [20]
from 1966, where a drop of coloured ink is immersed in highly viscous glycerine, to
maintain low-Reynolds-number flow, filling the gap between two concentric cylin-
ders (Couette cell geometry). See here Fig. 5. On rotating the inner cylinder, the
drop is smeared out along concentric streamlines into a thin filament. When the ro-
tation is reversed subsequently by the same number of turns, the original droplet
is reconstituted up to a small amount of blurring originating from the irreversible
residual Brownian motion of the dye particles. The length of the filament depends
on the number of turns only, independent of the rate at which the inner cylinder is
rotated. This nicely illustrates the earlier discussed instantaneity of Stokes flows.

The kinematic reversibility in combination with specific symmetries puts general
constraints on the motion of microparticle in a viscous fluid. A classical example is
a spherical rigid microparticle settling under gravity near a stationary vertical hard
wall (see Fig. 6). While the particle is rotating clockwise during settling, owing to
the larger wall-induced hydrodynamic friction on its semi-hemisphere facing the
wall (see Subsec. 5.2 for details), a question arises whether it will approach the wall
or recede from it. Given that gravity acts vertically downwards parallel to the wall,
assume for the time being that the sphere approaches the wall while settling (see Fig.
6(a)). Kinematic reversibility requires that once the direction of the motion-driving
gravitational force is reversed, the Stokes flow pattern remains unchanged except for
the directional reversal of the fluid elements motion, provided the translational and
angular particle velocities are likewise reversed. According to Fig. 6(b), this implies
that the sphere sediments upwards while receding from the wall. On rotating Fig.
6(b) by 180◦ around the horizontal symmetry axis line going through the sphere
centre, Fig. 6(c) is obtained in conflict with Fig. 6(a) wherein the sphere had been
assumed to approach the wall. A contradiction is avoided only if the sphere remains
at a constant distance from the wall while settling, as in Fig. 6(d). An analogous
reasoning can be employed to show that in Poiseuille channel flow, a non-Brownian
microsphere translates along the flow streamline, without any cross-flow velocity
component.

As discussed in Subsec. 5.3, a non-spherical rigid particle, such as a rod, can
move sidewise while settling and so approach the vertical wall. The wall-induced
rotation of the particle can lead to a subsequent motion away from the wall. A de-
formable liquid droplet settling close to a vertical wall will deform into a shape
which makes it glide away from the wall.

While non-spherical rigid particles and deformable particles can migrate across
streamlines under Stokes flow conditions, this is not the case for an isolated non-
Brownian spherical particle. However, the non-linear hydrodynamic coupling of the
motions of three or more nearby spheres in a driven system such as in the pipe flow
of a suspension, can lead to irregularly looking trajectories which depend sensitively
on the initial particle configuration. Any reversibility-breaking slight perturbation
of the initial particle configuration caused, e.g., by direct particle interactions in
the form of surface roughness, flexibility or electric charge, or residual Brownian
motion and inertia effects, becomes exponentially amplified, giving rise to chaotic
trajectories causing cross-stream migration and the mixing of the particles. A macro-
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(a) (b) (c) (d)

Fig. 6 A non-Brownian sphere settling with translational velocity V under gravity of field strength
g near a vertical hard wall. The principle of kinematic reversibility in conjunction with the flow
geometry leads to the conclusion that the sphere maintains a fixed distance from the wall while
settling and rotating. See the text for details.

scopic manifestation of this so-called (anisotropic and temperature-independent) hy-
drodynamic diffusion is the flow-induced migration of spherical particles in concen-
trated suspensions from the regions of high to low shear rates. The shear-induced
diffusion has an application, e.g., in the inside-out microfiltration (enrichment) of a
particle suspension pumped through a microfluidic filter pipe where it reduces the
formation of irreversible particle deposits at the filter membrane (fouling reduction).

Already on the particle pair-interaction level, the kinematic reversibility of rigid
particles is broken by physical processes modifying the Stokes equations or the
evolution of the particle trajectories such as non-Newtonian terms in the stress-shear
relation (cf. Eq. (14)) occurring in viscoelastic media (e.g., in polymer solutions and
melts), short-range repelling forces, significant Brownian motion and non-inertial
hydrodynamic effects. For example, for Reynolds numbers significantly larger than
zero, a particle immersed in a pipe flow experiences an inertia-induced lift force
driving it away from the pipe wall. This so-called tubular pinch or Segre-Silberberg
effect, named after its discoverers, appears already on the single-particle level and
should be distinguished from the many-particle shear-induced diffusion effect which
takes place under Stokes flow conditions of zero inertia.

4 Colloidal hydrodynamics in bulk fluid

On the time and length scales of colloidal dynamics, the fluid flow is described by
means of the Stokes equations supplied by appropriate boundary conditions at inter-
faces and surfaces of suspended particles. Since the dynamics of these particulates
is often of interest, one needs to construct a description of their interaction including
the solvent-mediated hydrodynamic effects. In this Section, we introduce the notion
of friction and mobility, and show how linearity of the Stokes equations can be used
to construct relations between forces and velocities of particles in a many-body sys-
tem in the case where the interfaces are far away and the fluid may be regarded
to be unbounded. We then proceed to explore the basic solutions of the creeping



Colloidal Hydrodynamics and Interfacial Effects 17

flow equations for point forces which are the simplest approximation to the flow
field generated by the immersed particles. The set of solutions is then extended by
multipole expansion to include more subtle flow effects. We apply this formalism to
investigate the motion of shape-anisotropic slender bodies, such as rod-like colloids,
and later on construct a solution for a spherical particle moving through the fluid as
a result of a force, or by a phoretic motion. We conclude this Section by a discussion
of more advanced approaches to hydrodynamic interactions and of the lubrication
effects which are essential when the particles are very close together.

4.1 Friction and mobility of microparticles

We outline here the theoretical framework for the description of dynamics of a dis-
persion consisting of N rigid microparticles of basically arbitrary shape evolving
under Stokes flows conditions [14]. Consider the particles to be at the instantaneous
configuration X = (R,ΘΘΘ) = (R1, . . . ,RN ,ΘΘΘ 1, . . . ,ΘΘΘ N), with body-fixed particle po-
sition vectors {Ri} and orientations {ΘΘΘ i}. Here, ΘΘΘ i abbreviates the three Euler an-
gles characterizing the orientation of the particle i.

Suppose now that the particles are subjected to external forces F = (F1, . . . ,FN)
and torques T = (T1, . . . ,TN) where we have introduced 3N-dimensional super-
vectors F and T for notational convenience. As a consequence of this forcing,
motion of the particles and the fluid is induced, and the particles acquire quasi-
instantaneously the translational velocities V = (V1, . . . ,VN) and the rotational ve-
locities ΩΩΩ = (ΩΩΩ 1, . . . ,ΩΩΩ N). We have assumed a quiescent fluid for simplicity, mean-
ing that the fluid would be at rest in the absence of particles. This implies, in par-
ticular, that there is no ambient flow caused, e.g., by confining boundary parts in
relative motion. In the inertia-free Stokes flow system under consideration, each ex-
ternal force and torque are balanced by hydrodynamic drag force and torque. Owing
to the linearity of the Stokes equations and the hydrodynamic boundary conditions,
the forces (torques) and translational (rotational) velocities are linearly related ac-
cording to (

V
ΩΩΩ

)
= µµµ(X) ·

(
F
T

)
, (22)

where the 6N×6N hydrodynamic mobility matrix µµµ has the four 3N×3N subma-
trices

µµµ(X) =

(
µµµ tt(X) µµµ tr(X)
µµµrt(X) µµµrr(X)

)
. (23)

The superscripts tt and rr label the purely translational and rotational mobility ma-
trix parts, respectively. The off-diagonal matrices with superscripts tr and rt de-
scribe the hydrodynamic coupling between translational and rotational particle mo-
tions. The tensor elements of these matrices have a straightforward physical mean-
ing. To give an example, the tensor [µµµ tt(X)]i j relates the instant force F j on particle
j with the translational velocity Vi of particle i, in a situation where particles differ-
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ent from j are all force- and torque-free. The coupling tensor [µµµrt(X)]i j, on the other
hand, relates the force F j on particle j to the resulting angular velocity ΩΩΩ i of particle
i. It is important to note here that the mobility matrix µµµ and its 4N2 mobility tensor
elements depend on the configuration of the whole system, i.e. the instant positions
and orientations of all particles, as well as on the particle shapes and sizes, and the
surface boundary conditions. Finding the mobility tensor is therefore a very difficult
problem which for arbitrary particle shapes can be addressed only numerically for a
small number of particles.

It should be further noted that the form of the mobility matrix depends also on the
selection of reference points R inside the particles. For these points, the so-called
center of mobility of each particle should be selected which in Stokes flow dynamics
plays a similar role as the center-of-mass position in Newtonian dynamics. For an
axisymmetric homogeneous rigid body, the center-of-mobility and the center-of-
mass are both located on the symmetry axis but they coincide not necessarily. They
coincide, however, for a homogeneous sphere. Different from the center-of-mass,
the center-of-volume is depending on the shape of the particle surface only, for
uniform surface BC, independent of the mass distribution inside the particle. For a
more detailed discussion of this important issue, see [14, 28].

In the simplest case of hydrodynamically non-interacting spherical particles of
equal radius a, the tt and rr tensors reduce to the 3×3 unit matrices,

[µµµ tt(X)]i j = µ
t
0δi j, [µµµrr(X)]i j = µ

r
0δi j (24)

describing the free translation and rotation of isolated spheres. This limiting case is
approached for an ultra-dilute dispersion where the mean distance between two par-
ticles is very large compared to their sizes. The single-particle mobility coefficients
of a no-slip sphere are explicitly (see Subsec. 5.2)

µ
t
0 =

1
6πηa

, µ
r
0 =

1
8πηa3 (25)

with Vi = µ t
0Fi and ΩΩΩ i = µr

0 Ti. The tr and rt mobility tensors are here zero imply-
ing that there is no coupling between the translational and rotational motion of the
particles.

Eq. (22) describes the so-called mobility problem where the forces and torques
acting on the particles are given, and the translational and rotational velocities are
searched for. The inverse problem where the velocities are given and the forces are
searched for, referred to as the friction problem, is straightforwardly formulated by
introducing the 6N×6N friction matrix

ζζζ = µµµ
−1 . (26)

defined as the inverse of the mobility matrix. That this inverse exists is due to the
fact that µµµ is symmetric and positive definite, for all physically allowed particle con-
figurations. This follows from general principles of the Stokes flows, and it implies
physically that the power supplied to the particles by external forces is completely
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and quasi-instantaneously dissipated by heating the fluid. We quantify this statement
for the motion of N torque-free microparticles in an infinite quiescent fluid where
the rate of change of the particles kinetic energy, W (t), instantaneously dissipated
into heat by friction is given by

0 <
dW (t)

dt
=

(
F
T

)
·
(

V
ΩΩΩ

)
=

(
F
T

)
·µµµ(X) ·

(
F
T

)
. (27)

Since the 6N-dimensional supervector with the particles forces and torques as
elements is arbitrary, the second equality expresses the positive definiteness of the
6N×6N symmetric mobility matrix µµµ tt . Any violation of the positive definiteness of
this matrix would imply thus the violation of the second law of thermodynamics. In
specializing Eq. (27) to torque-free and force-free particles, respectively, it follows
readily the positive definiteness likewise of the 3N×3N symmetric submatrices µµµ tt

and µµµrr for all physically allowed particle configurations X.
The knowledge of the configuration-dependence of µµµ , or likewise that of ζζζ , al-

lows for exploration of the microparticles’ dynamics using numerical simulations,
without having to address explicitly the accompanying fluid flow. For torque-free
particles large enough for their Brownian motions to be negligible, the 3N coupled
first-order equations of motion for the particles centre-of-mobility positions, in pres-
ence of external and also non-hydrodynamic particle interaction forces all subsumed
in F, are given by

dR(t)
dt

= µµµ
tt (R(t)) ·F(t) . (28)

Integration of these evolution equations gives the positional trajectories of the parti-
cles. This is referred to as Stokesian dynamics [29]. Due to the non-linearity of the
Stokesian dynamics evolution equations in Eq. (28), originating from the non-linear
positional dependence of the mobility matrix, the trajectories are highly sensitive
to the initial particle configuration: A slight change in the initial configuration can
lead to large differences in the trajectorial evolution. Deterministic chaos in the tra-
jectories of as little as three hydrodynamically interacting non-Brownian particles
settling under gravity has been observed first in the point-particle limit [30] and later
also for extended spheres [31].

For smaller Brownian particles, on the other hand, the mobility matrix is needed
as input not only for the generation of Stokesian particle displacements, but also for
the generation of additional stochastic displacements caused by the thermal fluc-
tuations of the solvent. These displacements are the essential ingredients of the
so-called Brownian dynamics numerical scheme for the generation of Brownian
stochastic trajectories [32]. For a pedagogical introduction to Brownian dynamics
simulations, see [33]. From the generated trajectories, quantities such as the particle
mean-squared displacement in Eq. (10) can be calculated, for the general case of
interacting microparticles. The positive definiteness of the mobility matrix plays a
key role for Brownian particles. It guarantees that a perturbed suspension evolves
towards thermodynamic equilibrium, in the absence of external forcing and ambient
flow.
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Complementary to the Stokesian dynamics and Brownian dynamics simulation
schemes, the evolution of microparticle dispersions is studied theoretically also in
terms of the probability density distribution function P(X, t), where P(X, t)dX is the
probability of finding N particles at time t in a small 6N-dimensional neighbourhood
dX of the configuration X. The evolution equations for P(X, t) for Brownian and
non-Brownian particles under Stokes-flow conditions are, respectively, the many-
particle Smoluchowski diffusion equation and the Stokes-Liouville equation. An
introductory discussion of these equations is given in Ref. [9].

4.2 Method of singularity flow solutions

Linearity of the Stokes equations allows for the representation of the fluid velocity
and pressure in dispersions of microparticles in terms of a discrete or continuous
superposition of elementary flow solutions. We discuss in the following a very useful
set of singularity incompressible flow solutions for an unbounded quiescent fluid
which decay all to zero far away from a specified fluid point where they exhibit a
pole singularity [14, 34, 35]. For simple geometries, this set can be profitably used
to obtain, with little effort, exact Stokes flow solutions by linear superposition. We
will exemplify this for the forced and phoretic motions of a microsphere, and for
the velocity field of a point force in front of a fluid-fluid interface (see Subsec. 5.1).
To solve the latter problem, an image method is used similar to that in electrostatics
[36]. For more complicated geometries such as for a complex-shaped particle, the
singularity method remains useful to gain information about the flow at far distances
from the particle, in the form of a multipolar series. We shall demonstrate this in our
discussion of the swimming trajectories of a self-propelling microswimmer near a
surface.

The important observation is that for a given solution, {u, p}, of the homoge-
neous Stokes equations, its derivatives are likewise flow solutions. We can thus
construct a complete set of singularity solutions by taking derivatives of increas-
ing order, of two fundamental flow solutions, namely those due to a point force and
a point source.

We should add that for dispersions of spherical particles, specialized elementary
sets of Stokes flow solutions can be constructed, which are different from the sin-
gularity set discussed below, and which account for the high symmetry of spheres.
These specific sets are used in numerically precise methods [37, 38] of calculating
the many-sphere hydrodynamic mobility and friction coefficients required in Brow-
nian and Stokesian dynamics simulations.

Point-force solution and Oseen tensor: The fundamental flow solutions, {uSt, pSt},
due to the body force density f(r) = δ (r− r0)F of a point force F = Fe, directed
along the unit vector e and acting on a quiescent, infinite fluid at a position r0, can
be obtained in several ways (see [39]). We only quote here the result
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uSt(r) = T(r− r0) ·F (29)

pSt(r) =
1

4π
US(r− r0) ·F. (30)

The second-rank Oseen tensor, T(r), has the form

T(r) =
1

8πη

1
r
(111+ r̂r̂) , (31)

where 111 is the unit tensor, r= rr̂, and r̂r̂ is a dyadic tensor formed with the positional
unit vector r̂. In Cartesian coordinates, the Oseen tensor elements read

Ti j =
1

8πη

(
δi j

r
+

rir j

r3

)
. (32)

The pressure field pSt(r) due to the point force at r0 is expressed here in terms of
the elementary source vector field

US(r) =
r̂
r2 =−∇

1
r
. (33)

If multiplied by a constant c > 0 with the dimension of volume per time, c US(r)
describes the radially directed outflow of fluid from the source point r0 = 0. The
flow rate through a surface S enclosing the source point is thus equal to

c
∫

S
dSUS ·n = 4πc . (34)

The elementary velocity field uSt(r) of a point-force is called a Stokeslet of
strength F in the direction of e, and with the centre at r0 where it has a simple pole
singularity. Note here that Ti j is the i-th component of the Stokeslet velocity field
generated by a unit force acting in the j direction. The streamlines of the Stokeslet
are drawn as dashed lines in the left part of Fig. 9, together with those generated
by a spherical no-slip particle subjected to the same force. The hydrodynamics of
a translating sphere is discussed in detail further down. A significant difference be-
tween the two streamlines pattern exterior to the impermeable sphere is visible only
near its surface. The streamlines generated by the translating sphere are further out
indistinguishable from those of the point-force Stokeslet.

The Stokeslet velocity field decays like 1/r at far distances from the point force.
This slow decay can be ascribed to the conservation of momentum injected into
the fluid by the point force, which is spread out quasi-instantaneously. It creates
major difficulties in dealing theoretically with the hydrodynamics of suspensions,
since forced velocity disturbances influence even well-separated particles. An ad-
ditional difficulty is that the hydrodynamic interactions between three and more
non-point-like particles is not pairwise additive, i.e. the hydrodynamic interactions
of two nearby particles is changed in a rather complicated way if a third one is in
their vicinity.
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According to Eq. (33), the pressure field of a point force decays faster than the
velocity field by the factor of 1/r. Note that the pressure itself, and not just its
gradient, has been uniquely specified by demanding p→ 0 for r→ ∞. Employing
Eq. (14), the stress on a fluid surface element at position r and normal n, due to a
point force at the coordinate system origin, is

σσσSt(r) ·n(r) =−
3

4π
F ·
(

r̂r̂r̂
r2

)
·n =− 3

4π

(r̂ ·F)(r̂ ·n)
r2 r̂ . (35)

On integrating the stress over a surface enclosing the point force, the expected result
Fh =−F is obtained.

That the pressure field decays by the factor 1/r faster than the associated velocity
field is a general rule. It follows from the homogeneous Stokes equation written in
the form ∇p = η∇2u, where the first-order derivatives of p are expressed by the
second-order derivatives of u. It can be also noticed here that the pressure in Stokes
flows is a subsidiary quantity, fully determined by the velocity field for BCs invoking
velocities only. The velocity field can be calculated without reference to the pressure
as a solution of the bi-harmonic differential equation

∇
2
∇

2u(r) = 0 , (36)

which readily follows from the application of the divergence operation to the homo-
geneous Stokes equation, using in addition the flow incompressibility constraint.

For completeness, consider also the vorticity field, ∇× u(r), associated with a
velocity field u(r). The vorticity is twice the angular velocity of a fluid element at
r. The vorticity due to a point force at position r0 is

∇×uSt(r) =−
1

4πη
US(r− r0)×F , (37)

identifying the Stokeslet as an incompressible rotational flow solution.
The Oseen tensor for an unbounded infinite fluid is of key importance not only in

generating higher-order elemental force singularity solutions (see below), but also
for the so-called boundary integral method of calculating the flow around complex-
shaped bodies. The disturbance flow, i.e. the flow taken relative to a given ambient
flow field uamb(r), observed in the exterior of a rigid no-slip particle in infinite fluid
is given by the integral

u(r)−uamb(r) =
∫

Sp

dS′T(r− r′) ·σσσ(r′) ·n(r′) , (38)

over the particle surface Sp, i.e. by a continuous superposition of surface-located
Stokeslets of vectorial strength σσσ · n. We emphasize here that if the fluid at Sp is
tangentially mobile such as for a rigid particle with Navier partial-slip BC, and a
liquid droplet or gas bubble, there is an additional surface integral contribution to
the exterior flow. The form of this additional contribution is discussed in detail in
textbooks on low-Reynolds-number fluid dynamics [14, 35, 40].



Colloidal Hydrodynamics and Interfacial Effects 23

The ambient velocity field uamb(r) is a Stokes flow caused by sources exterior to
the considered particle. In a non-quiescent situation it can be, e.g., a linear shear or
quadratic Poiseuille flow. The ambient flow can be also the flow due to the motion
of other rigid or non-rigid particles. If the considered particle was not present, the
ambient flow would be measured in the system.

Integrating Eq. (38) with respect to r over the particle surface, and using the no-
slip BC in Eq. (3) for its left-hand side, results in a linear surface integral equation
for the surface stress field σσσ · n in terms of the given translational and rotational
particle velocities V and ΩΩΩ , and the ambient flow field (friction problem). The in-
tegral equation can be solved numerically by an appropriate surface discretization
(triangulation). For given particle force and torque (mobility problem), and given
ambient flow, the velocities are determined from substituting the calculated stress
field into the likewise discretized Eq. (15) for Fh and Th. See here [8, 9, 35] for
details on the boundary integral method which has the main advantage of requiring
only a two-dimensional surface mesh for a three-dimensional flow calculation.

Force multipoles solutions: Singularity solutions of increasing multipolar order
are obtained from derivatives of the fundamental flow solution uSt(r). They also
show up in the expansion of uSt in a Taylor series about the force placement (sin-
gularity) point r0. Recall now that point force F = Fe oriented along the direction e
generates the velocity field

uSt(r− r0) =
F

8πη
G(r− r0;e) , (39)

with
G(r;e) = 8πηT(r) · e = e

r
+

e · r
r3 r . (40)

We select G(r;e) as the starting element of the singularity set, quoting it as the
fundamental e-directed Stokeslet. It is actually equal to a Stokeslet of unit force in
the direction e, made non-dimensional by multiplication with 8πη and division by
the force unit. The first two singularity solutions obtained from directional deriva-
tives of the fundamental Stokeslet are the Stokeslet doublet GD, and the Stokeslet
quadrupole GQ [26, 41]

GD(r− r0;d,e) = (d ·∇0)G(r− r0;e)∼O
(
r−2) , (41)

GQ(r− r0;c,d,e) = (c ·∇0)GD(r− r0;d,e)∼ O
(
r−3) , (42)

where the gradient operator ∇0 acts on the singularity placement r0, and d and c
are arbitrary vectors. We have indicated here the decay of these velocity fields far
distant from the singularity point. Higher-order singularity flow solutions with an
O(r−4) asymptotic decay are obtained accordingly by repeated differentiation. For
later use, we explicitly quote the Stokeslet doublet,
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GD(r;d,e) = d · 1
r2

[
r̂1−1r̂− T(r̂1)+3 r̂r̂r̂

]
· e (43)

=
1
r2

[
e(r̂ ·d)−d(r̂ · e)− (d · e)r̂+3(r̂ · e)(r̂ ·d)r̂

]
. (44)

where the pre-transposition symbol implies the interchange of the first two Carte-
sian indices. The Stokes doublet GD(r; d̂,e), with d̂ denoting a unit vector, has the
following physical interpretation: It is the velocity field times 8πη , of two opposing
Stokelets of vector strengths ±Fe and singularity locations at r0±d (with d = dd̂),
in the limits d→ 0 and F→∞ with the force dipole moment p = 2Fd kept constant
equal to one. The unit vector d̂ points from the Stokeslet of strength −Fe to the one
of strength Fe. This interpretation is obviated from the explicit calculation of the
flow field,

uD(r) =
[
T(r− r0−d)−T(r− r0 +d)

]
· eF = 2dF

(
d̂ ·∇0

)
T(r− r0) · e+O(d2)

=
p

8πη
GD(r− r0; d̂,e)+O(d2) . (45)

The force doublet provides the far-field behaviour of flows caused by force-free
microparticles. It is named asymmetric when d̂ is not collinear with the force di-
rection ±e, and referred to as symmetric otherwise. The symmetric force doublet
GD(r− r0;e,e) is also called a linear force dipole. It plays a major role in the dis-
cussion of the flow created by many autonomous microswimmers, including vari-
ous types of prokaryotic bacteria and eukaryotic unicellular microorganisms. Mi-
croswimmers in the bulk fluid and near interfaces are discussed in Sec. 6.

The force doublet can be split into an anti-symmetric part, named Rotlet R, and a
symmetric part named Stresslet S, each of which has a direct physical meaning. We
exemplify this for the Rotlet and in the special situation where the force strengths of
the two opposing Stokeslets are orthogonally displaced, and aligned with the z-axis
and x-axis, respectively. Then, F ·d = 0 and the dipole moment T = 2dF has the
meaning of an applied torque. The Rotlet at the singularity point r0 = 0 is in this
case

R(r;−ey) =
1
2
[GD(r;ex,ez)−GD(r;ez,ex)] =−ey×

r̂
r2 , (46)

and after division by the factor 8πη it describes the rotational flow field due to a
unit point torque aligned with the negative y-axis.

The symmetric Stresslet part reads

S(r;e±) =
1
2
[GD(r;ex,ez)+GD(r;ez,ex)] =

3 r̂
r2 (r̂ · ex)(r̂ · eZ)

= GD(r;e+,e+)−GD(r;e−,e−) . (47)

It describes a straining fluid motion [14] originating from the superposition two lin-
ear force dipoles oriented along the diagonal stretching axis e+ and the anti-diagonal
compression axis e−, respectively, where e± = (ex± ez)/

√
2. The streamlines of a

linear force dipole are discussed in Sec. 6, and are drawn in Fig. 27.
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(f) Source doublet DS(r;ez)∼ O(r−3)

Fig. 7 A few elemental singularity solutions used in constructing specific Stokes flow solutions.
The x-axis points horizontally to the right, and the z-axis vertically upwards. The singulari-
ties are marked in red with pictograms reflecting their structure. Note here that GD(r;ex,ez) =
−GD(r;ez,ex), and e± = (ex± ez)/

√
2 span the stretching and compression axes. The elemental

source, −US(r), is marked as a circle with a minus sign inside.
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The key point to notice here is that the stresses σσσS ·n and σσσR ·n, associated with
the Stresslet and Rotlet force doublet parts, respectively, are decaying as O(1/r3).
When these stresses are integrated over a surface enclosing the singularity point,
according to Eq. (15) they do not contribute a hydrodynamic drag force. Differ-
ently from the Stresslet which is torque-free, the Rotlet contributes a hydrodynamic
torque of magnitude equal to 8πη times the torque unit. The stress fields of all the
higher-order force singularity solutions including the one by the force quadrupole
GQ are all of O(1/r4), so that they contribute neither a drag force nor a torque [8, 9].

Source multipoles solutions: Elementary singularity solutions in addition to the
force singularities are obtained from derivatives of the source vector field US(r−r0)
in Eq. (33) with respect to the singularity (source) point r0. The two leading-order
flows obtained in this way are the source doublet (dipole) and quadrupole,

DS(r− r0;e) = (e ·∇0)US(r− r0)∼O(r−3) (48)
QS(r− r0;d,e) = (d ·∇0)DS(r− r0;e)∼ O(r−4) . (49)

The source doublet multiplied by a constant c of dimension volume per time de-
scribes the flow due to a source flow with outflow rate 4πc, and a sink flow of the
same inflow rate. The source at r0 + de and the sink of the doublet at r0− de are
an infinitesimal vector distance 2de separated from each other and have the moment
2dc equal to one. Explicitly,

DS(r;e) =
1
r3

[
3 r̂r̂−1

]
· e = 1

r3

[
3(r̂ · e) r̂− e

]
. (50)

The source singularity solutions are related to the force singularity solutions by

DS(r− r0) =−
1
2

∇
2
0G(r− r0) , (51)

and its derivatives. Eq. (51) identifies the source doublet as a degenerate force
quadrupole, which explains its faster decay than that of the force doublet. The stress
fields of the source multipoles decay as O(1/r4) or faster, except for the source flow
US itself, implying that they make no force and torque contributions. As the deriva-
tives of the Coulomb-type potential 1/r (see Eq. (33)), the source multipoles belong
to the class of irrotational potential flows (where ∇×u = 0) with associated con-
stant pressure fields. To understand the pressure constancy, note with u = ∇ψ for
some scalar (potential) function that incompressibility implies ∆ψ = 0. It follows
with the Stokes equation that ∇p = η∆ (∇ψ) = η∇(∆ψ) = 0.

Superposition of singularity solutions: Linear superposition of fundamental sin-
gularity solutions, appropriately selected and positioned to conform with the system
symmetry and BCs under consideration, can be profitably used to construct (approx-
imate) flow solutions. The coefficients in the superposition series can be determined
from the prescribed BCs.
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As an example of such a superposition, in Subsec. 4.3 we discuss the gravitational
settling of a slender body whose flow field can be described in decent approximation
by a continuous distribution of Stokeslets placed along the body’s center line.

For a particle axisymmetric along the direction e, and in a flow situation shar-
ing this axial symmetry, the appropriate superposition describing the far-distance
velocity field is

u(r) = c1 (aG(r;e))+ c2
(
a2 GD(r;e;e)

)
+ c3

(
a3 SD(r;e)

)
+O(r−4) , (52)

with scalar coefficients {ci} having the physical dimension of a velocity. The cen-
troid r0 of the particle placed is placed here in the origin, and a can be taken as the
lateral length of the particle. The Rotlet part of the symmetric force doublet GD is
zero here, since a torque-free, non-rotating particle is required by the symmetry of
the flow problem. If the particle moves force-free along its axial direction, as it is the
case for a self-propelling microswimmer, there is no Stokeslet contribution so that
c1 = 0. On the other hand, if the particle is sedimenting along its axis, the co-linear
driving force is given by

F = c1 (8πηa)e , (53)

with the coefficient c1 determining the strength of the Stokeslet depending on the
particle BCs. In Subsec. 4.4, we show that the flow created by a sphere translating
through a quiescent fluid, is exactly represented by the superposition of a Stokeslet
and a source dipole, owing to the high symmetry of this flow problem. If the sphere
is placed in an ambient linear shear flow where the stress distribution on its surface
becomes non-uniform, then a more general superposition of singularity solutions
must be used including a source quadrupole, which in addition accounts for all rele-
vant Cartesian directions, to obtain the exact flow solution [42]. Note also that for a
translating spheroid, a line distribution of Stokeslets and source doublets extending
between the focal points must be used [34]. As it is explained in Sec. 5.1, an appro-
priate placement of elemental singularity solutions at a reflection point provides an
analytic solution for the velocity field of a point force in the presence of a fluid-fluid
interface.

4.3 Slender body motion

As a first application, we use the force singularity method to determine the hydrody-
namic friction experienced by a settling rigid slender body, that is a particle without
sharp corners whose contour length, L, is large compared to its thickness d. Exam-
ples of such bodies include rod-like particles, and elongated or prolate spheroids.
Owing to the shape anisotropy, the friction force depends on the orientation of the
body relative to the direction of motion. The slenderness of the body renders it pos-
sible, in place of having to solve a complicated boundary integral problem for a no-
slip particle on the basis of Eq. (38), to describe approximately the disturbance flow
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field caused by its motion as that of a line of Stokeslets, uniformly distributed along
the axis of the particle. The surface integration reduces then to a one-dimensional
integral over a line of Stokeslets. This concept is originally due to Batchelor [43].

1"

VF e

β
α

Fig. 8 A thin rod-shaped particle translating with velocity V under the action of an applied force
F pointing downwards. The stress distribution on the rod surface is approximated by a line of
equally-spaced and equally strong Stokeslets placed in the centres of the large number of spherical
beads building up the rod. The flow lines of two of the superposing Stokeslets are sketched. The tilt
angle α of the rod with respect to the applied force is in general different from the sedimentation
angle β , resulting in a sidewise velocity component. Reproduced from the COMPLOIDS book [9]
with kind permission of the Societa Italiana di Fisica.

To demonstrate this, consider the sedimentation of a thin rigid rod of length L
and diameter d � L translating with velocity V through an unbounded quiescent
fluid, in response to an external force F due, e.g., to gravity. We approximate the
flow created by the particle by the sum of 2n+1 Stokeslets, placed in the centres of
spherical beads of diameter d building up the rod in the form of a necklace (see Fig.
8). Each Stokeslet is assumed to have the same strength (d/L)F, disregarding the
end effects which are small for long rods. The rod is oriented along the unit vector
e as depicted in the figure. On identifying, according to V = u(0), the rod velocity
with the velocity of the central bead under the hydrodynamic influence of the 2n
other ones, the superposition of the 2n Stokeslets fields at the central bead position
gives

V =
d

ζ 0
beadL

F+
n

∑
i=−n,
n6=0

T(ide) · d
L

F≈ 1
4πηL

(
n

∑
i=1

1
i

)
(111+ ee) ·F, (54)

where the sum behaves like logn ≈ logL/d for large n, and where ζ 0
bead = 3πηd

is the no-slip single-bead friction coefficient. On noting that Fh =−F, the result of
this summation is the force-velocity friction problem relation
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Fh =−
[
ζ

tt
‖ ee+ζ

tt
⊥(111− ee)

]
·V, (55)

and likewise the inverse relation,

V =−
[
µ

tt
‖ ee+µ

tt
⊥(111− ee)

]
·Fh , (56)

for the mobility problem of given force. The friction and mobility coefficients for the
translation of a thin rod parallel and perpendicular to its axis e have been obtained
here as

ζ
tt
‖ =

1
µ tt
‖
=

2πηL
log(L/d)

, ζ
tt
⊥ =

1
µ tt
⊥
= 2ζ

tt
‖ . (57)

Corrections to this asymptotic result from a refined hydrodynamic calculation for a
cylinder with end effects included are provided in [44]. Note that the application,
i.e. dot-multiplication, of the dyadic (111−ee) to a vector gives the component of this
vector perpendicular to e.

Remarkably, the friction coefficient for the broadside motion of a thin rod is only
twice as large as that for the axial motion. Both coefficients scale essentially with
the length L of the rod, so that the drag force acting on a thin rod is not far less than
that experienced by a sphere of diameter L enclosing it. It should be noted here that
from general properties of Stokes flows it follows that the magnitude of the drag
force on an arbitrarily-shaped body is always in between those for the inscribing
and enclosing spheres [8, 14].

It is interesting to analyse the effect of the friction anisotropy on the direction
of sedimentation. Denoting as α the angle between the rod axis ê and the applied
force F, and as β the angle between rod velocity and applied force, we can relate
the two angles by decomposing the external force into its components along and
perpendicular to the rod axis, with the accompanying components of V determined
by the mobility coefficients. In this way, one obtains

β = α− arctan
( 1

2 tanα
)
. (58)

For a vertically or horizontally oriented rod and the applied force pointing down-
wards (see again Fig. 8), there will be no sidewise rod motion due to symmetry.
Except for these special configurations, however, the tilt angle α of the rod is differ-
ent from its sedimentation angle β , although both will remain constant during the
motion. The maximum settling angle βmax = arctan(

√
2/4)≈ 19.5◦ corresponds to

α ≈ 54.7◦.
Kinematic reversibility in conjunction with the system symmetry (no nearby

walls are present here) commands that the rod is settling without rotation. The fric-
tion asymmetry of rod-shaped particles discussed here is a key ingredient in the
swimming strategy of microswimmers with helical flagellar propulsion.

An elementary introduction to the concept of slender body motion is contained
in the works [11, 14]. For a general discussion of slender bodies, which may also be
curved, see [45, 46].
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4.4 Forced translation of a microsphere

We consider here a microsphere of radius a with Navier partial slip BCs, which
translates with constant velocity V0 = V0e and without rotation through an un-
bounded quiescent fluid. The origin of the coordinate system is placed at the mo-
mentary sphere center. We attempt to describe the exterior fluid velocity (r ≥ a) by
the linear superposition of a Stokeslet and source doublet in accord with Eq. (52),
and with the coefficients c1 and c3 determined by the BCs. It is convenient to express
u = ur r̂+uθ eθ and V0 =V0,r r̂+V0,θ eθ in polar coordinates with components

ur(r,θ) = 2cosθ

[
c1

(a
r

)
+ c3

(a
r

)3
]
, V0,r =V0 cosθ

uθ (r,θ) =−sinθ

[
c1

(a
r

)
− c3

(a
r

)3
]
, V0,θ =−V0 sinθ (59)

where e · r̂ = cosθ and e · eθ = −sinθ have been used, with θ denoting the angle
between polar axis e and fluid position vector r. The two coefficients can be deter-
mined from enforcing the BC of zero normal velocity difference between the sphere
and the fluid at the surface, ur(a,θ) = V0,r, in conjunction with the Navier partial
slip condition in Eq. (18) for the tangential velocity part. The latter is formulated in
terms of the fluid velocity in the particle rest frame,

u′(r) = u(r)−V0 , (60)

labelled by the prime, where the fluid far away from the stationary sphere is moving
with uniform velocity −V0. The Navier BC reads

u′θ (r,θ) =
`

η

(
∂u′

θ

∂ r
−

u′
θ
(r,θ)
a

)
, (r = a) (61)

The two coefficients are determined from the BCs as

c1 =
3V0

4

(
1+2`∗

1+3`∗

)
, c3 =−

V0

4

(
1

1+3`∗

)
, (62)

where `∗ = `/a.
Using Eq. (53), the hydrodynamic drag force opposing the motion of the sphere

follows from the Stokeslet contribution as

Fh =−(8πηac1)e =−6πηa
(

1+2`∗

1+3`∗

)
V0 . (63)

Note that the single-sphere friction coefficient, ζ t
0 = 1/µ t

0, relating the velocity of
an isolated sphere to its drag force according to

Fh =−ζ
t
0 V0 , (64)



Colloidal Hydrodynamics and Interfacial Effects 31

reduces from 6πηa for a no-slip sphere (`∗ = 0) to 4πηa for a perfect-slip sphere
with stress-free surface (`∗ = ∞). For a perfect-slip sphere such as a gas bubble
with clean surface without adsorbed contaminants, the drag force is entirely due to
the pressure changes in the fluid without viscous stress contributions. Since c3 = 0
for `∗ = ∞, the flow exterior to a translating gas bubble is that of a Stokeslet of
strength F = 4πηaV0 placed in its center. The relation Fh = CaηV0 with undeter-
mined constant C follows readily from linearity of the Stokes equations and BCs,
and a dimensional analysis using the sphere radius as the only physical length scale.
The difficult part is the determination of C which as we have shown requires an
elaborate calculation.

The tangentially oriented slip velocity, u′slip(θ) = u′
θ
(a,θ)eθ , relative to the

sphere surface is

u′slip(θ) =
1
2

(
3`∗

1+3`∗

)
V0 sinθ eθ =−1

2

(
3`∗

1+3`∗

)
[1− r̂r̂] ·V0 . (65)

It is zero at the poles, where θ = {0,π} and r̂ = ±e, and maximal in magnitude
on the equator, where θ = π/2 and r̂ ⊥ e. On the equator, the slip velocity points
oppositely to V0 since eθ (θ = π/2) =−e. For perfect slip, the result uslip =−V0/2
is obtained at the sphere equator.
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Fig. 9 Left: Comparison of flow streamlines generated by an upward point force centred at the
origin (a Stokeslet), marked by dashed lines, and a spherical no-slip particle (solid lines) moving
upwards with velocity V0 (red arrow) as viewed in the laboratory frame. Right: The streamlines
circle around the sphere if viewed in its rest frame, owing to its experiencing of a uniform ambient
flow equal to−V0. Note the fore-aft symmetry of the flow field related to the kinematic reversibility
of Stokes flows. Reproduced from the COMPLOIDS book [9] with kind permission of the Societa
Italiana di Fisica.

We proceed by discussing the lab frame velocity field of a translating no-slip
microsphere, given in dyadic notation by
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u(r) =
[(a

r

)
(111+ r̂r̂)− 1

3

(a
r

)3
(3r̂r̂−111)

]
· F

8πηa
, (66)

with F = 6πηaV0, and with r measuring the distance from the center of the sphere.
This result has been first calculated by Stokes more than 150 years ago [47], in a
way different from the one described above. The velocity field in Eq. (66) has two
interesting features: Firstly, far away from the particle it reduces to a Stokeslet flow
field. The far-distance form is also recovered from taking the limit a→ 0 with the
applied force kept constant. Secondly, the shorter-ranged source doublet potential
flow contribution accounting for non-zero sphere volume is of importance in the
near-distance region of the sphere only. The streamlines for a no-slip sphere and
for an equal-force Stokeslet are drawn in Fig. 9. They are shown both in the lab
frame where the sphere is moving and the fluid is quiescent, meaning that u→ 0
for r→ ∞ (left part), and in the rest frame of the sphere where u→−V0 for r→ ∞

(right part). The vorticity field ∇× u around a translating sphere describing the
local rotation of fluid elements is due to the Stokeslet part only, since the potential
part has no vorticity. It is given by Eq. (37) restricted to the exterior of the sphere.
Differently from u, the associated vorticity field is invariant under a Galilean change
of the reference frame.

4.5 Phoretic particle motion

So far we have dealt with the translational motion of an isolated microsphere and
a rod settling subjected to an external body force such as the buoyancy-corrected
gravitational force. The O(1/r) far-distance decay of the velocity field outside the
moving particle is due to the momentum imparted to the fluid by the applied force.

Another mechanism for creating motion of a suspended microparticle is due to an
imposed field gradient, such as an electric field E∞ =−∇φ∞, a temperature gradient
∇T , or a concentration gradient, ∇c, in the concentration field c of small solutes
surrounding the colloidal particle. Depending on the physical field, one refers to
electrophoresis, thermophoresis or diffusiophoresis, respectively. The field gradients
drive a so-called phoretic fluid flow relative to the particle surface in an interfacial
region surrounding the particle. The effective hydrodynamic slip associated with
the relative motion of the particle and the surface-phoretic flow results in a non-zero
phoretic velocity, Vphor, of the particle in the lab frame where the fluid velocity is
zero at infinity (quiescent fluid). The phoretic particle motion occurs even though
the total direct force and torque on the particle plus its interfacial layer are zero, i.e.

FT = 0 , TT = 0 , (67)

with the balancing hydrodynamic drag force and torque being likewise equal zero.
There is no Stokeslet involved in the velocity field exterior to the particle and its
boundary layer, referred to as the outer flow region. The velocity field in the outer
region decays thus asymptotically like O(r−2) or faster, with r measuring the radial
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distance to the sphere center. As we are going to show in the context of the elec-
trophoresis of a charged colloidal sphere, the outer velocity field is actually a source
doublet potential flow with the characteristic O(r−3) far-distant decay. A classical
review of phoretic motions is given in [48]. For recent lecture notes on electrophore-
sis, and the dynamics of charge-stabilized suspensions in general, see [10] .

Consider now an insulating, charged colloidal sphere of radius a immersed in an
infinite electrolyte solution. For the matter of definiteness, the sphere is assumed to
carry a uniform negative surface charge (see Fig. 10).

Fig. 10 Electrophoretic mi-
gration, with velocity Vel, of
a negatively charged colloidal
sphere in a uniform electric
field of strength E∞. The op-
positely charged interfacial
layer of electrolyte ions with
extension ∼ λD is slightly
distorted (polarized) from the
spherical shape at zero exter-
nal field. The counterions in
the near-surface interfacial re-
gion drive an electro-osmotic
flow. Figure redrawn after
[49].
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In thermal equilibrium without an externally applied electric field, the charged
sphere is surrounded by a diffuse spherical layer of mainly oppositely charged elec-
trolyte counterions which screen its electric effect to the outside fluid region. On the
length scale of the colloidal sphere, this interfacial region can be considered as an
oppositely (here: positively) charged fluid of charge charge density ρel(r). This den-
sity decays exponentially with outgoing radial distance from the sphere surface at
r = a. The outer electrolyte fluid in the region r > a+λD is practically electroneu-
tral, since the influence of the surface charge is screened out across the interface.
Here, λD is the Debye screening length characterizing the thickness of the charged
interfacial layer. It describes the, at least for larger distances, exponential radial de-
cay of the interfacial charge density

ρel(r > a) ∝ exp{−r/λD} . (68)

The charged sphere and its neutralizing interfacial fluid region form an electric
double layer (EDL) sphere of radius a+λD whose net charge content is zero. The
total electric force and torque on the EDL sphere are consequently zero. The thick-
ness, λD, of the interfacial region decreases with increasing concentration of elec-
trolyte ions. This can be triggered experimentally by the addition of salt, or through
osmotic contact with an electrolyte reservoir (buffer). For an aqueous strong 1-1
electrolyte at 25 ◦C, the Debye length in nanometres is
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λD =
0.304√

ns[M]
, (69)

where ns[M] is the concentration of salt ion pairs in mol per litre. For a 1 M solution
is λD = 0.3 nm. An upper bound is set by the self-dissociation of water requiring
that λD < 961 nm.

If exposed to an uniform electric field, E∞ = E∞ e, created by distant sources such
as a pair of electrode plates with an applied voltage, the negatively charged sphere
migrates with constant electrophoretic velocity

Vel = µelE∞ , (70)

opposite to the direction of the applied electric field. The field-independent elec-
trophoretic mobility, µel,, characterizing the phoretic particle motion, has a negative
sign for a negatively charged particle. The electrophoretic drift velocity Vel is de-
termined by two retarding electrokinetic effects, termed the electro-osmotic flow
and the ion cloud polarization effect, respectively. Both effects lower the magni-
tude of the electrophoretic velocity below the limiting value, V 0

el = |QE∞|/(6πηa),
for a sphere of surface charge Q without an electrolyte boundary layer, which is
determined by the balance of the electric and hydrodynamic friction forces on the
sphere. This limiting velocity is reached by a charge-stabilized colloidal sphere with
an ultra-extended, and therefore ultra-dilute, diffuse layer where λD� a.

The osmotic flow effect represents the hydrodynamic drag exerted on the sphere
surface by the counter-flowing (since oppositely charged) fluid forming the diffuse
layer. The electro-osmotic counterflow is driven by the electric body force density,

f(r) = ρel(r)E(r). (71)

in the inhomogeneous Stokes Eqs. (5). Here, E(r) is the local electric field inside
the diffuse layer which in general differs from the externally applied field.

The charge polarization effect, on the other hand, describes the field-induced
slight distortion of the interfacial EDL zone from its spherically symmetric equilib-
rium shape at zero field. This distortion or polarization sets up diffusion currents of
electrolyte ions which tend to equilibrate the EDL system back to spherical sym-
metry, with the net effect of slowing the sphere motion. The polarization effect be-
comes stronger with increasing particle charge and electric surface potential, and
with decreasing mobilities of the electrolyte ions.

We restrict ourselves in the following to a charged colloidal sphere with an ultra-
thin interfacial layer for which λD � a. We further assume a weak surface charge
density. The electrophoresis problem in this limiting situation was first treated in
some detail by Smoluchowski (1903). It is therefore referred to as the Smolu-
chowski limit. Since the diffuse interfacial region reduces now to a thin boundary
layer coating the sphere, the fluid can be mentally divided into an extended outer
region r > a+λD where ρel = 0, and in a thin boundary layer region a≤ r < a+λD
which is locally flat. The flows in the two regions are first determined indepen-
dently and afterwards matched (asymptotically) to fix the remaining integration
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constants. We just outline here the major steps of this calculation. For details see,
e.g., [10, 50]. For the assumed low surface charge density, ρel remains radially sym-
metric (i.e., unpolarized) in the presence of the external field. The sphere plus its
boundary layer have the appearance in the outside fluid region of a neutral, non-
conducting sphere of radius a+λD (the EDL sphere). This gives rise to a dipolar
electric field, Eout(r), in the outer region whose field lines must bend tangentially
near the sphere surface, for otherwise there would be an electric current perpendic-
ular to the non-conducting sphere surface. The surface-tangential electric field acts
on the charged fluid inside the boundary layer through the body force term in Eq.
(5), creating a surface-tangential flow profile as depicted in Fig. (11) which sketches
the locally flat interfacial region. While the fluid sticks to the actual sphere surface

Fig. 11 Electro-osmotic
flow profile of an elec-
trolyte solution flowing tan-
gentially past the locally
flat surface of a negatively
charged microsphere, viewed
in its rest frame. The flow
outside the thin boundary
layer of thickness λD is
plug-like with slip veloc-
ity u′s(rs) = −µelEout(rs).
Redrawn after [9].
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Sa (i.e., the no-slip surface BC is used here), outside the enclosing surface Sa+λD
of the EDL sphere a plug-like local flow is observed, reminiscent of perfect slip.
Incidentally, this plug-like electro-osmotic flow outside the Debye layer region is
used in microfluidic devices to drive ion-containing aqueous media through narrow
micro-channels where the Stokes flow conditions apply. In micro-channels, electro-
osmotic flow transport is far more efficient than using an imposed pressure gradient
along the channel [49]. See Fig. 12 for the sketch of such a device.

The velocity field at the slip surface, in the rest frame of the sphere, is calculated
as [48, 10]

u′s(rs) =−
εζ

4πη
Eout(rs) =−

3εζ

8πη
(1− r̂r̂) ·E∞ , (72)

where rs ∈ Sa+λD , and ε is the static dielectric constant of the fluid. Since λD �
a, we were allowed in the second equality to identify the slip surface Sa+λD with
the actual particle surface Sa. The so-called zeta potential, ζ , is likewise identified
with the electric potential at the actual sphere surface. The surface potential decays
exponentially to zero in going outwards radially from a to a+λD.

Since the outer fluid is uncharged, the outer velocity field in the lab frame is
found from a purely hydrodynamic consideration, namely from the solution of the
homogeneous Stokes equations with inner inner and outer BCs,
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Fig. 12 Sketch of electro-osmotic plug flow in an open microcapillary tube with negatively
charged glass walls. The non-dissipative plug flow is driven by the field-induced migration of
counterions accumulated in the thin Debye interfacial layer of thickness λD � 2h at the glass
walls. In a tube closed at both ends, a pressure difference is created along the channel which drives
a Poiseuille-type backflow of fluid in the central region of the tube [49].

uout(rs) = Vel +u′s(rs) , uout(r→ ∞) = 0 . (73)

respectively, where rs ∈ Sa+λD ≈ Sa, and the sphere located momentarily at the co-
ordinate frame origin. The electrophoretic velocity Vel is still unknown to this point.
The boundary value problem has a unique flow solution if one demands in addition
the EDL sphere to be force- and torque free, in accord with its overall electroneu-
trallity.

To determine uout using the singularity method, we notice first that the Stokeslet
and Rotlet are ruled out as flow contributions since they would result in a non-zero
drag force and torque. Therefore, we use the ansatz,

uout(r) = c3a3DS(r;e) . (74)

for the out flow in the lab frame, with a source doublet in direction e of the ap-
plied electric field. With this ansatz, the inner and outer BCs are fulfilled with c3
determined as c3 = εζ E∞/(8πη), and the electrophoretic velocity as

Vel = µel E∞ , µel =
εζ

4πη
, (75)

respectively. The so-called Smoluchowski electrophoretic mobility µel scales lin-
early with the electric zeta potential, and it is independent of the particle radius. The
outer velocity field in the lab frame is thus

uout(r) =
1
2

(a
r

)3
[3r̂r̂−1] ·Vel = µel Eout(r)+Vel . (76)

In the second equality, we have expressed the velocity field in terms of the outer
electric dipole field.

Being an incompressible potential flow field, uout fulfils ∆uout = 0 with ∇pout =
0, so that the outer pressure field is uniform. The source doublet streamlines of the
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elV

E

Fig. 13 Streamlines of the velocity field, uout(r), outside the thin boundary layer of a negatively
charged microsphere in electrophoretic motion. Left: Streamlines in the rest frame of the sphere
for which uout(r→ ∞) = −Vel. Right: Streamlines in the lab frame where the fluid is at rest at
infinity. The sphere migrates in the direction opposite to the external field E∞.

outer velocity field are shown in the right part of Fig. 13. They diverge in front
of the moving sphere and curve back at its rear side. There are no closed stream-
lines, which are not allowed for a potential flow where ∇×u = 0. Since uout decays
asymptotically like O(r−3) there is indeed no hydrodynamic torque exerted on the
EDL sphere. Moreover, the absence of a O(r−2) Stresslet contribution to uout is
consistent with the fact that a non-uniform ambient flow was not considered. The
streamlines, shown in the left part of Fig. 13, are different if viewed in the parti-
cle rest frame where distant from the sphere the fluid moves with uniform velocity
−Vel.

Without requiring the outer flow solution, the electrophoretic velocity for a spher-
ical colloidal particle can be obtained directly as the surface average of the slip
velocity field in the particle rest frame. In fact, it follows from Eq. (72) that

1
4πa2

∫
Sa

dSu′s(rs) =−Vel . (77)

This result implies that the surface average of the outer velocity field in the lab
frame is zero. This should be contrasted with the lab-frame Stokeslet velocity field
for r ≥ a,

u(r) =
1
2

(a
r

)
[1+ r̂r̂] ·V0 , (78)

due to a Navier perfect-slip sphere translating with velocity V0, which was dis-
cussed earlier in relation to Eq. (65). On taking the surface average of this Stokeslet
field, the non-zero result V0/3 is obtained. This highlights the difference between
a phoretically moving sphere with an effective slip, and a forced perfect-slip sphere
without the phoretic boundary layer. The electrophoretic mobility becomes differ-
ent from the Smoluchowski result in Eq. (75), if in place of the no-slip BC at Sa the
Navier partial-slip BC is used. The Smoluchowski mobility is then enhanced by the
factor (1+ `/λD), for the Navier slip length small compared to the sphere radius
[51]. Measured slip lengths are typically of the order of nanometres.
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For the general case of a phoretically moving microsphere, it can be shown that
its drift velocity is given by the surface average [52, 53]

Vphor =−
1

4πa2

∫
Sa

dS µs(rs) [1− r̂r̂] ·∇φ(rs) , (79)

where φ stands likewise for the potential of the applied electric field, temperature
or solute concentration. Here, µs(rs) is a local surface mobility coefficient allowed
to vary over the sphere surface. In our discussion of electrophoresis the potential
gradient and mobility are taken as constant, with the latter equal to (3/2)µel.

On recalling the steps which led to Eq. (75), one notices that owing to the local
surface flatness on the scale of λD, the inner boundary value problem for the in-
terfacial region is independent of the global shape of the microparticle. Therefore,
the second equality in Eq. (76) remains valid for arbitrarily shaped, non-conducting
rigid particles, provided the local radius of curvature at all surface points is large
compared to λD. What varies with the particle shape is only the near-distance form
of Eout(r). The latter is determined by the electrostatic boundary value problem of a
non-conducting particle in an external field, with its field lines bending tangentially
close to the particle surface to satisfy the non-conductance condition. The crucial
point here is that the explicit form of Eout(r) is not required for the determination of
the electrophoretic mobility. In fact, on noting Eout→ E∞ and uout→ 0 for r→ ∞,
the Smoluchowski mobility result in Eq. (75) is readily recovered from the second
equality in Eq. (76), but now for arbitrary particle shape and size, under the proviso
that the particle has uniform surface zeta potential ζ . This remarkable result is sup-
plemented by the likewise remarkable feature that the particle migrates phoretically
without rotating. This follows from the fact that the far-distant form of Eout(r) is a
dipolar electric field of O(r−3), independent of the particle shape. This in turn im-
plies that uout(r) is a potential flow field with a likewise O(r−3) far-distance decay.
Such a flow exerts no hydrodynamic torque on the particle which consequently is
non-rotating while translating.

However, the remarkable finding of shape-independent mobility has been ob-
tained based on various restrictions. We quote here the most important ones: Firstly,
the surface zeta potential is assumed to be weak enough for the polarization of the
diffuse layer to be negligible, i.e. |ζ e| is small compared to kBT , with e denoting the
elementary charge. Secondly, the diffuse boundary layer must be very thin. More-
over, the applied electric field should be uniform on the scale of the particle size,
and the small excluded volume of the electrolyte ions should not matter. The ions
must be monovalent, and the dielectric constant and electrolyte viscosity should not
change across the boundary layer. See [54] for a quantitative theory for the concen-
tration dependence of the electrolyte viscosity.

For an isolated charge-stabilized sphere, surface uniformity of zeta potential and
surface charge density go hand in hand. However, this is not the case for a non-
spherical particle which has surface regions of varying curvature. A particle with
uniform surface charge density has a larger zeta potential in the regions of higher
curvature. This causes the particle to reorient while translating.
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We proceed with the interesting generalization that a force F = Fe co-linear with
the applied field is acting on the electrophoretically moving sphere. The sphere ve-
locity V =V e and the flow for this situation can be constructed by the addition of a
Stokeslet field of strength F to the source doublet, i.e

u(r) =
{(a

r

)
[1− r̂r̂]

(
F

8πηa

)
+

c3

2

(a
r

)3
[3 r̂r̂−1]

}
· e . (80)

The two conditions determining c3 and the sphere velocity are

u(±ae) = V

u(ar̂)−V = −3
2
(1− r̂r̂) ·Vel . (81)

The first condition assures that the fluid velocity at the poles of the sphere agrees
with its velocity. The second condition demands the phoretic surface flow in the
rest frame of the sphere to be the same as in unforced electrophoresis. This is a
reasonable requirement since for negligible EDL polarization the local osmotic flow
in the boundary layer does not depend on whether the sphere is forced or not. To
evaluate the second condition, one selects a unit vector r̂ = e⊥ perpendicular to e.
The results is

V = Vel +
F

6πηa
= µ

t
0F +µelE∞

c3 = Vel−
F

12πηa
. (82)

The first equation expresses the expected linear superposition of the particle veloci-
ties of the two problems of a phoretically moving sphere without body force, and a
forced no-slip sphere without phoresis. It can be likewise formulated as a mobility
problem for given forces F and eE∞. The second force contribution, however, is not
a body force.

The sphere becomes stationary, with V = 0, when the body force is equal to

F =−(6πηa)Vel , (83)

i.e. equal to the hydrodynamic drag force on a no-slip and non-phoretic sphere
moving with velocity Vel. Stationarity can be achieved experimentally, up to the
inevitable undirected Brownian motion for smaller particles, using optical tweezers.
The flow field of a stationary phoretic sphere is thus

u(r) =−3
4

{(a
r

)
[1− r̂r̂]−

(a
r

)3
[3 r̂r̂−1]

}
·µelE∞ . (84)

The surface average of this velocity field yields µelE∞, which expresses again the
body-force independence of the surface osmotic flow.
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Fig. 14 Streamlines around
an electrophoretically driven
negatively charged sphere
in quiescent fluid, held sta-
tionary by an applied body
force according to Eq. (83).
The flow is maintained by the
electro-osmotic counterions
current in the boundary layer
region near the sphere surface.

The flow in Eq. (84) describes an interesting situation: Even though the sphere
is held stationary in a quiescent fluid, it maintains a non-zero flow driven by the
osmotic current along its surface. For a negatively charged sphere where µel is neg-
ative, the flow is oriented in direction of the external electric field. The flow lines
of the stationary sphere are shown in Fig. 14. At large distances from the sphere,
the Stokeslet term dominates and the streamlines converge in the rear and diverge
in front. If the sphere is placed close to an interface, using optical tweezers, a suf-
ficiently strong temperature gradient, gravity, or electric wall attraction, the stream-
lines facing the wall will bent along the interface. This sets up an attractive hydro-
dynamic force which favors the formation of particle clusters at the interface [55].

4.6 Many-particle hydrodynamic interactions

As explained in Subsec. 4.1, when a colloidal particle moves in a viscous liquid in
the presence of other particles, it creates a flow pattern which affects not only the
motion of neighbouring particles, but through hydrodynamic back reflection also the
motion of the particle itself, and this even in the (hypothetical) absence of direct in-
teractions between the particles. The velocity field generated by a moving particle is
quasi-instantaneously transmitted through the fluid, inducing forces and torques on
all the other particles. These solvent-mediated interactions are referred to as hydro-
dynamic interactions (HIs) [1]. For a quiescent dispersion of N microparticles, these
interactions are characterized by the 6N×6N mobility matrix, µµµ(X), in Eq. (23), or
likewise by the associated 6N×6N friction matrix, ζζζ (X), which both linearly relate
translational and angular particles velocities with drag forces and torques. There
are three major distinguishing features of HIs which render them difficult to deal
with. Firstly, they are long-ranged, i.e. the long-distance decay of the velocity field
due to a moving particle decays for forced motion with the distance r as 1/r. Sec-
ondly, they are of genuinely many-body character, meaning that the HIs between
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a pair of particles are changed through the presence of a third one in their vicin-
ity. To account for the non-additivity requires the consideration of multiple flow
reflections by neighbouring microparticles, with the reflections being responsible
for the deviations of the exact HIs from the approximate form in terms of a su-
perposition of pair contributions. The approximate pairwise additivity treatment of
the HIs where flow reflections are disregarded altogether can be justified for dilute
dispersions only, for conditions where all particles are mutually well separated on
the scale of their sizes. Non-pairwise additive higher-order HIs effects are important
in particular in the dynamics of concentrated dispersions. The third distinguishing
feature of the HIs is that, differently from direct interactions, they do not affect the
equilibrium microstructure (i.e., the configurational distribution function Peq(X)), in
dispersions without external fields or imposed macroscopic flows. This is reflected
by the fact that owing to their interrelation with hydrodynamic friction forces, HIs
are not derivable from a many-particle conservative potential energy function deter-
mining the equilibrium distribution function.

Since diffusion transport properties of suspensions are expressible as configura-
tional averages of certain tensor elements of µµµ(X), and since µµµ(X) is a key ingre-
dient in the many-particle Smoluchowski and Stokes-Liouville equations governing
the evolution of the configurational distribution function P(X, t) of Brownian and
non-Brownian microparticles, respectively, it is essential to be able to calculate this
matrix for a many-particle system. Over the years, various numerical methods have
been developed for this purpose, and a number of review articles [29, 37] and books
[1, 14, 21] dealing with HIs are available.

If the microparticles are mutually well separated, with relative distances large
compared to their size, the flow induced by their motion can be regarded approxi-
mately as originating from point forces concentrated at their centres. This liberates
one from the severe complications of having to invoke the prescribed hydrodynamic
BCs simultaneously on the particle surfaces. The tensorial mobility coefficients de-
scribing the linear relations between applied forces and resulting velocities are then
straightforwardly approximated by the superposition of Stokeslets at the particle
centres according to (point-particles model)

µµµ
tt
ii ≈ µ

t
01 , (85)

µµµ
tt
i j ≈ T(Ri−R j) (86)

for i 6= j. Here, µ t
0i is the single-particle translational mobility coefficient of particle

i, and 1 is the unit tensor. Only the leading-order long-distance behaviour of the
flow field is included in the point-particles model, with the off-diagonal mobility
tensors decaying as r−1 in the inter-particle distance r. While the pairwise additive
point-particles model is applicable to well-separated particles, it usually fails when
particles are close to each other or to a confining wall, as indicated by the possible
violation of the positive definiteness of the mobility matrix approximation in Eq.
(85). At large concentrations and for smaller inter-particle distances, more refined
theoretical methods and numerical schemes are required to account for the near-
distance and non pairwise additive contributions to the HIs.
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The next important step in going beyond the point-particles model is to account
for the non-zero volumes of the particles while still maintaining the pairwise addi-
tive single-particle flow superposition. For spherical no-slip particles this is referred
to as the Rotne-Prager (RP) mobility matrix approximation [56], and with an appro-
priate extension to overlapping no-slip spheres also as the Rotne-Prager-Yamakawa
(RPY) approximation [57, 58]. The RP approximation is still pairwise additive, with
the RP mobility tensors exhibiting a long-distance decay of O(r−3). All the hydro-
dynamic back reflections, which give rise to more steeply decaying flow field contri-
butions of O(r−4), are hereby disregarded. The main merit of the RP approximation,
in addition to its convenient simplicity, is that is leads to a translational mobility ma-
trix approximation, µµµ tt,RP, which is positive definite for all physically allowed con-
figurations of non-overlapping spheres. Moreover, µµµ tt,RP is an upper bound to the
exact translational mobility matrix, µµµ tt , in the sense that b ·

(
µµµ tt,RP−µµµ tt

)
·b > 0 for

all non-zero 3N-dimensional vectors b and all allowed configurations. This prop-
erty of the RP approximation can be used for constructing upper bounds to certain
transport properties of concentrated dispersion such as the (short-time) mean sedi-
mentation velocity. The RP approximation can be profitably used for dilute to mod-
erately concentrated dispersions of no-slip microspheres which strongly repel each
other over larger distances. Examples in case are like-charged colloidal particles,
and lower-salinity aqueous solutions of globular proteins.

The derivation of the translational mobility matrix in RP approximation proceeds
as follows: Consider first an isolated no-slip microsphere j of radius a in an infinite
quiescent fluid, translating without rotation under the action of the force F j acting
at its centre at R j. From Eq. (38), one notices that σσσ ·n = F j/(4πa2) is consistent
with the no-slip BC on the sphere surface, i.e. the surface shear stress in this special
situation is constant. Consequently,

u(0)
j (r) =

∫
dS′T(r− r′) ·

F j

4πa2 =

(
1+

a2

6
∇

2
)

T(r−R j) ·F j (87)

where for the second equality, the mean-value theorem for bi-harmonic functions
has been used [59], on recalling that ∇2∇2T(r) = 0 for all non-zero vectors r. From
performing the second-order differentiation, one verifies that u(0)

j (r) is equal to the
velocity field in Eq. (66) which we had obtained earlier using the singularity flow
solutions.

Consider next the incident flow, u(N−1)
inc (r), created by the motion of (N − 1)

no-slip spheres at the position Ri of another sphere i. It should be noticed here
that u(N−1)

inc (r) is determined by the BCs on all N spheres, including the singled-
out sphere i. In the RP treatment, the incident flow is crudely approximated by the
superposition of the single-sphere flow fields,

u(N−1)
inc (r)≈

N

∑
j 6=i

u(0)
j (r) . (88)
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In this incident flow field approximation, the (N−1) no-slip BCs are only approxi-
mately fulfilled for configurations of mutually well separated spheres.

The velocity, Vi, of a no-slip microsphere i of radius a in an infinite fluid, sub-
jected a force Fi and an incident flow field uinc(r), is given by the exact translational
Faxén law

Vi = µ
t
0 Fi +

(
1+

a2

6
∇

2
i

)
uinc(Ri) , (89)

where µ t
0 is the translational single-particle mobility of a no-slip sphere. The only

restriction on the form of the incident flow is that it has to be a Stokes flow solution,
created by sources located outside the volume of sphere i. These sources could be,
e.g., other microparticles or confining walls, whereby the wall influence can be de-
scribed by an image system as discussed in the following section. A derivation of
the present Faxén theorem is given, e.g., in [14, 35]. According to the Faxén theo-
rem, freely advected, i.e. force- and torque-free, small particles can be used to trace
out the streamlines caused by the motion of big ones. For an example, consider a
small tracer sphere i placed in the (incident) flow of, say, a phoretically moving big
sphere. Since on the small length scale a of the tracer the curvature contribution in
Eq. (89) described by the Laplacian can be neglected, one has

Vi ≈ uinc(r = Ri) (90)

for the velocity of the tracer dragged along in the flow field of the big particle.
Small tracer tracer particles have been used experimentally, e.g., to visualize the
thermophoretic quasi-slip flow around a big polystyrene or silica sphere near a sur-
face, driven by a temperature gradient in the fluid oriented perpendicular to the
surface [60].

We use now the Faxén theorem to obtain the velocity of a no-slip sphere i of
radius a in the incident flow of (N− 1) other ones of equal radii, using the single-
spheres flow superposition. The result is

Vi ≈ µ
t
0 Fi +

N

∑
j 6=i

(
1+

a2

3
∇

2
i

)
T(Ri−R j) ·F j , (91)

where ∇2
i ∇2

j T(Ri−R j) = 0 for i 6= j has been used in the derivation. The transla-
tional mobilities in the RP approximation follow readily from this result as

µµµ
tt,RP
ii = µ

t
01 (92)

µµµ
tt,RP
i j = µ

t
0

[
3
4

(a
r

)
(111+ r̂r̂)+

1
2

(a
r

)3
(111−3r̂r̂)

]
(93)

with r = Ri−R j. The positive definiteness of the RP translational mobility matrix
can be shown, e.g., using the double surface integral representation of its tensor
elements,
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µµµ
tt,RP
i j =

1

(4πa2)2

∫
Si

dS
∫

S j

dS′T(r− r′) , (94)

which is valid also for i = j. It has been assumed for the validity of this represen-
tation for i 6= j that the two spheres do not overlap. For the details on how positive
definiteness is shown using this representation we refer to [58].

The simplicity of the RP approximation renders it very attractive for practical
applications. It has been generalized to no-slip spheres of different radii (see, e.g.,
[58]), and to overlapping particles configurations [61]. Moreover, the RP approxi-
mation has been employed for the calculation of the mobilities of complex-shaped
particles using bead-modelling of the particles [62].

For problems where particles are close to each other, like in concentrated dis-
persions, more precise methods than the simple RP approximation are required.
Various advanced numerical methods have been developed for this purpose. A very
powerful and versatile method is the force multipoles method advanced by Cichocki
and coworkers. It is based on a multipolar expansion of the flow field for a system
of spherical particles which is used to construct a set of equations determining the
a priori unknown stresses at the sphere surfaces. The addition of lubrication cor-
rections for nearly-touching particles has led to an efficient numerical algorithm
allowing for a controlled high-precision calculation of the many-spheres mobility
matrix [37]. A review of this method is given in [38]. The force multipoles method
has been extended to account for HIs with a planar wall [63], two parallel walls
[64], and a cylindrical channel [65]. A particularly intriguing feature of the method
is its facile adaptability to different hydrodynamic BCs such as the Navier partial-
slip and liquid interface BCs, with has opened the possibility to study the dynamics
of permeable particles, droplets, and surfactant-covered particles.

4.7 Lubrication effects

Hydrodynamic lubrication plays an important role when two or more particles are
brought close to each other. This is sketched in Fig. 15 for two no-slip smooth
spheres, and for three types of relative translational motions, namely squeezing and
receding motions along the line of centres, and shearing motion.

Fig. 15 A sketch of the flows
in the thin gap region between
two smooth spheres near con-
tact, for relative translational
motions as indicated.

h

z 

Squeezing motion Receding motion Shearing motion
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Since the gap between the particles is small, large pressure gradient builds up in
the gap region in order to squeeze out (or push in) the fluid in the form of an in-
to-out Poiseuille flow in the gap area, as illustrated in Fig. 15. This leads to strong
friction forces slowing down the motion of close particles and thus has the effect
of strongly slowing the relative motion of nearly touching particles. As an example
consider the squeezing motion of two no-slip spheres of radii a1 and a2, respectively
(with sphere 1 on top) approaching each other with constant relative velocity Vrel .
The lubrication flow analysis leads to the following expression [66]

p(ρ)− p∞ ≈−
3ηa1a2

(a1 +a2)h2

[
1+
(

a1 +a2

2a1a2h

)
ρ

2
]−2

Vrel , (95)

for the pressure distribution inside the narrow gap with minimal surface-to-surface
distance h� {a1,a2}. Here, ρ �

√
ah is the lateral distance from the symmetry

axis, and p∞ is the inconsequential pressure far away from the gap region. The
strong O(1/h2) divergence of the pressure in the gap along the symmetry axis dom-
inates the less severe O(1/h) divergence of the viscous contribution, ∼ η |∇u|, to
the stress tensor. Thus only the pressure contribution is required in calculating the
hydrodynamic drag force, Fh, on the upper sphere 1 on the basis of Eq. (96). The
result is [8, 21, 67]

Fh ≈−6πηVrel

h

(
a1a2

a1 +a2

)2

ez , (96)

for the dominant near-contact lubrication part of the drag force which diverges like
O(1/h). The main effect of lubrication is therefore a dramatic increase of hydro-
dynamic friction between closely spaced no-slip rigid surfaces. This effect can lead
in concentrated suspensions to the formation of transient hydrodynamic clusters of
particles with consequential shear thickening which has applications, e.g., in manu-
facturing of protective clothing.

The singular pressure concentration in the gap region of two no-slip spheres is
less severe for shearing motion where it gives rise to weaker logarithmic singularity
of the drag force at contact. Due to their mobile surfaces, two spherical drops slip
past each other in shearing motion even when in contact, experiencing therefore
non-divergent drag forces. For squeezing motion, however, there is still a O(1/

√
h)

singularity for two droplets with fully mobile interfaces. It is assumed here that the
droplet interfacial tension is so large that flow-induced deviations from the spherical
shape are negligible. For more information about lubrication effects under different
surface BCs see [14, 66].

As an illustration of the dynamic effect of lubrication consider a no-slip sphere of
radius a approaching a stationary, horizontal no-slip wall in squeezing motion (see
Fig. 16). The sphere is driven by the constant external force F = −|F |ez = −Fh.
This is a limiting case of Eq. (96), for a = a1 and a2→ ∞ with the lower sphere 2
expanded into a planar wall. Here, h denotes now the distance from the wall to the
closest surface point of the sphere. It follows that
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Fig. 16 Squeezing motion
of a no-slip sphere towards
a near-contact planar wall,
driven by the constant force
F =−|F |ez.

a

z 

h

dh(t)
dt

=Vrel(t)≈−
µ t

0|F |
a

h(t) , (97)

with solution

h(t)≈ h0 exp
{
−
(

µ t
0|F |
a

)
t
}
. (98)

Here, h0 is the near-contact starting distance with h0/a∼ 0.01, and µ t
0 is the single-

sphere translational mobility defined in Eq. (25). The exponentially slow vertical
approach of the sphere to the wall is a good description in reality only until the gap
distance h becomes comparable to the surface roughness of the sphere and plane
which in fact leads to plane-sphere contact after a finite time. A finite contact time
would be reached also due to the van der Waals attraction force between the planar
wall and the sphere which in the distance range where lubrication applies scales as
O(1/h2) [68].

5 Single-particle dynamics near a flat interface

The preceding section was devoted to the effects of the solvent flow on the dynamics
of suspended particulates in an unbounded fluid. Most realistic situations, however,
involve the presence of a boundary that may considerably change the flow character,
and by reflecting the flow incident upon it, may modify the hydrodynamic interac-
tions between the particles. A pronounced example is the effect of sedimentation,
where the backflow of fluid due to the presence of a container bottom, however far
distant it may be, cannot be neglected in order to correctly determine the sedimen-
tation velocity of dispersed microparticles [9]. Soft matter systems are very often
bounded, especially in biophysical flows and in a number of technical applications.
In this Section, we investigate the effects of the presence of an interface on the fluid
flow, and in consequence on the suspended particles. We start by discussing a gen-
eral solution for a point force in the presence of a boundary, and its dependence
on the BCs at the interface. This allows to elucidate how the physical character of
the interface may influence the flow close to it. We then consider in more detail the
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motion of an isolated spherical particle close to a wall, with the BCs at the particle
surface and lubrication effects taken into account. We discuss the commonly used
approximations for the mobility of a microsphere near a no-slip wall, and present
examples of experimental techniques capable of grasping the dynamic behaviour.
Finally, we explore the motion of flexible particles and the effect of deformable
boundaries, in situations where the elasticity of the surface or particles may not be
neglected.

5.1 Point force near an interface

To demonstrate the effects of partial confinement on the hydrodynamics of a sin-
gle particle, we will show explicit solutions for the velocity fields for a point force
acting on a fluid bounded by a planar free surface, and a planar no-slip wall. These
are limiting cases for a point-force near a planar liquid-liquid interface, in the limit
that the viscosity ratio, λ = η1/η2, is reaching infinity and zero, respectively. The
point force F is located at the point r0 = (x0,y0,h) in the upper half space at vertical
distance h > 0 above the (x− y) interface at z = 0. Searched for is the flow field
u(r) in the upper half space z≥ 0. We take advantage of the linearity of the Stokes
equations to construct the flow field using the method of images. Akin to electro-
statics [36], a number of hydrodynamic problems of higher symmetry can be solved
by this elegant method. In this method, the fluid in the upper half-space of viscosity
η = η1 is mentally extended into the lower half-space, with the BCs imposed by the
taken-out interface now accounted for in conjunction with the Stokeslet at r0 by an
image system of elemental singularity solutions placed at appropriate positions in
the lower half-space. The flow field constructed in this way is in the upper half-space
identical to the original flow problem where the interface is present.

For a point force in front of a planar liquid-liquid interface, the image system
multipoles are all located at the same image point

r∗0 = Pz · r0 = (x0,y0,−h) . (99)

Here
Pz = 1− ezez (100)

is the (x− y) plane reflection matrix. This matrix acting on an arbitrary vector turns
the z-component of this vector into its negative.

Free surface: We explain the image method first for the simplest case of a Stokeslet
above a free surface, e.g., a non-contaminated air-water interface or a Navier perfect-
slip wall. The BCs for such an interface is that the surface flow has only an in-plane
tangential component, and that there is no tangential stress across the interface. This
is expressed by Eq. (17) in the limit that the viscosity, η2, of the fluid in the lower
half space vanishes, that is for λ→ 0. We shall assume the free surface not to deform
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in response to the motion of the fluid. This is justified when the surface tension of
the interface is large enough.

The image system is here simply the mirror Stokeslet of strength F∗ = Pz ·F at
the mirror location r∗0. The flow in the fluid occupying the upper half-space is thus

u(r) =
[
T(R)+T(R∗) ·Pz

]
·F , (101)

where R = r− r0 and R∗ = r− r∗0 are the vectors to the observation point from
the Stokeslet and image Stokeslet locations respectively. The Cartesian frame can
be oriented here such that F = F‖ex +F⊥ez. The flow components tangential and
vertical to the interface are then

ux(r) =
F‖

8πη
[G(ex)+G∗(ex)]

uz(r) =
F⊥

8πη
[G(ez)−G∗(ez)] , (102)

where we use G(e) = G(R;e) and G∗(e) = G(R∗;e) as abbreviations to shorten the
notation.

The image system for a planar free surface, consisting simply of the mirror reflec-
tion of the actual flow singularity, is sketched in Fig. 17 for the two basic situations
of the Stokeslet directed along and perpendicular to the plane, respectively. We use
here the elemental singularity solution pictograms introduced in Fig. 7. The stream-
lines for the two cases, based on the flow fields in Eq. (102), are plotted in Fig. 18.
By the reflection symmetry of the present image system, it is obvious that the veloc-
ity field at the interface is purely tangential. Moreover, since u(x,y,z) = u(x,y,−z)
by construction, the tangential stress at the interface proportional to ∂ux,y/∂ z is zero.

Free surface

Stokeslet

Image stokeslet

 (b)

Free surface

Stokeslet

Image stokeslet

 (a)

Fig. 17 The image system satisfying the boundary conditions of a free surface is simply the mirror
Stokeslet of strength F∗ = Pz ·F. (a) For a point-force oriented parallel to the surface, the image
has the same force direction, while (b) for the force pointing towards or away from the surface, the
direction of the image force is reversed.

The flow solution for a Stokeslet in front of a planar interface can be used to con-
struct, by superposition, the flow field due to a rigid no-slip body near the interface.
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(a) (b)

Fig. 18 Flow streamlines (a) due to a point-force oriented parallel to the free surface, and (b) due
to a perpendicularly oriented point-fore. Reproduced from [69] with kind permission.

For a free interface, the flow field is determined by

u(r) =
∫

Sp

dS′T(r− r′) ·
(
σσσ(r) ·n′

)
+
∫

S∗p
dS′T(r− r′) ·Pz′ ·

(
σσσ(r′) ·n′

)
, (103)

where S∗p is the surface of the mirror body, and Pz′ · (σσσ(r′) ·n′) is the mirror stress
field on this surface. This is sketched in Fig. 19.

h

- h 

z 

X 

Fig. 19 To determine the flow due to a no-slip particle moving above a planar free surface at
z = 0, one mentally replaces the surface by an image particle, with the fluid continued into the
lower half-space. The surface stress and thus the translational and angular velocities of the image
particle are the surface reflections of those of the real particle.

As an interesting problem related to Eq. (103), consider the tangential motion of
an isolated no-slip sphere along a planar free interface, in the extreme situation that
the sphere is permanently touching the interface in a single point. This quasi-two-
dimensional motion is realized to good accuracy in an experimentally well studied
system of super-paramagnetic microspheres at the air-water interface of a hanging
drop. To determine the single-sphere mobilities starting from Eq. (103), it is crucial
to account for lubrication effects in the zero gap case. Lubrication forbids the ro-
tation of the surface-touching sphere along an axis parallel to the surface [70], i.e.
µr
‖ = 0. Rotation is allowed only around the perpendicular sphere axis. While parti-

cle surface roughness and remnant undulations in the planar surface should give rise
to a non-zero mobility µr

‖, the actual effect of lubrication is to lower its value sig-
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nificantly below the rotational mobility, µr
0, of a sphere in the bulk fluid. A precise

calculation of the mobility tensors of hydrodynamically interacting spheres touch-
ing a free planar interface was made in [70]. The special result for the mobilities of
an isolated sphere is

µ
t
‖/µ

0
t ≈ 1.380 , µ

r
⊥/µ

0
r ≈ 1.109 . (104)

Owing to the smaller friction experienced by the hemisphere facing the free surface,
the translational mobility for motion parallel to the surface is raised above its bulk
value by 38 percent, and the rotational mobility µr

⊥ by mere 11 percent. Note that the
sphere is not rotating while translating, since it can be considered as moving side by
side in contact with its twin image sphere located just below the free interface. Each
of the two twin spheres experiences the same hydrodynamic drag force parallel to
the free surface. A microsphere above a no-slip wall which has the freedom to move
away from the wall is discussed further down in relation to Fig. 22.

Liquid-liquid interface: The image system for a point force in the presence of a
rigid no-slip wall, and more generally of a (clean) fluid-fluid interface was given by
Blake in the 1970’s [71, 72].

For a Stokeslet parallel, G(ex), and perpendicular, G(ez), to the (x−y) fluid-fluid
interface, the image system is given as a function of the viscosity ratio λ by [26]

GIm,x(r) =
1−λ

1+λ
G∗(ex)+

2λh
λ +1

G∗D(ex,ez)−
2λh2

λ +1
D∗S(ex) , (105)

GIm,z(r) = −G∗(ez)−
2λh

λ +1
G∗D(ez,ez)+

2λh2

λ +1
D∗S(ez), (106)

where G(e) = G(R;e) and G∗(e) = G(R∗;e) are used as abbreviations, with anal-
ogous abbreviations used for the other elemental singularities. The superscript (∗)
indicates that the considered singularity is located at the position, r∗0, of the image.
The Cartesian longitudinal and transversal components of the flow field in the upper
half-space z > 0 are expressed in terms of this image system as

ux(r) =
F

8πη

[
G(r;ex)+GIm,x(r)

]
, (107)

uz(r) =
F

8πη

[
G(r;ez)+GIm,z(r)

]
, (108)

with the force F of magnitude F > 0 pointing along the x-axis and z axis, respec-
tively. In the limit λ = 0 of zero viscosity of the lower half space fluid, the result for
a Stokeslet above a free surface is recovered.

No-slip wall: The system of image multipoles at r∗0 for a no-slip rigid surface,
obtained by taking the limit λ → ∞ in Eq. (105), has more components than that
for the free surface. The reason for this is that in addition to a zero normal velocity
component at the interface, also the tangential fluid velocity component must be
zero.
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The pictogram representation of the image system for a no-slip wall is shown in
Fig. 20, for the strength F of the Stokeslet oriented parallel (a) and (b) perpendicular
to the wall. The image system for the general case of a tilted Stokeslet is obtained
by linear superposition. The image system has now two members in addition to the
image Stokeslet in the free surface case, namely a Stokes doublet of strength mod-
ulus 2hF , and a source doublet of strength modulus 2h2F . The streamlines for a
Stokeslet parallel and perpendicular to the no-slip wall are shown Fig. 21. Notice
the pronounced flow vortices in the latter case, with fluid dragged in behind the up-
pointing Stokeslet. For a detailed discussion of the image system solution we refer
to Blake’s original work. Quite interestingly, the presence of a no-slip wall changes
the asymptotic behaviour of the flow field in the upper half-space at distances far
from the Stokeslet and the wall. Although the image Stokes doublet and source
doublet contributors to the velocity field decay faster than the two Stokeslet contrib-
utors, there is a long-distance flow cancellation. As a result, the velocity field decays
asymptotically as O(r−2), for the Stokeslet oriented parallel to the wall, and an even
faster O(r−3) decay is found for the perpendicularly oriented Stokeslet [71]. This
is an example of hydrodynamic screening induced by a stationary no-slip boundary
which takes momentum out from the fluid.

The method of images can be successfully applied also to the case of higher-order
elemental singularities near a planar wall such as a Stokes dipole, Rotlet, Rotlet
dipole and source doublet [26, 73]. These solutions are quite useful, e.g., to describe
the hydrodynamic attraction of a bacterial microswimmer by an interface, and its
resultant circular motion.

Stokeslet (F)

+2hF

Stokeslet (F)

Stokeslet 

Image system:

Stokeslet

doublet

Source

doublet

Hard wall Hard wall

(a) (b)

Image system:

+2h2F

Source

doublet

+2hF

Stokeslet

doublet

Stokeslet 

+2h2F

Fig. 20 The image system satisfying the no-slip BC at a rigid wall is more complex than that
for a free surface. The three different flow singularities of the image system and their respective
strengths are expressed as pictograms defined in Fig. 7(a)-7(f). The image singularity solutions are
all located at the mirror point of the Stokeslet in the actual upper fluid. Note that in (a) the mirror
Stokeslet is oppositely oriented. Redrawn after [71].

Partial-slip wall: The image system for a planar rigid wall with Navier partial-
slip boundary conditions is more complicated than that for a liquid-liquid interface,
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(a) (b)

Fig. 21 Flow field streamlines for a point force located above a no-slip wall, with the wall repre-
sented by the thick bottom line. Parallel (a) and perpendicular (b) orientations of the Stokeslet are
considered. Reproduced from [69] with kind permission.

except for the zero and infinite slip length limits where likewise the no-slip wall
and free surface are recovered. As shown by Lauga and Squires in [74], the image
system for the perpendicularly oriented Stokeslet contains the same set of elemental
singularity solutions as that for a liquid-liquid interface. However, these are now
continuously distributed along a line extending from the reflection point r∗0 into the
negative ez direction, with magnitudes that decay exponentially downside this line
over the slip length `. For `→ 0, Blake’s solution for a no-slip wall is recovered.
The image system for a Stokeslet parallel to the partial-slip wall involves a larger
set of elemental singularity solutions, likewise distributed along the aforementioned
singularity line. The system include now also a Rotlet and a Rotlet dipole. Here, not
all singularity solution magnitudes decay exponentially in going downside along the
line.

5.2 Spherical particle motion near a no-slip wall

The hydrodynamic problem of the motion of a spherical particle in a viscous liquid
bounded by a planar no-slip wall has been studied since more than a century. The
difficulty of the problem relates to the fact that BCs must be satisfied both at the
wall and the sphere surface.

Anisotropic mobilities: Owing to the BCs both for the sphere and the wall, the
6× 6 mobility matrix characterizing the translational and rotational motion of the
sphere near the wall is of an anisotropic character, with scalar elements (mobility co-
efficients) depending on the distance z of the sphere centre to the wall extending into
the x− y plane. Five independent mobility coefficients are required to characterize
the sphere motion, as depicted in Fig. 22. The four coefficients µ t

‖, µ t
⊥, µr

‖, µr
⊥ char-

acterize the translational and rotational sphere motion parallel and perpendicular to
the wall, while the additional coefficient µ tr describes the wall-induced coupling
of translational and rotational motion. A torque-free sphere translating parallel to a
near-distant wall is rotating. This should be contrasted to the motion of a sphere far
distant from the wall which is fully characterized by the two bulk coefficients µ t

0
and µr

0 given in Eq. (25), without any translational-rotational coupling.
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Fig. 22 Schematic represen-
tation of mobility coefficients
describing the near-wall trans-
lational (superscript t) and
rotational (superscript r) mo-
tions of a rigid microsphere
parallel and perpendicular to
a planar wall. Not depicted
is an additional mobility
coefficient, µ tr = µrt , char-
acterizing the wall-induced
translation-rotation coupling
of the sphere motion. See the
text and [75] for details.

The mobility matrix for a sphere near a planar wall is of the form

µµµ(z) =
(

µµµ tt(z) µµµ tr(z)
µµµrt(z) µµµrr(z)

)
, (109)

with all coefficients depending on the sphere-wall distance z. The components of
the tt submatrix have in the selected coordinate frame the simple structure

µµµ
tt(z) =

 µ tt
⊥(z) 0 0
0 µ tt

‖ (z) 0
0 0 µ tt

‖ (z)

 , (110)

with a similar structure for the rotational rr submatrix. The structure of the rt and tr
coupling tensors is different (see, e.g., [76, 75]).

Numerous works have been devoted to the evaluation of the z-dependence of
the mobility coefficients, dating back to Lorentz [77] and Faxén [78] more than a
century ago who calculated the first terms in the expansion of the two translational
coefficients in terms of the reciprocal sphere-wall distance, t = a/z, in units of the
sphere radius, given by

µ
t
‖(t) ≈ 1− 9

8
t, (111)

µ
t
⊥(t) ≈ 1− 9

16
t +

1
8

t3− 45
256

t4− 1
16

t5 . (112)

These expressions provide a crude approximation of the exact translational coeffi-
cients for large sphere-wall distances z/a ≥ 10. Subsequent refined calculations by
Brenner et al. [15, 79, 80, 81] and Dean and O’Neill [82, 83] have led to formally ex-
act expressions for part of the mobility coefficients in terms of infinite series. While
frequently quoted, these series expressions are of limited practical importance ow-
ing to their slow convergence at near-contact distances. More recently, numerically
precise and convenient inverse distance series results for all five mobility coeffi-
cients have been obtained, using a high-precision numerical scheme based on the
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force multipoles method by Cichocki and Jones [76] combined with a Padé approx-
imation used for incorporating near-contact lubrication effects.

For the presentation of these numerical results, we introduce dimensionless mo-
bilities by division through respective bulk mobility coefficients according to

µ̃
t
‖,⊥ =

µ t
‖,⊥
µ t

0
, µ̃

r
‖,⊥ =

µr
‖,⊥
µr

0
, µ̃

tr =
µ tr

aµr
0
. (113)
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Fig. 23 Dimensionless mobility coefficients, defined in Eq. (113), of a no-slip microsphere near
a planar no-slip wall, as functions of the dimensionless reciprocal sphere-wall distance t = a/z.
At sphere-wall contact where t = 1, all mobilities except for µr

⊥ are vanishing. The effect of
translation-rotation coupling, absent both at contact and far away from the wall, is strongest near
sphere-wall contact where µ̃ tr attains its largest value of about 0.05. Mobility coefficients have
been obtained using the method in [76].

The dimensionless mobility coefficients for a no-slip sphere near a planar no-slip
wall are plotted in Fig. 23, as functions of the inverse distance parameter t. Signif-
icant deviations from the bulk mobility values are observed for distances z/a < 5.
The slowing hydrodynamic effect of the wall is in general more pronounced for
translational than rotational motion. Physical processes where this can be of impor-
tance are cellular adhesion [6], and channel flows where translation is hindered but
rotation is still strong enough to allow for the reorientation of particles in external
fields [84]. All mobility coefficients except for µr

⊥ go to zero in a non-analytical
way when the contact distance t = 1 is approached. It follows from lubrication the-
ory that the asymptotic behaviour of the mobility coefficients close to the wall can
be expressed in terms of the dimensionless gap width ε = (z−a)/a [76]. In the case
of translational coefficients, one finds

µ̃
t
⊥ ∼ ε +

1
5

ε
2 logε, µ̃

t
‖ ∼−2(logε)−1. (114)
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Wall lubrication effects imply also that µr
‖(t → 1) = 0, whereas the sphere rotation

with the angular velocity oriented perpendicular to the wall is possible even at con-
tact where the related mobility coefficient µr

⊥ is reduced by about 18 percent below
the isotropic bulk value. The coefficient µ tr relating translational motion to applied
torque is zero at sphere-wall contact since lubrication implies zero translational ve-
locity of the sphere at wall contact.

Mobility measurement by light scattering: The theoretical predictions for the
distance dependence of the mobility coefficients of an isolated microsphere near a
wall have been scrutinized in experimental studies, for sphere sizes ranging from
about 100 nm up to several microns, using various optical techniques. These tech-
niques include optical trap microscopy [85], nano-PIV [86, 87], dynamic light
scattering (DLS) in presence of two parallel walls [88], low-coherence DLS [89],
resonance-enhanced DLS [90, 91], and evanescent wave dynamic light scattering
(EWDLS) in a system bounded by one or two walls [27, 92, 93, 94, 95]. How-
ever, only recently has it been possible to determine both the translational and rota-
tional diffusion of a colloidal sphere in the vicinity of a planar wall [75, 96], using
EWDLS from optically anisotropic spherical particles. In many experiments such
as in EWDLS, the relation

D = kBT µµµ , (115)

between the hydrodynamic mobility matrix and the diffusion matrix, D, of a dis-
persed Brownian particle at system temperature T is used, on measuring the dif-
fusion matrix coefficients instead of the associated hydrodynamic mobility coeffi-
cients.

Light scattering is a powerful tool to investigate the properties of sub-micron soft
matter systems [97]. In evanescent wave scattering experiments, a colloidal suspen-
sion is typically illuminated by a monochromatic laser beam that is totally reflected
from a planar glass surface bounding the sample, so that no refracted light enters
into the suspension (which is placed above the glass surface in Fig. 24) except for
an evanescent wave whose intensity decays exponentially in going away from the
glass surface into the suspension. Thus, only a colloidal particle close to the glass
surface scatters enough of the incident evanescent light to be detected. The pene-
tration depth, 2/κ , of the evanescent can be changed to probe the particle diffusion
at different glass surface-particle distances. For a review of the EWDLS method
including experimental details, see [98].

The key quantity determined in (EW)DLS experiments is the scattered light in-
tensity time-autocorrelation function. Of particular significance is the short-time
(initial) decay rate, Γ , of the intensity autocorrelation function referred to as the first
cumulant. This quantity can be theoretically predicted on basis of the generalized
Smoluchowski equation determining the evolution of the configurational probability
density function of Brownian particles under Stokes flow conditions [1, 99]. Inside
the bulk region of a very dilute suspension of colloidal hard spheres far away from
confining walls, the first cumulant is proportional to Γ = q2D0, where q is the mod-
ulus of the scattering vector q, and D0 = kBT µ t

0 is the translational (Stokes-Einstein)
diffusion coefficient of an isolated Brownian sphere.
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In the data analysis gained from a typical EWDLS set-up such as the one sketched
in Fig. 24, one conveniently decomposes the scattering vector into its components
parallel and perpendicular to the wall, q‖ and q⊥, respectively. The first cumulant
for the translational motion of a Brownian sphere near the glass wall is then given
by

Γ = q2
‖

〈
D0
‖

〉
κ

+

(
q2
⊥+

κ2

4

)〈
D0
⊥
〉

κ
, (116)

where D0
‖(z) = kBT µ t

‖(z) and D0
⊥(z) = kBT µ t

⊥(z), and 〈· · · 〉
κ

denotes a κ-dependent
weighted average of the z-dependent diffusion coefficients over all sphere - glass
wall separations z, for a given evanescent wave penetration parameter κ . The aver-
age diffusion coefficients in Eq. (116) for translational diffusion parallel and per-
pendicular to the glass wall are not purely statistical mechanical properties but are
dependent on the value of κ selected in the optical setup: The smaller κ is the larger
are the resulting average diffusion coefficients [95]. For a smaller κ , diffusion is
detected in EWDLS over a larger distance from the glass wall, and µ t

‖(z) and µ t
⊥(z)

are increasing with increasing wall-sphere distance z.
By determining Γ as a function of q‖ for fixed q⊥ and vice versa, the two av-

erage translational diffusion coefficients are obtained using Eq. (116). Moreover,
on the basis of an analytic expression for the first cumulant generalized to opti-
cally anisotropic spherical particles, the distance-averaged rotational diffusion coef-
ficients are obtained in a light polarization-sensitive EWDLS experiment in addition
to the translational ones [75, 96].

La
se
r

Incident beam

sample cell

Fig. 24 Schematics of an EWDLS set-up. The wave vectors of the incident evanescent and scat-
tered light beams are ke and ks, respectively, with their difference defining the scattering vector
q = ks− ke. Independent experimental variation of the components q‖ and q⊥ of the scattering
vector parallel and perpendicular to the confining glass wall allows for the determination of wall-
distance averaged diffusion coefficients. See the text for details. Redrawn after [95].
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Hydrodynamic radius models: Transport properties of colloidal suspensions such
as the viscosity and translational and rotational diffusion coefficients depend in prin-
ciple on the details of the hydrodynamic particle structure, e.g. on the particle sur-
face BC, and the fluid permeability profile in the case of fluid-permeable particles.
Important examples of particles with internal structure are micro- and nanogels,
non-permeable rigid particles with surface corrugation, and core-shell particles con-
sisting of a dry core coated by a polymer brush. The hydrodynamic effect of the in
general quite complicated intra-particle structure can be characterized under surpris-
ingly general conditions by a single parameter, namely the effective hydrodynamic
radius aeff. For globular particles, this radius can be determined experimentally in
a DLS experiment on using the single-sphere Stokes-Einstein relation for the dif-
fusion coefficient D0. The hydrodynamic radius is the radius of an effective no-slip
sphere with the same diffusion coefficient as the one of the actual internally struc-
tured particle. It has been shown in recent theoretical work [100] that the error in-
troduced by simply using aeff for the particle structure characterization can be well
controlled.

5.3 Near-wall dynamics of anisotropic and flexible particles

The presence of a nearby wall or interface drastically affects the hydrodynamics
experienced by a microparticle. This can be easily understood qualitatively using
symmetry arguments. Since the hydrodynamic friction experienced by a particle is
in general larger on the side of the particle facing the wall, there is translational-
rotational coupling even for a highly symmetric particle such as a sphere with uni-
form surface BC. For a non-spherical particle, there is an additional dependence of
the friction coefficients on the particle orientation giving rise to interesting dynamic
effects.

For an example, consider the sedimentation of a rod-like rigid particle near a
vertical rigid wall. As we have discussed earlier, an inclined rod in an unbounded
fluid has a horizontal side drift while settling but it does not reorient its body axis.
This absence of rod reorientation/rotation does not hold any more in sedimentation
close to a vertical wall. It has been experimentally observed and numerically calcu-
lated by Russel et al. [101] for a no-slip rod sedimenting near to a no-slip vertical
wall that there are two possible sedimentation scenarios. The first one is a glanc-
ing motion, where one tip of the rod always points downwards while the rod is
reorienting close to the wall, and the second one a reversing motion, where the rod
tumbles while approaches its closest distance to the wall. In both scenarios, the wall
to centre-of-rod distance decreases initially during sedimentation, increasing again
subsequently. Which of the two scenarios is taking place depends on the initial wall
distance and inclination angle of the rod. To gain a quantitative understanding of
the rod Stokesian dynamics, a slender-body analysis for the motion of an elongated
microparticle close to a flat fluid-fluid interface has been made for determining the
drag force and torque acting on it for a fixed spatial orientation [102].
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(a) (b)

(c) (d)

Fig. 25 Sketch of two physical situations where kinematic reversibility is not applicable owing to
hydrodynamically induced particle (in (a)-(b)) or interface (in (c)-(d)) deformations. In (a)-(b), a
flexible particle is deformed differently if moving towards or away from a rigid flat interface. In
(c)-(d), the flexible interface experiences a local deformation different for a rigid particle moving
towards or away from the interface. The frictional force, Fh, experienced by the particle is likewise
dependent on the motion direction, since the distance to the deformed interface in (c) is smaller
than in (d).

The motion of a flexible microparticle is more complicated than that of a rigid
one, owing to inevitable hydrodynamically induced particle surface deformations
which invalidate the simple kinematic reversibility arguments for the associated
Stokes flows. As an illustration, consider in Fig. 25 (a) and (b) a flexible particle
(say a droplet or vesicle) moving away or towards a rigid planar wall, respectively.
During its motion, the particle will deform in a way controlled by the interplay of
fluid stresses and particle surface tension. The latter tends to restore the spherical
particle shape of minimal surface free energy which it would have if the fluid and
particle were stationary. The particle deformations are different for (a) and the oppo-
sitely directed motion in (b), since the distribution of friction forces (stresses) along
the particle surface is different in the two cases. Since symmetry is here obviously
broken, kinematic reversibility arguments can not be used to gain information on the
particle motion. The changing shape of an elastic body approaching a rigid flat wall
has been numerically calculated, e.g., for a liquid droplet sedimenting in another
fluid [103]. Elasticity effects can lead to cross-stream migration of flexible particles
[40] which is of importance in blood flows, where the suspended corpuscles are of-
ten highly elastic, in cell adhesion problems in shear flows [104], and for industrial
processes involving macromolecules or polymer flows [105].

So far we have assumed that the interface in the proximity of a particle is rigid.
This is a valid assumption for non-deformable container walls or liquid-liquid in-
terfaces of large interfacial tension. Deformable interfaces give rise to additional
effects. The motion of a rigid particle towards or away from a flexible interface
causes a motion-dependent local deformation of the interface. This is related to a
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special type of particle-interface interaction through the geometric coupling of lo-
cal interface shape and flow [106]. A rigid particle moving away from the interface
sketched in Fig. 25(c) pulls the fluid along with it which in turn causes a local de-
formation in the flexible interface extending in the direction of the particle motion.
This results in an enlarged hydrodynamic friction force on the particle as compared
to the flat-surface situation, i.e. Fh

1 >Fh
flat. The geometric coupling for the oppositely

oriented particle motion in figure part (d) leads to a frictional force on the particle
smaller than in the flat interface case so that Fh

2 < Fh
flat. This is reminiscent of the lift

force acting on deformable particles in flow, and is of interest for biological system
flows under elastic confinement. Quite interestingly, the vicinity of a soft interface
or object can be used by microorganisms in their propulsion even if performing re-
ciprocal motions [107], since the micro-scallop theorem discussed in Sec. 6 does
not apply near a flexible surface [108].

6 Self-propelling microswimmers

The locomotion and transport of autonomous (self-propelling) biological and arti-
ficial microswimmers under low-Reynolds-number flow conditions has generated
a lot of interest over the past years. See here [108, 109] for two very informative
overview articles, and a classical book by Lighthill [110]. The motility of microor-
ganisms such as bacteria, sperm cells, and algae affects many biological processes
including reproduction and infection. Appropriate swimming strategies are essen-
tial for microorganisms in their search for food or the avoidance of toxic environ-
ments (chemotaxis), the reaction to light (phototaxis), and the orientation under
gravity (gravitaxis). The theoretical design and fabrication of synthetic (robotic)
microswimmers who can transport cargo or remove toxins bears the perspective of
highly useful applications in medicine, biology and environmental science.

Autonomous swimmers are characterized by the absence of an external forcing
agent driving their translational and rotational motion. For microswimmers under
Stokes-flow conditions, this means

Fh(t) = 0 , Th(t) = 0 , (117)

expressing that the total hydrodynamic drag force and torque exerted on the swim-
mers are zero at any instant of time. The long-distance decay of the disturbance fluid
velocity field caused by the swimmer’s motion is thus of O(r−2) or faster.

There are a variety of autonomous propulsion mechanisms. For instance, a mi-
croobject could swim by self-diffusiophoresis, by creating through a surface-active
site a small gradient, ∇φ , in the concentration φ of a dissolved species (solute). This
self-created gradient, in turn, propels the microobject through the phoretic osmotic
solute flow in its interfacial region [48, 52], with the self-phoretic velocity, Vphor,
of the object determined by Eq. (79). The potential flow outside the self-phoretic
object has thus the characteristic O(r−3) far-distance decay.
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6.1 Purcell’s micro-scallop theorem

We focus here on purely mechanical microswimmers which self-propel by continu-
ously changing their body shape in a periodic way. After one cycle, the microswim-
mer returns to its initial body shape.

Two conditions have to be fulfilled to achieve a net translational displacement
after one cycle of body shape deformations. The first one known as Purcell’s micro-
scallop theorem [22, 111] is related to the kinematic reversibility of Stokes flows. It
reads

In the absence of inertia, the periodic sequence of body shape configurations
must be non-reciprocal, that is it must be different when viewed in a time-reversed
way.

This excludes in particular cyclic shape changes depending on a single parame-
ter only. For the scallop theorem to apply, it is understood that the single-parametric
microobject is far away from a flexible interface which invalidates kinematic re-
versibility arguments (c.f. Subsec. 5.3). As an illustrative example of the no-go scal-
lop theorem consider with Purcell in Fig. 26 a (one-hinge) symmetric micro-scallop
in the bulk fluid periodically opening and closing its legs. While shaking back and
forth, the net displacement after one cycle is zero. The opening angle ϕ is here the
only parameter characterizing different shapes, and the sequence of different shapes
is thus necessarily reciprocal.

Fig. 26 Left: A symmetric micro-scallop shakes back and forth during one motion cycle with-
out a net vertical translation. Right: The sequence of shape configurations in the one-dimensional
parameter space is necessarily reciprocal.

A non-reciprocal sequence of cyclic shape deformations is not sufficient to
achieve a net propulsion under Low-Reynolds-number conditions. An additional
requirement, applying also to non-small Reynolds number locomotion, is:

Successful self-propulsion requires an anisotropy or asymmetry in the fluid fric-
tion experienced by the moving swimmer.

The net displacement of an isolated microswimmer does not depend on the rate at
which a given non-reciprocal sequence of shape configurations occur (rate indepen-
dence) but only on their geometry.
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Many microorganisms such as bacteria and spermatozoa have an elongated body
with a distinct body axis or polarity which dictates the direction of their motion.
Roughly speaking, such a microorganism consists of a passive head part and a slen-
der active filament (flagellum). Animalcules such as sperms are propelled by wave-
like beating of their flagellum which causes them to move in the direction opposite to
that of the flagellar wave travelling away from the head. Unlike eukaryotic flagella,
bacterial flagella are passive fibers incapable of active bending. They use instead
a helical wave propulsion, in the form of a rotating rigid helical bundle of flagella
driven by a molecular motor at the cell body. If viewed from behind in swimming
direction, the flagellar bundle rotates counter-clockwise. The torque introduced by
this rotation is balanced by the clockwise rotation of the cell body.

In both propulsion mechanisms, swimming is possible because of the friction
anisotropy and non-reciprocal travelling wave deformations of the flagellum. The
slender flagellum can be mentally subdivided, at any instant, into rod-like segments
characterized by two segmental friction coefficients ζ⊥ ≈ 2ζ‖. The force ∆Fs ex-
erted on the fluid by a segment moving with instantaneous velocity v is

∆Fs = ζ‖v‖+ζ⊥v⊥ , (118)

where v‖ and v⊥ are the velocity projections parallel and perpendicular to the seg-
ment, determined by the instant shape and rate of change of shape of the swimmer.
Integration over the filament contour leads to the momentary propulsion (thrust)
force,

Fprop ∝
(
ζ⊥−ζ‖

)
e , (119)

along the body axis e of the swimmer who is kept stationary for this first calcu-
lation step. The propulsion force is proportional to the difference of the segment
friction coefficients and points from the filament to the head. See [108] for the de-
tails of such a calculation, e.g., for a simplified sperm model with a two-dimensional
wave-like beating pattern. The propulsion force must be balanced at any instant by
a hydrodynamic drag force, Fh(t) =−Fprop(t), exerted by the fluid on the instanta-
neously frozen-in shape of the swimmer, which is moving in this second calculation
step with the searched for instantaneous axial swimming velocity V (t). From a de-
cent estimate of the axial friction coefficient of the frozen-in swimmer appearing in
the relation Fh(t) =−ζfroz(t)V (t), the instantaneous swimming velocity is approx-
imately obtained. The here outlined procedure is once again a direct consequence
of the additivity of Stokes flow solutions, and of the associated particle velocities.
Since both Fprop and Fh are proportional to η , the swimming velocity is independent
of the fluid viscosity. However, the rate of dissipated energy caused by swimming
depends on the viscosity.
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6.2 Dipole swimmers

The flow around an isolated axial microswimmer with flagellar propulsion is in gen-
eral well approximated by a linear force dipole (linear Stresslet), GD(r;e,e), in the
direction of the swimmer’s body axis e. The two infinitesimally distant Stokeslets
pointing away from each other represent the balance of propulsive and drag forces
discussed above. This far-distance flow model is valid for distances larger than the
axial extension L of the swimmer. Higher-order elemental multipoles containing
additional information on the shape and near-distance motion come into play when
microswimmers get close to each other or to a boundary [26, 41, 108, 109].
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Fig. 27 Streamlines of a linear Stokeslet dipole (force dipole) oriented along the z axis with
positive dipole moment p > 0 (pusher). Lengths are scaled in units of d, and p/(8πηd2) = 1.
Left: Near-field streamlines of the oppositely oriented Stokeslets. Right: Streamlines of the ideal
force dipole. The two separatrix lines z =±x/

√
2 separate the sectors of in- and outflowing fluid.

Reproduced from the COMPLOIDS book [9] with kind permission of the Societa Italiana di Fisica.

With the dipole singularity positioned at the origin, and the dipole orientation
along e = ez, the dipole flow field is

uD(r;e) =
p

8πη
GD(r;ez,ez) =

p
8πη r2

[
3 (r̂ · e)2−1

]
r̂ . (120)

Note that (r̂ · e) = cos(ψ), with ψ denoting the angle between the dipole (swimmer)
axis e and the fluid observation point at r. The streamlines of the dipole velocity
field are depicted in Fig. 27 for p > 0, where the two Stokeslets are pointing away
from each other. The dipole strength scales as |p| ∼ η |V |L2 where V is the swim-
ming speed and L the axial length of the elongated swimmer. Notice here the distinct
differences in the linear Stresslet field of a dipolar microswimmer, and the source
doublet potential flow field of an auto-phoretic microswimmer. The Stresslet ve-
locity field is in particular longer-ranged than the potential flow velocity field of a
phoretic swimmer.



Colloidal Hydrodynamics and Interfacial Effects 63

Pusher: p > 0 Puller: p < 0

Fig. 28 Left: Schematics of the far-distant flow and associated linear force dipole (arrows) of a
pusher (p > 0) with the Salmonella bacterium as an example. Right: Schematics of a puller (p < 0)
with the green algae Chlamydomonas as an example. The swimming direction (unit vector) e is
here in the upward direction. Reproduced from the COMPLOIDS book [9] with kind permission
of the Societa Italiana di Fisica.

Microswimmers with a positive dipole moment are called pushers. They have
their active propelling part on their rear side, and as seen in Fig. 28 they push the
fluid out along the long (swimming) axis (repulsive flow) and draw fluid in on their
side (attractive flow field). The aforementioned microrganisms are all pushers in
addition to many types of bacteria. Microswimmers with a negative dipole moment
(p < 0) are termed pullers. Their streamline pattern is the same as that for pushers,
however with the flow direction reversed since the two Stokeslets are now pointing
towards each other. Pushers pull in fluid along their long swimming sides (attractive
flow) and push it out at their side (repulsive flow). An example of a puller is the green
algae Chlamydonamas rheinhardtii which swims with two head-sided flagella in a
breast-stroke-like motion.

6.3 Hydrodynamic interactions between swimmers

Two pushers swimming side-by-side attract each other, while being repulsive if
swimming one behind the other into the same direction. While this behaviour can
be obviated qualitatively from the dipole flow pattern for p > 0 depicted in Fig.
27, it can be more quantitatively discussed by considering the motion of one force
dipole in the incident dipolar flow field of the other one. On employing the transla-
tional Faxén theorem for point-like torque- and force-free objects (see Eq. (90)), the
velocity increments, Vi, of the two equal-moment dipoles at positions Ri are
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V1 = uD(R12;e2) =
p

8πη (R12)
2

[
3
(
R̂12 · e2

)2−1
]

R̂12 (121)

V2 = uD(R21;e1) , (122)

respectively, with Ri j = Ri−R j and i, j ∈ {1,2}.
If the two swimmers move momentarily side-by-side in the same direction so

that R̂12 · ei = 0, they acquire the relative velocity increment

V1−V2 =−
p

4πη (R12)
2 R̂12 , (123)

expressing that pusher 1 is hydrodynamically attracted to pusher 2, and vice versa.
To see this just view the relative motion in the rest frame of pusher 2 where V2 = 0.
For pusher 2 following pusher 1, we have

(
R̂12 · ei

)2
= 1, and the velocity differ-

ence describes now the hydrodynamic attraction of the two swimmers. The opposite
trends apply to two pullers owing to their negative force dipole moments.

Fig. 29 Left: Two pushers (p > 0) on a not too diverging course attract each other hydrodynami-
cally, and reorient each other into a parallel side-by-side motion. Right: Two pullers (p < 0) on a
diverging course reorient each other towards an antiparallel configuration, swimming subsequently
away from each other in anti-parallel direction (see also [108]).

This is not the whole story for arbitrary orientations and positions of the two
swimmers. The flow field uD(r;e2) created by swimmer 2 at the centre position R1
of swimmer 1 has rotating and straining parts, (∇×uD) and ED = 1

2

(
∇uD +(∇uD)

T
)
,

respectively. Swimmer 1 exposed to the flow field of swimmer 2 has thus the ten-
dency to align itself with the principal axis (dilation axis) of the strain field part
ED(R12;e2) of swimmer 2. For a quantitative analysis, let us model swimmer 1 ge-
ometrically overall as a force-free and torque-free prolate spheroid of aspect ratio
Γ > 1, with the long-axis orientation unit vector e1. A general rotational Faxén the-
orem for a no-slip spheroid states [14] that if the spheroid with its centre at position
R1 is subjected to an arbitrary incident Stokes flow field u(r)inc, it will rotate with
an angular velocity ΩΩΩ 1 given by
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ΩΩΩ 1 =
1
2
(∇×uinc)(R1)+

(
Γ 2−1
Γ 2 +1

)
e1×

(
Einc(R1) · e1

)
+ · · · . (124)

The dots annotate that higher order derivative contributions of the incident flow field
are neglected. A freely advecting sphere for which Γ = 1 rotates thus with half the
vorticity of the incident flow uinc, taken at the sphere center. An elongated body has
an additional angular velocity part due to the shear strain part of the incident flow.
This additional angular velocity part is oriented perpendicular to the long body axis
unit vector e1 of swimmer 1.

Substitution of uD(R12;e2) for the incident flow into Eq. (124) reveals that
two nearby pushers on a converging course reorient each other hydrodynamically
into a parallel side-by-side configuration. As depicted in the left part of Fig. 29,
if two pushers located in the x− z plane are separated by the distance h = R12,
and symmetrically oriented with inclination angles ±θ relative to the z axis, their
reorientation into a parallel configuration takes place with the angular velocities
Ωy,12 ∼ ∓pθ/(ηh3) [108]. In contrast, and owing to the opposite flow fields, two
pullers on a diverging course align each other in an antiparallel configuration, swim-
ming subsequently away from each other. This is illustrated in the right part of Fig.
29.

It should be recalled that the analysis presented here is based on the leading-
order singularity flow solutions. It applies in principle to inter-swimmer distances h
large compared to the elongational swimmer size L only, although it is often found
to be quite accurate even for distances comparable to L [109]. For two closely mov-
ing swimmers, the details of their shapes and propulsion mechanisms play a role.
This requires then a refined hydrodynamic modeling and more elaborate methods
to determine the swimmer dynamics. These methods include multiparticle collision
dynamics (MPCD) simulations of bacteria and sperm cells [109], bead-modeling of
complex-shaped swimmers combined with Stokesian dynamics simulations [112],
and numerical boundary integral equation methods invoking particle surface trian-
gularization [89].

6.4 Swimming near a surface

For a dipolar swimmer above a planar wall or surface (x− y plane at z = 0), the
flow field is a superposition of its dipolar flow field uD and an image flow field,
uIm, generated by a system of singularities located below the surface. The image
flow contribution is required to satisfy the surface BC (recall Sec.5). In Fig. 30,
this situation is illustrated for the simplest case of a pusher swimming above a free
surface. The only BC here is the fluid-impermeability of the surface which can be
fulfilled by considering the swimmer in the half-space z > 0 to move along with its
mirror image in the fluid extended to the lower half-space z < 0. This is akin to the
symmetric side-by-side motion of two swimmers in bulk fluid discussed earlier in
relation to Fig. 29.
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Fig. 30 Swimming with an image: A free surface attracts a puller and reorients its axis parallel
to the surface (θ = 0 with e · ex = cosθ ). A puller on the other hand is reoriented perpendicular
to the surface, swimming subsequently either away or head-on into the surface. This qualitative
behaviour remains valid for a Navier partial-slip wall, a no-slip wall, and a liquid interface [26].

Using again the translational Faxén theorem for a point-like freely advected par-
ticle, the vertical velocity component induced on the swimmer at R0 = (0,0,z0) with
z0 = h > 0 is

Vz(θ ,h) = uD,z(R0−R∗0;eim) =− p
32πηh2

[
1−3 sin2

θ
]
, (125)

where θ is the tilt angle of the swimmer with respect to the surface, so that sinθ = e ·
ez =−eim ·ez. Here, R∗0 and eim are the position and orientation vectors of the mirror
dipole, respectively. Provided the tilt angle is not too large so that θ < arcsin(1/

√
3),

the dipole is attracted by the surface. To reveal the influence of the free surface
(i.e. of the image dipole flow part) on the swimmer’s orientation, we employ the
rotational Faxén law where the swimmer is described as an elongated spheroid. The
result is [26]

Ωy(θ ,h) =
3psin(2θ)

128πηh3

[
1+
(

Γ 2−1
Γ 2 +1

)
sin2(θ)

]
, (126)

according to which for all values of θ , the pusher always aligns parallel to the
free surface, with the induced velocity in this aligned configuration being equal to
Vz(0,h) = −p/(32πηh2). Note that Γ � 1 for a typical bacterium such as E. coli,
owing to its extended flagella bundle.

Using the respective image flows, the calculations outlined above for a free sur-
face are rather straightforwardly extended to a clean liquid interface and a Navier
partial-slip wall, respectively, with the no-slip wall included as a limiting case
[26, 113]. For a clean liquid-liquid interface, e.g., the corresponding result is
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Ωy(θ ,h) =
3psin(2θ)

128πη1h3

[
1+

1
2

(
Γ 2−1
Γ 2 +1

)(
λ +(2+λ )sin2(θ)

1+λ

)]
(127)

Vz(0,h) = −
p(2+3λ )

32πη1 (1+λ )h2 , (128)

with the free and no-slip surface results recovered as the limiting cases for λ =
η2/η1 = 0 and λ → ∞, respectively. A pusher is always attracted by and aligned to
a nearby liquid interface, for any value of the viscosity ratio. The pusher is likewise
attracted and aligned parallel by a partial-slip wall, for any value of the Navier slip
length [26].

The attraction by and the accumulation of biological microswimmers near sur-
faces is indeed observed in many biological experiments. According to the above
analysis, pullers are oriented hydrodynamically in the direction perpendicular to the
surface (θ =±π/2), swimming either head-on away or right into the surface.

The simple modeling of pushers as linear force dipoles gives the prediction that
they should move in straight trajectories along a surface, owing to the rotational
symmetry of the aligned dipole with respect to the surface normal. However, it is
known experimentally that bacteria such as E. coli do swim in clockwise (CW)
traversed circles along a glass surface [114], as viewed from inside the fluid, whereas
near a clean free surface the spherical trajectories are traversed counter-clockwise
(CCW). The CW circular motion near the glass plate can be changed to a CCW
motion if a sufficient amount of free polymers is added to the fluid. Likewise, the
CW circular motion at a clean free surface can change to a CCW motion upon
the addition of detergents accumulating at the surface. The circular motion of a
bacterium is interrupted when a tumbling event occurs.

This surface-specificity of the trajectories can be attributed to the chiral bacterial
propulsion mechanism not resolved in the simple force dipole model. It becomes
essential when the swimmer gets close to a surface. To understand qualitatively the
CCW circular motion of a pusher near a free surface, recall that this is equivalent to
a pusher swimming in the flow field of its image. The image moves with the same
speed as the actual pusher, but the helical flagellar bundle (cell body) of the image
rotates opposite to that of the pusher. Recall that the bundle of a bacterium rotates
counterclockwise if viewed from behind, and suppose that the bacterium is oriented
momentarily along the y-axis. The counter-rotating flagellar helices (cell bodies) of
the swimmer and its image create then a disturbance flow directed in the positive
(negative) x-direction. Since the swimmer is freely advecting in this flow, it will
perform a CCW circular motion [115]. Qualitative arguments similar to the present
ones can be given to explain the CW circular motion of a bacterium at a no-slip
surface where an advection flow oppositely directed to that near a free surface is
created [108].

As Lopez and Lauga have recently shown [26], the surface-specific circular mo-
tion of a bacterium is quantitatively explainable on the singularity method level by
adding a so-called rotlet dipole singularity solution, uRD(r)∼ O(r−3), to the linear
force dipole solution of O(r−2). The rotlet dipole part accounts on the long-distance
level for the counter-rotating flagellum and cell body parts of the torque-free pusher.
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Using this flow singularity model in conjunction with surface-specific image sys-
tems, interesting quantitative predictions regarding critical parameter values for the
CW to CCW motion transition for partial-slip walls and surfactant-covered inter-
faces have been made [26].

7 Concluding Remarks

The present notes give an introduction into the world of low-Reynolds-number flows
and associated passive and active (i.e. self-propelling) microparticle motions, with
the focus on surface and interfacial effects. As the topics treated in the notes should
have amply illustrated, studying low-Reynolds-number phenomena is important,
and often leads to surprising findings. Our aim has been to provide the reader with
basic background knowledge which facilitates further reading of more advanced
research texts on processes involving microparticles and animalcules suspended in
viscous fluids. We have presented the governing equations of Stokes flows and their
essential properties in a rather descriptive way, avoiding detailed calculations which
can be found in more specialized textbooks and overview papers. While the ma-
terial is presented in a rather systematic way, many important phenomena such as
Marangoni surface flows [23], hydrodynamic screening near boundaries [116], wall-
induced apparent like-charge attraction of colloidal macroions [117, 118], and hy-
drodynamically induced surface accumulation of microparticles [119, 55, 120] have
been only shortly addressed, with an occasional reference to related literature, or
even not mentioned at all. The present notes can serve as a good preparation for an
improved understanding of research papers on these additional phenomena.
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Ekiel-Jeżewska (Polish Academy of Sciences, Warsaw) for having provided us with
the streamlines figures of a point force near a planar interface, and Jonas Riest and
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54. C. Contreras-Aburto and G. Nägele, J. Chem. Phys. 139, 134110 (2013).
55. F. Weinert and D. Braun, Phys. Rev. Lett. 101, 168301 (2008).
56. J. Rotne and S. Prager, J. Chem. Phys. 50, 4831 (1969).
57. H. Yamakawa, J. Chem. Phys. 53, 436 (1970).
58. E. Wajnryb, K. A. Mizerski, P. J. Zuk, and P. Szymczak, J. Fluid Mech. 731, R3 (2013).
59. R. Courant and D. Hilbert, Methods of Mathematical Physics II, Interscience, New York,

1962.
60. F. M. Weinert and D. Braun, Phys. Rev. Lett. 101, 168301 (2008).
61. P. J. Zuk, E. Wajnryb, K. A. Mizerski, and P. Szymczak, J. Fluid Mech. 741, R5 (2014).
62. B. Carrasco and J. Garcia de la Torre, Biophys J. 76, 3044 (1999).
63. B. Cichocki, R. B. Jones, R. Kutteh, and E. Wajnryb, J. Chem. Phys. 112, 2548 (2000).
64. S. Bhattacharya, J. Bawzdziewicz, and E. Wajnryb, Physica A 356, 294 (2005).
65. M. Kedzierski and E. Wajnryb, J. Chem. Phys. 133, 154105 (2010).
66. D. J. Acheson, Elementary Fluid Dynamics, Oxford Univ. Press, 1990.
67. D. J. Jeffrey and Y. Onishi, J. Fluid Mech. 139, 261 (1984).
68. R. Tadmor, J. Phys. Condens. Matter 13, L195 (2001).
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