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Autophoretic motion in three dimensions

Maciej Lisicki, ab Shang Yik Reigh c and Eric Lauga *a

Janus particles with the ability to move phoretically in self-generated chemical concentration gradients

are model systems for active matter. Their motion typically consists of straight paths with rotational

diffusion being the dominant reorientation mechanism. In this paper, we show theoretically that by a

suitable surface coverage of both activity and mobility, translational and rotational motion can be

induced arbitrarily in three dimensions. The resulting trajectories are in general helical, and their pitch

and radius can be controlled by adjusting the angle between the translational and angular velocity.

Building on the classical mathematical framework for axisymmetric self-phoretic motion under fixed-flux

chemical boundary conditions, we first show how to calculate the most general three-dimensional

motion for an arbitrary surface coverage of a spherical particle. After illustrating our results on surface

distributions, we next introduce a simple intuitive patch model to serve as a guide for designing arbitrary

phoretic spheres.

1 Introduction

Living systems of swimming microorganisms exhibit a rich
variety of collective phenomena,1 including swarming motion2 and
collective oscillations on scale much larger than the individual cell
length.3 Suspensions of bacteria may exhibit non-linear rheological
properties4 or enhanced diffusion.5 The properties of these
complex biological suspensions can be studied effectively in
model artificial systems. The ability to manufacture and control
biomimetic systems tailored to specific applications has become
one of the key challenges of modern nanotechnology.6

Catalytic particles are now well established as model systems
to address the properties of living and active matter. To a certain
degree, they can also be controlled by external fields7 to mimic
bacterial run-and-tumble motion. Catalytic micro-motors can
also be used for microscopic cargo transport8 and exhibit collective
dynamics which shares many features with living systems, such as
clustering,9 swarming and structure formation due to imposed
anisotropic interactions.10,11 In order to describe these collective
effects, however, we have to understand the basic building block of
such a system, namely single-particle dynamics.

The mechanism of propulsion of individual catalytic particles
relies on the phoretic motion in self-generated gradients.12

These may involve electric field (electrophoresis), temperature field

(thermophoresis) or chemical concentration (diffusiophoresis).13,14

While the underlying formalism holds for all these types of motion,
we focus our attention here on the latter case. The concentration
gradients are typically produced by covering the surface of the body
by a layer of catalyst.15 The non-uniform concentration field along
the surface drives a diffusive flow, leading to an effective slip-flow on
the surface of the particle.16 As a result, the motion of the particle
itself is induced, with the leading-order flow field of a dipolar
character due to the absence of external forces and torques, which
is akin to the swimming character of living microorganisms.17 The
effectiveness of the catalyst is quantified by the chemical activity of
its surface. The resulting surface slip flow is proportional to the local
concentration gradient via a mobility coefficient, which is related to
the details of the local particle–solute interaction potential.13 These
two material properties – activity and mobility – fully characterise
the flow generated on the surface.

The ability to produce the gradients and the resulting self-
phoretic motion requires a certain level of asymmetry in the
system. There are two basic ways to achieve this: (i) an asymmetry
in the surface properties of a spherical particle or (ii) an asymmetry
of the shape of the particle.

The classical generation of motion by patterning can be
achieved chemically in the so-called Janus particles by coating a cap
of the spherical particle by a layer of catalyst. Following pioneering
work on bi-metallic rods,18 early theoretical approaches explored the
relations between the cap coverage by the catalyst and the resulting
propulsion.16,19 In this case, activity and mobility patterns were
axially symmetric and thus able to generate motion along the
symmetry axis of the particle. This idea has inspired a number
of experimental realisations, including designing platinum-
coated spherical colloids in hydrogen peroxide solution20–22
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(although a detailed physical mechanism is still debated23,24)
and vapour-induced motion of gold–iridium spheres.25 The
theoretical efficiency of this propulsion mechanism has also
been studied theoretically.26,27

The role of geometry in inducing the gradients can be
exploited by non-spherical shapes of the particles, such as
analytically treatable oblate or prolate spheroids,28,29 dimers
of spheres uniformly covered by activity and mobility,30,31 or
asymmetric L-shaped particles.32 The same effect can be used
to produce a flow confined by chemically active asymmetric
boundaries, enabling local small-scale pumping of the fluid.33,34

In these cases, the concentration and thus flow fields have in
general to be determined numerically.35,36

All axially symmetric designs proposed in the aforementioned
studies produce unidirectional motion, with possible reorientations
of the particle purely due to rotational Brownian motion or external
forcing. The need for designing rotational phoretic swimmers led
to the idea of Janus particles conjoined in the dimers capable of
propelling on helical paths.37 Uneven surface properties and
shape imperfections due to manufacturing have also been shown
experimentally to lead to translational and rotational motion
of Janus spheres at an air–water interface.38 The same effect,
however, can be achieved with a perfectly spherical particle,
provided that an asymmetric coating pattern is used. In a recent
study, glancing angle metal evaporation was used onto a colloidal
crystal to break the symmetry of the catalytic patch due to
shadowing by neighbouring colloids.39 This allowed producing
batches of phoretic swimmers with a well-defined rotational
speed. The particles have been characterised in terms of the
resulting rotation. As a next step, in this work we provide a formal
description of the relation between the coverage and resulting
motion that allows predicting the properties of such patterned
objects.

Inspired by these experimental advances and ideas, we
develop here the mathematical formalism capable of predicting
the translational and rotational velocity of a spherical phoretic
particle with a given surface activity and mobility coverage.
Following the classical framework,16,19 we model the surface
activity by imposing a local chemical flux boundary condition
on the surface of the particle. We assume that the diffusion of
solute molecules is fast compared to advection and reaction
rates and thus consider the limit of vanishing Péclet and
Damköhler numbers for the solute, Pe = Da = 0. By expanding
the activity and mobility in spherical harmonics, we calculate
the resulting surface slip flow which drives the motion and the
swimming kinematics. We next introduce a conceptually simpler
patch model, in which the motion is induced by pairs of interacting
patches of activity and mobility. Due to the bilinear mathematical
nature of the flow generation problem and the associated boundary
conditions, the interaction of the patches can be superposed to
predict the motion resulting from a given collection of point sources
and patches of activity. Considering finite-sized domains instead
does not change the qualitative picture but only modifies the
quantitative characteristics of motion. We demonstrate the basic
ingredients needed to program the particles to move along straight
lines, circles, and arbitrary helical trajectories.

The paper is organised as follows. In Section 2 we describe
the underlying model for the purely diffusive dynamics of solute
transport around the particle arising from its surface activity, and
relate it to the effective slip flow caused by the presence of
concentration gradients. For an arbitrary surface pattern of activity
and mobility, we determine in Section 3 the general formulae for
the resulting velocity and angular velocity of the sphere by aver-
aging the local slip flow over the particle surface. In Section 4, we
apply these results to analyse a few model coverage patterns
resulting in a prescribed type of motion, including pure rotation
or combination of translation and rotation. In order to explore in
detail the minimal requirements for the generation of a desired
trajectory, we introduce the patch model in Section 5 and identify
the effect of interactions between small patches of activity and
mobility on the motion of the sphere leading in general to arbitrary
helical trajectories. We conclude the paper in Section 6. In
Appendix A, we derive the classical result of exact trajectories
for the given translational and angular velocity.

2 The model

A spherical particle of radius a is immersed in a Newtonian
solvent of density r and dynamic viscosity Z (see Fig. 1). We
consider only one kind of chemical species a in solutions for
simplicity and the particle interacts with these molecules by
imposing a fixed chemical activity A along its surface. The
chemical activity is inhomogeneous on the particle surface and
hence concentration gradients of solute particles are created,
inducing surface slip flows and globally the motion of the
particle with a characteristic velocity V. The fluid flow in the
system is characterised by the Reynolds number Re = rVa/Z.

The chemical profile around the particle is generally affected
by both advection and diffusion of the solute. The relative

Fig. 1 Sketch of a spherical microparticle with a non-uniform surface
distribution of chemical activity and mobility, which is here represented by
patches of increased/decreased activity (dark red) and mobility (light
orange). Due to the chemical reaction, gradients of concentration of
solute particles a are produced, which induce osmotic flows along the
surface. This in turn leads to phoretic translational and rotational motion of
the sphere.
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importance of the two is quantified by the Péclet number, Pe =
Va/D, with D being the diffusivity of molecules a in the solvent.
In typical diffusiophoretic experiments involving colloids,18,20,21

the small sizes of particles (a B 1 mm) and the very fast diffusion
of solute molecules render the Péclet number negligible, and
thus the dynamics of the concentration field can be described as
purely diffusive with very good approximation.

The catalytic surface is assumed to prescribe a non-uniform
surface activity denoted A(y,f) using spherical polar coordinates
(r,y,f) in the body-fixed frame. We consider the far-field concen-
tration of a molecules to be c0.

The chemical reactions are modelled by a fixed-flux boundary
condition at the particle surface,14,40 where the solute molecules
are set to be constantly absorbed or emitted at the particle
surface depending on the choice of magnitudes of activity as
A 4 0 and A o 0, respectively. Introducing the relative
concentration c = ca � c0, the steady state concentration field
in the low Péclet number regime is the solution of the Laplace’s
equation,

r2c = 0, (1)

subject to the flux boundary condition on the particle surface

�J�er|r=a = A(y,f), (2)

where er is the unit normal (radial) vector on the surface of the
sphere, and a constant concentration at infinity, i.e. c(r -N) = 0.
The diffusive flux is given by the Fick’s law and reads

J = �Drc. (3)

Hence, a positive relative concentration indicates emission
of solute molecules at the surface of the particle while negative
values correspond to absorption.

The flow around a particle is generated by gradients of the
concentration around the surface. Specifically, the diffusive
flow vs tangential to the surface is proportional to the local
tangential gradients of concentration as

vs = M(y,f)(1 � erer)�rc, (4)

where M(y,f) is called the surface mobility, which depends on
the details of particle–solvent interaction forces.13 Given the
typical propulsion velocities of V B 10 mm s�1,18 the Reynolds
number Re B 10�5 is negligible, and the flow in the reference
frame of the particle can be found by solving the incompressible
Stokes equations

Zr2v = rp, r�v = 0, (5)

with the boundary condition at infinity being set by the self-
propulsion velocity of the particle,

v(r - N) B �(V + X � r). (6)

We aim at determining the resulting velocity, V, and angular
velocity, X, given the arbitrary coverage fields A(y,f) and
M(y,f), thus extending the generic propulsion mechanism
proposed in ref. 19 to three-dimensional motion. The propulsion

velocity and angular velocity can be obtained from the reciprocal
theorem by averaging the slip flow over the surface of the
sphere as12,13,41

V = �hvsi, (7)

and

X ¼ 3

2a
vs � erh i; (8)

where the surface average reads explicitly

h� � �i ¼ 1

4pa2

þ
ð� � �ÞdS (9)

with the spherical surface element dS = a2 sinydydf = �a2dzdf,
where z = cos y.

In summary, the prescribed coverage fields A(y,f) and
M(y,f) determine the resulting three-dimensional translational
and rotational motion of the particle. After solving Laplace’s
equation for the concentration field, we use it as input to
calculate the slip flow, which is finally averaged over the
surface of the particle. We note that this is possible due to
the decoupling of flow and concentration fields in the limit of
low Péclet numbers. If this is not the case, the solute is
additionally advected by the flow40 and both problems are
fully coupled.

3 Analytical results

To analyse the effect of coverage geometry, we expand both the
activity and mobility surface patterns in spherical harmonics
series and derive a general expression for translational and
rotational velocity in terms of expansion coefficients.

The general solution of eqn (1) can be classically written in
terms of spherical harmonics in the body-fixed frame as

c ¼ �
X1
‘¼0

X‘
m¼�‘

C‘mr
�‘�1Y‘mðy;fÞ; (10)

with the polar angle yA [0, p] and the azimuthal angle fA [0, 2p),
where the spherical harmonic of degree ‘ and azimuthal number
m is defined as

Y‘m(y,f) = N‘mPm
‘ (z)eimf, (11)

with z = cos y while Pm
‘ are the associated Legendre polynomials,

and we have used the normalisation constant

N‘m ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2‘þ 1Þð‘�mÞ!

ð‘þmÞ!

s
� (12)

By expanding the activity distribution in spherical harmonics,
we can write

Aðy;fÞ ¼
X
‘m

A‘mY‘mðy;fÞ; (13)

where we have introduced a shorthand notation for the double
sum in eqn (10) and which we will use consistently hereafter.
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Using the boundary condition in eqn (2), we find the relation
between the expansion coefficients

C‘m ¼ �
a‘þ2

Dð‘þ 1ÞA‘m: (14)

We expand the mobility in an analogous manner

Mðy;fÞ ¼
X
‘m

M‘mY‘mðy;fÞ; (15)

and the sets of coefficients A‘m and M‘m are prescribed for a
given coverage pattern of the particle.

The surface velocity may now be expressed using eqn (4)
together with the expansions of activity A and mobility M. For
the characteristics of motion to be evaluated, we need to find
the surface slip flow, which is proportional to the mobility
times the tangential gradient of concentration on the surface at
r = a. From eqn (4), it is given by

vs ¼
1

D

X
‘m

X
‘0m0

A‘mM‘0m0

‘þ 1
Y‘0m0

@Y‘m

@y
ey þ

1

sin y
@Y‘m

@f
ef

� �
: (16)

The expression in eqn (16) needs to be directly averaged over
the angles to yield the translational velocity (with a minus sign)
or averaged after taking a cross product with er to obtain the
rotational velocity. It is most convenient to express the velocity
components in the Cartesian body-fixed frame (x,y,z). Using the
relationships between unit vectors in spherical polar coordinates,
er � ey = ef and er � ef = �ey, we find the local angular velocity
increment

vs � er ¼
1

D

X
‘m

X
‘0m0

A‘mM‘0m0

‘þ 1
Y‘0m0

1

sin y
@Y‘m

@f
ey �

@Y‘m

@y
ef

� �
:

(17)

Representing the basis vectors in Cartesian coordinates, we
can evaluate the averages with respect to the azimuthal angle f
by noting that spherical harmonics are orthonormal in the
azimuthal numbers p, q, since

eiðp�qÞf
D E

f
:¼ 1

2p

ð2p
0

eiðp�qÞfdf ¼ dpq: (18)

This allows eliminating the summation over m0 in favour of
m. The averages with respect to the polar angle y cannot be
easily evaluated but can be explicitly expressed as averages of
combinations of the associated Legendre polynomials.

The results below are valid for an arbitrary coverage,
described by the spherical harmonics expansion coefficients
of activity A(A‘m) and mobility M(M‘m). Denoting a‘m = A‘mN‘m

and m‘m = M‘mN‘m (no summation convention), the translational
velocity is finally found by taking the real part (indicated by <)

Vx ¼ <
1

2D

X
‘m‘0

a‘m
‘þ 1

K� ‘m; ‘
0m1ð Þm‘0m1

þ Kþ ‘m; ‘
0m2ð Þm‘0m2

� �( )
;

(19)

Vy ¼ <
i

2D

X
‘m‘0

a‘m
‘þ 1

K� ‘m; ‘
0m1ð Þm‘0m1

� Kþ ‘m; ‘
0m2ð Þm‘0m2

� �( )
;

(20)

Vz ¼ <
1

D

X
‘m

ð�1Þmþ1a‘þ1;m
2‘þ 3

(

� ‘þmþ 1

2‘þ 1
m‘;�m �

‘þ 1

‘þ 2

‘�mþ 2

2‘þ 5
m‘þ2;�m

� �	
;

(21)

where m1 = �(m � 1) and m2 = �(m + 1). Interestingly, in the
limit of an axisymmetric pattern for both mobility and activity,
we find Vx = Vy = 0, and Vz reduces to the classical expression.19

The angular velocity follows as:

Ox ¼�<
3i

4aD

X
‘m‘0

a‘m
‘þ 1

L� ‘m; ‘
0m1ð Þm‘0m1

�Lþ ‘m; ‘
0m2ð Þm‘0m2

� �( )
;

(22)

Oy ¼ <
3

4aD

X
‘m‘0

a‘m
‘þ 1

L� ‘m; ‘
0m1ð Þm‘0m1

þ Lþ ‘m; ‘
0m2ð Þm‘0m2

� �( )
;

(23)

Oz ¼ <
3i

2aD

X
‘m

mð�1Þmþ1a‘;mm‘;�m
ð‘þ 1Þð2‘þ 1Þ

( )
; (24)

For an axisymmetric pattern (m = 0), we have no rotational
motion, as X = 0, as expected by symmetry.

The auxiliary integrals

K�(‘m,‘0m0) = J1(‘m,‘0m0) � mJ2(‘m,‘0m0), (25)

L�(‘m,‘0m0) = J3(‘m,‘0m0) � mJ4(‘m,‘0m0), (26)

contain averages with respect to the polar angle y. Introducing
the notation

h� � �iz ¼
1

2

ð1
�1
dzð� � �Þ (27)

with z = cos y, we have

J1 ‘m; ‘
0m0ð Þ ¼ z

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p dPm
‘

dz
Pm0
‘0


 �
z
; (28)

J2ð‘m; ‘0m0Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� z2
p Pm

‘ P
m0
‘0

* +
z

; (29)

J3 ‘m; ‘
0m0ð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p dPm
‘

dz
Pm0
‘0


 �
z
; (30)

J4 ‘m; ‘
0m0ð Þ ¼ zffiffiffiffiffiffiffiffiffiffiffiffiffi

1� z2
p Pm

‘ P
m0
‘0

* +
z

: (31)

These integrals, although easy to evaluate numerically, seem
impossible to express analytically in general.
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4 Programmed phoretic motion

The complete solution for V and X presented above allows
computation of the motion characteristics for an arbitrary
coverage. We shall now demonstrate examples of simple coverage
patterns which result in the desired type of motion.

There are five cases of particular interest which we will analyse:
(a) pure translation, (b) pure rotation, (c) rotation about the
translation direction, V8X, (d) rotation perpendicular to trans-
lation, V�X = 0, and (e) a given arbitrary angle c between the
two vectors.

4.1 Pure translation

This case is the simplest mode of motion and can be induced
by an axisymmetric coverage of the particle by mobility M(y)
and activity A(y). The high symmetry eliminates the possibility
of rotations. This limit corresponds to m = 0 in eqn (19)–(24)
and leads to the vanishing of all components but Vz which in
this case takes the form found previously.19

4.2 Pure rotation

For rotational motion, the axial symmetry of the coverage
pattern needs be broken. In order to additionally restrict the
motion not to have a translational component, we impose no
dependence on the polar angle y and the f - p + f (i.e. 2-fold)
rotational symmetry in the azimuthal angle in both activity and
mobility. However, the symmetries of the two coverages have to
be different (e.g. slightly rotated). An exemplary coverage satisfying
that symmetry is an activity pattern with one plane of azimuthal
symmetry, and a mobility pattern with the same symmetry but
rotated by an angle D about the z-axis, e.g.

A(y,f) = A cos2f, (32)

M(y,f) = M cos2(f + D) (33)

Here, A and M set the scale for the control parameters. It is
important to note that the patterns have no dependence on the
angle y (and are thus symmetric about the plane y = p/2), thus
ruling out the possible motion in the z direction. Any other
distribution with similar symmetries would result in a qualitatively
similar motion.

The expansion of activity and mobility in spherical harmonic
yields that only A00 = A/2, M00 = M/2 and coefficients with m = �2
are non-zero. Moreover, we find the symmetries

A‘2 = A‘�2 = AÃ‘2, (34)

M‘2 = MM̃‘2e2iD,

M‘�2 = MM̃‘2e�2iD,

where Ã‘m and M̃‘m are sets of known coefficients. The detailed
expressions are omitted here. Since only indices m = �2, 0, 2
have non-zero coefficients, we find from eqn (19), (20) and (22),
(23) that the x, y components of V and X must vanish as they
connect only indices differing by�1. Since there is no dependence
on the polar angle, the only coefficients with even ‘ are present in

the expansions of A and M, which is the reason for the vanishing
value of Vz. We are left with evaluating explicitly Oz from
eqn (24) as

Oz ¼ �
MA

Da
C sin 2D; (35)

where the constant C can be evaluated using the known coefficients

as C ¼ 6
P
‘

~A‘2
~M‘2

‘þ 1
� 0:406. Importantly, we see that when activity

and mobility share exactly the same symmetry, that is when D = 0,
there is no rotational motion. However, an offset causes the
sphere to rotate without translating, and the rotational velocity
for small angles is proportional to D. The maximal value of the
rotational speed, MAC/Da is obtained when D = p/4. At D = p/2 the
motion ceases again by symmetry.

4.3 Collinear rotation and translation

A case of particular interest arises when the axis of rotation
coincides with the direction of motion. To this end, we can
modify the previously discussed pure rotation by disturbing the
polar symmetry, i.e. distinguishing one pole of the sphere from
the other. A slight modification sufficient to achieve this is
given by the activity and mobility of

A(y,f) = A(1 + cos y)cos2f, (36)

M(y,f) = M cos2(f + D). (37)

The activity has the same azimuthal distribution necessary
for inducing rotational motion but varies in intensity in the
polar direction, increasing towards the pole at y = 0. The
azimuthal numbers are still limited to m= �2, 0, 2, and thus
all x and y components of V and X are ruled out (as eqn (19),
(20) and (22), (23) couple azimuthal numbers differing by 1).
The expansions retain their symmetries as in eqn (34), and thus
eqn (35) is still a valid expression for Oz with exactly the same
constant C. This is due to the fact the additional factor cos y in
activity only adds terms with odd values of ‘ into the expansion.
Since Oz only pairs activity and mobility coefficients with same
‘, and the expansion for M contains only terms with even ‘, the
rotational velocity remains unaffected.

The presence of all terms (for each ‘) in the expansion leads
to a non-zero translational velocity along the z-axis. The m = 0
terms produce a velocity component independent of the azimuthal
angle f, equal to �MA/12D. For comparison, if the sphere
surface had no dependence on the angle f, i.e. uniform
mobility M = M and activity A = A(1 + cos y), its translational
velocity is equal to �MA/3D. The terms depending on the angle
f (m a 0 terms) give a velocity component with a D-dependent
factor, equal to�MAT cos(2D)/12D, so that in total the translational
velocity reads

Vz ¼ �
MA

12D
1þ T cos 2Dð Þ (38)
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where

T ¼ 2
X
‘

~A‘þ1;2ffiffiffiffiffiffiffiffiffiffiffiffiffi
2‘þ 3
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘2 þ 2‘þ 3

2‘þ 1

s
~M‘2

2
4

�‘þ 1

‘þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘ð‘þ 4Þ
2‘þ 5

r
~M‘þ2;2

#
� �0:175:

(39)

It is evident that the translational motion is weakly depen-
dent on a particular offset and mostly determined by the global
coverage pattern in the polar direction. When the rotational
motion is maximised at D = p/4, the ratio Oza/Vz = 12C E 4.9.

4.4 Orthogonal rotation and translation

Another special case arises when the translational and rotational
velocities are perpendicular, i.e. when V�X = 0. The resulting
motion of the particle is then along a circular periodic trajectory.
To give an example of such an arrangement, we consider the
following coverage pattern:

A(y,f) = A(1 + cos y), (40)

M(y,f) = M(1 + cosf). (41)

By symmetry, we expect this pattern to result in translation
along the z-axis (the mobility symmetry axis) and rotation about
the y-axis. Indeed, the activity pattern has only two non-zero
coefficients in the spherical harmonics expansion, a00 = A and

a10 ¼ A
� ffiffiffi

3
p

. The mobility expansion yields non-zero coefficients
to be m00 and m2n+1,�1 with n Z 0. Computation of the auxiliary
integrals K� and L� compatible with these values of polar and
azimuthal numbers yields Vx = Vy = 0 and Ox = Oz = 0. For
translational velocity, we find that only one pair of coefficients
(a10m00) contributes to give finally

Vz ¼ �
3MA

D
� (42)

Similarly, we find that the angular velocity about the y-axis is
only affected by the coefficients a10 and m1�1 leading to

Oz ¼ �
3

8aD
a10m11 ¼ �

3MA

16
ffiffiffi
2
p

aD
� (43)

Clearly, we have X�V = 0, so this pattern will result in circular

motion of the particle with the radius V=O ¼ 16
ffiffiffi
2
p

a � 22:7a.

4.5 General rotation and translation

It is evident from eqn (19)–(24) that in order to induce rotation
and translation in the xy plane, the expansions for activity and
mobility need to have coefficients with azimuthal numbers m
differing by�1, since these are paired in the expressions for Vx,y

and Ox,y. Various examples of such coverage may be found but
these tend to not be clearly intuitive due to their complicated
mathematical structure. We hence turn our attention to the
patch model in the next section which is sufficient to show the
symmetries needed for the generation of the desired type of
motion.

5 The patch model
5.1 Activity and mobility patches

Suppose the active site on the surface of the sphere is a small
spherical cap with y o yA near the pole around y = 0 and has
uniform activity A, while the rest is inert (A = 0 elsewhere). This
can be written mathematically as A = AY(zA � z), with z = cos y
and Y being the Heaviside step function. We now perform a
Legendre polynomial expansion and write the activity as
A ¼

P
‘

A‘P‘ðzÞ. Using the properties of the Legendre poly-

nomials, we find A‘ = A[P‘�1(zA)� P‘+1(zA)]/2 = AF‘. The tangential
slip velocity from eqn (4) is thus given by

vs ¼ �Mðy;fÞ
A

2D

X
‘

F‘

‘þ 1

dP‘

dz

" #
sin yey; (44)

while the local angular velocity increment is given by

vs � er ¼Mðy;fÞ A
2D

X
‘

F‘

‘þ 1

dP‘

dz

" #
sin yef; (45)

where the mobility is still arbitrary.
Suppose now that only small patches of the surface of the

sphere can sustain a slip flow along the surface. This means
that there are patches of mobility on the surface, while there is
no slip flow on the rest of the surface. The mobility distribution
can then be described as a collection of approximate Dirac delta
functions scattered on the sphere.

5.2 A pair of patches

It is instructive to consider a pair of patches on a unit sphere:
one small active site of activity Ap at rp and a singular mobility
site of mobility Mq at rq, as illustrated in Fig. 2. In this case, the
mobility is non-zero only at the point q, thus M(y,f) = Mqd(r � rq).
The angle between the patches, gpq, is found by noting that
rp�rq = cos gpq. The surface slip velocity generated by this pair,
vpq, is tangential to the sphere at rq and lies in the plane

Fig. 2 The motion resulting from the presence of a pair of active (dark red) and
mobility (light orange) sites on the surface of the particle. The velocity increment
lies in the plane spanned by the two position vectors of the patches, while the
angular velocity increment resulting from this geometry is normal to this plane.
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spanned by the vectors rp,q (it is thus aligned with the local unit
vector ey(q)), while the increment to angular velocity vs � er is
perpendicular to that plane (in the local direction of ef(q)). The
velocities are obtained from eqn (7) and (8) as

Vpq ¼
ApMq

2D
G gpq

 �

eyðqÞ; (46)

Xpq ¼
3ApMq

4aD
G gpq

 �

efðqÞ; (47)

with

GðgpqÞ ¼
X
‘

F‘

‘þ 1

dP‘

dz

" #
gpq

sin gpq; (48)

where the subscript gpq indicates that the derivatives are evaluated
at this angle and z = cosy refers to the polar angle in local
coordinates where p is on the pole y = 0. We see from eqn (46)
and (47) that there is no flow generated when the patches are at
opposite poles of the sphere, which is expected by symmetry.

The increments in eqn (46) and (47) are given in local
coordinate systems in which the (local) vector ez( p) is pointing
towards the active site, so they need to be transformed to the
body-fixed Cartesian system to properly account for many pairs.
The local unit vectors can be found using the position vectors of
the mobility and activity patches as

efðqÞ ¼
rq � rp

rq � rp
�� ��; (49)

ey(q) = ef(q) � rq. (50)

In Fig. 3 we present an example of the concentration field
generated by a small activity patch with z 4 zA = 0.9, along with

the corresponding concentration gradient. The concentration
gradient is maximal near the rim of the patch, at which
maximal propulsion and rotational velocities are induced (see
also ref. 24). Increasing the angular distance between the active
and mobility sites significantly decreases the concentration
gradient, which is proportional to the induced slip velocity.
Thus for the generation of larger linear and angular velocities,
the patches should be at a small angular distance. The resulting
velocity is proportional to the product of activity and mobility of
the patches.

5.3 Linear superposition of pair contributions

The solution of the two-patch system provided above opens the
way to analyse combinations of many patches. Due to the
averaging procedure which involves integrating the delta functions,
many patches can be treated as a superposition of pair interactions,
with the resulting velocities being sums over all activity–mobility
pairs of patches ( p,q)

V ¼
X
p;q

Vpq; (51)

X ¼
X
p;q

Xpq: (52)

We note that linear superposition is mathematically possible
because of the set of boundary conditions. We consider Neumann
boundary conditions for the concentration field and Dirichlet
boundary conditions for the velocity field. With these boundary
conditions, for linear superposition to be applicable both activity
and mobility patches have to be homogeneous (i.e. zero) outside
the area where they are acting and non-overlapping.

5.4 Patch-induced programmed motion

The patch model can successfully reproduce the results for
continuous coverage given above. Simple examples of the patterns
above are sketched in Fig. 4. In Fig. 4(A) pure translation is
achieved by using a single active patch at the pole of the sphere
and pairs of identical mobility patches placed symmetrically so
that the rotational effect would be cancelled. In Fig. 4(B) using two
activity patches and two mobility patches lying on the circumference
of a great circle with a 2-fold rotational symmetry leads to purely
rotational motion. Translation in the direction of the rotation axis is
achieved by adding a third activity patch to the situation above at
the pole, assuming the great circle to be the equator, as in Fig. 4(C).
The patches on the equator would suffice to produce both
translational and rotational motion. An extra pair of patches
in the figure close to the pole allows to independently control the
translational velocity. A simple pair of patches, as introduced in
the beginning of this section, and depicted in Fig. 4(D), leads to
linear and angular velocity in the body frame being orthogonal.

General translations and rotations can be induced using
many patches. An exemplary coverage inducing rotation at an
angle c to translation is presented in Fig. 4(E) which we now
detail. The sphere is covered with a single patch of activity A at
the pole (y = 0) and two patches of mobility, one of mobility M at
(y,f) = (y1,0) and a second one of mobility lM at (y,f) = (y2,f2).

Fig. 3 The relative concentration field, c = ca � c0 (red dashed line),
where the solute molecules a are absorbed at the surface (A 4 0), and the
resulting dimensionless concentration gradient, G(y) from eqn (48), (blue
solid line) due to a patch of unit activity at z 4 zA = 0.9. The dimensionless
concentration is scaled by Aa/D, and the gradient is scaled by A/D. The
curves were obtained using 300 terms in the Legendre expansion. The rim
of the active patch is indicated by a dotted line. The gradient is maximal
at the rim and decays rapidly towards the poles. The mobility patch
positioned at a given angle picks out the value of the gradient that sets
the magnitude of the velocity increment.
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The patches induce respective surface velocities V1 = MAG(y1)/2D
and V2 = lMAG(y2)/2D and angular velocities O1,2 = 3V1,2/2a. The
total translational and angular velocity due to the two pairs
are thus

V ¼MA

2D

Gðy1Þ cos y1 þ lGðy2Þ cos y2 cosf2

lGðy2Þ cos y2 sinf2

Gðy1Þ sin y1 þ lGðy2Þ sin y2

0
BBB@

1
CCCA; (53)

X ¼ 3MA

4aD

lGðy2Þ sinf2

Gðy1Þ þ lGðy2Þ cosf2

0

0
BBB@

1
CCCA: (54)

The angle between the two is then determined as

cosc ¼ V �X
jV jjXj. While the exact expression is rather lengthy,

indeed various angles are possible to engineer provided that
the system has enough asymmetry. For example, putting both
mobility patches at the same meridian (f2 = 0) or putting them
at the same circle of longitude (y1 = y2) leads to V and X being
perpendicular. Interestingly, the speed of the particle is controlled
by the factor MA/D, whereas the pitch angle of the resulting helix
does not depend on these parameters. The value of c is sensitive to
the choice of the relative position and relative strength of the
patches which in effect modifies the characteristics of the helical
trajectory of the particle. Examples of this coverage are illustrated in

Fig. 5. We choose three specific patterns and demonstrate that, upon
choosing the parameters suitably, diverse trajectories can be pro-
duced. Results are presented in dimensionless variables. The scale
for velocity is set by V0 = MA/2D, the angular velocity is scaled by V0/a,
with the particle size a being the natural length scale in the system.
Helices are characterised by their radius R and slope cotc, as derived
in Appendix A.

A more complicated arrangement of patches requires sum-
mations over all pairs, yet modifying only the final angle c
which remains the only parameter that controls the geometry of
swimming trajectories. The patch model provides easy qualitative
arguments for the resultant motion given the position of functional
sites. However, when the patches are extended into finite spots, the
qualitative structure survives. Thus the arguments can be used to
predict the motion created by a continuous spatial coverage, which
would only change the quantitative characteristics of the motion.

6 Conclusions

In this paper, we have obtained two main results. Firstly, we
have developed general formulae for the three-dimensional
translational and rotational velocity of spherical particles with
given arbitrary coverage in activity and mobility. This allows
predicting the resulting trajectories, which in general are
helical, although in the presence of thermal fluctuations the
expected trajectory would be deviated by Brownian reorientation.
These results are relevant to experimental observations of natural

Fig. 4 Patch coverage (dark red active patches A and light orange mobility patches M) leading to the desired types of motion: (A) pure translation in the
z-direction, (B) pure rotation about the z-axis, (C) collinear (independently controlled) translation and rotation, (D) translation perpendicular to the
rotation axis, (E) a coverage with a single active post leading to translational and rotational motion such that X�V a 0.
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swimmers. Indeed, there are many examples of helical trajectories
resulting from the wiggling motion due to the off-axis flagellar
pushing,42 or bacteria that inherently swim in helical trajectories:
Spiroplasma,43 Leptospira,44 Euglena gracilis45 or Helicobacter pylori,46

to name a few. Although their helical motion originates from the
anisotropic body shape, it is desirable to assess the effect of curvi-
linear paths on their dynamical interaction in bacterial suspensions.
The route opened by our findings enables designing, and possibly
manufacturing, artificial swimmers that follow an arbitrary linear,
circular, or helical path. The geometry is controlled by the relative
magnitude and the angle between the linear and angular velocities,
which can be calculated using our model. The pioneering experi-
mental proof of this concept39 offers exciting possibilities of further
practical applications of our results.

In this paper, we neglected throughout the effect of rotational
Brownian motion which would lead to random reorientation of
the translating and rotating phoretic particle. Our model would
still be appropriate to represent the trajectories at times short
compared to the rotational diffusion time scale.

For a continuous coverage, the task of evaluating the resulting
velocities might require the use of a computer to count in numerous
terms in the spherical harmonics expansion and evaluate integral
expressions in the general formulae. Moreover, it is not always clear
at a first glance what the final motion would be given an arbitrary
pattern of activity and mobility. To aid the intuition at this end, we
have developed a patch model, which is the second important
finding of the paper.

The proposed patch model has a broad range of applications.
We would like to stress that increasing the sizes of the patches
would not alter the qualitative findings of the paper but only
modify the quantitative characteristics (provided that patches
do not overlap). A ‘patch’ need not imply only a small region of

non-zero mobility but may be regarded as a small region of
increased or decreased mobility as compared to the surrounding
surface, which can have a background value, i.e. a uniform
surface mobility. This may be achieved by modifying surface
charges on the particle, akin to systems in which electrostatic
imbalance may lead to directed motion.10 The changing material
properties across the surface can thus generate a distribution of
activity and mobility on the surface that would be topologically
equivalent to the one developed with the patch model. Our model
could thus be used to help program the design of such particles.
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Appendix
A Kinematics of a phoretic sphere

Consider a body-fixed frame {ex,ey,ez}. The phoretic effects
result in the sphere having a fixed velocity V and angular
velocity X in this frame. Our aim is to find the laboratory
frame motion of the particle. This can be done by evolving the
body frame unit vectors in the inertial frame according to

dei

dt
¼ X� ei; i ¼ x; y; z (55)

dR

dt
¼
X
i

Viei; (56)

where the unit vectors ei and the centre of mass position R are
expressed in the laboratory frame. The first set of equations can
be conveniently written in the matrix form (with summation

Fig. 5 Illustration of case (E) from Fig. 4: a sphere with one active patch A and two patches of different mobilities, M at (y,f) = (y1,0) and lM at (y2,f2). Left:
Three cases considered with the parameters used for calculations. The resulting period of rotations (T = 2p/O), radius of the helix R and its slope cotc are
calculated in dimensionless units, with all lengths scaled by the particle radius a. Right: The trajectories with three full periods of rotation are plotted for
each case with shapes and colours matching the examples on the left.
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convention used henceforth) as

dei

dt
¼ Aijej ; (57)

where

A ¼

0 Oz �Oy

�Oz 0 Ox

Oy �Ox 0

0
BBB@

1
CCCA; (58)

and the resulting linear system is conveniently solved using the
matrix exponential M(t) = exp(At) to give

ei(t) = Mij(t)ej (0). (59)

Assuming the body fixed frame to coincide with the laboratory
frame at t = 0, we find that the time evolution of the basis
vectors ei(t) is given by

exðtÞ ¼
1

O2

Ox
2 þ Oy

2 þ Oz
2


 �
cosOt

OxOyð1� cosOtÞ þ OzO sinOt

OxOzð1� cosOtÞ � OyO sinOt

0
BBB@

1
CCCA; (60)

eyðtÞ ¼
1

O2

OxOyð1� cosOtÞ � OzO sinOt

Oy
2 þ Ox

2 þ Oz
2


 �
cosOt

OyOzð1� cosOtÞ þ OxO sinOt

0
BBB@

1
CCCA; (61)

ezðtÞ ¼
1

O2

OxOzð1� cosOtÞ þ OyO sinOt

OyOzð1� cosOtÞ � OxO sinOt

Oz
2 þ Ox

2 þ Oy
2


 �
cosOt

0
BBB@

1
CCCA: (62)

Thus eqn (56) can be integrated to yield the position of the
centre of mass in the laboratory frame:

R(t) = Pt + Q cosOt + S sinOt. (63)

with constant vectors P, Q, S determined by the initial values of
velocities V0 and X0 in the laboratory frame. Henceforth, we
drop the index for brevity assuming that the velocity vectors are
taken at t = 0 in the laboratory frame. If the angle between them
is c, we have V�X = VO cosc and V � X = VO sincÛ, where V =
|V|, O = |X| and Û is the unit vector (which we denote by hats)
perpendicular to both V and X. Introducing the unit vector

Ŵ ¼ X̂� Û , we see that X̂; Û ; Ŵ
n o

form an orthonormal

basis. With this basis, we find

P ¼ V coscX̂ (64)

Q = r sincÛ, (65)

S ¼ r sincŴ ¼ r V̂ � X̂ cosc
� �

; (66)

where r = V/O. The trajectory becomes thus

The simplest case of motion is when V and X are collinear,
that is for c = 0. The motion is then along a straight line
determined by the direction of V being also the rotational axis.
Another interesting case is when the translational and rotational
velocities are perpendicular, V�X = 0 and c = p/2. Then P = 0 and
the motion is determined by Q = rÛ and S = rV̂, and we find the
trajectory

R(t) = r[V̂ sinOt + Û cosOt], (68)

which describes a circle of radius r in the plane spanned by the
direction of velocity and the direction perpendicular to both
velocity vectors. In the most general case, the trajectory is
helical with the axis along the direction of X, the helix radius
r sinc and pitch 2pr cosc (or slope cotc).

Acknowledgements

This work has been funded in part by the Ministry of Science
and Higher Education of Poland via a Mobility Plus Fellowship
(M. L.), the Foundation for Polish Science within the START
programme (M. L.), the Isaac Newton Trust Cambridge (S. Y. R.
and E. L.). This project has also received funding from the
European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme (grant
agreement 682754 to E. L.).

Notes and references

1 D. L. Koch and G. Subramanian, Annu. Rev. Fluid Mech.,
2011, 43, 637–659.

2 L. Turner, R. Zhang, N. C. Darnton and H. C. Berg,
J. Bacteriol., 2010, 192, 3259–3267.

3 C. Chen, S. Liu, X.-Q. Shi, H. Chaté and Y. Wu, Nature, 2017,
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