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We study theoretically and numerically, the coupling and rotational hydrodynamic interactions
between spherical particles near a planar elastic membrane that exhibits resistance toward shear
and bending. Using a combination of the multipole expansion and Faxén’s theorems, we express the
frequency-dependent hydrodynamic mobility functions as a power series of the ratio of the particle
radius to the distance from the membrane for the self mobilities and as a power series of the ratio
of the radius to the interparticle distance for the pair mobilities. In the quasi-steady limit of zero fre-
quency, we find that the shear- and bending-related contributions to the particle mobilities may have
additive or suppressive effects depending on the membrane properties in addition to the geometric
configuration of the interacting particles relative to the confining membrane. To elucidate the effect
and role of the change of sign observed in the particle self mobilities and pair mobilities, we consider
an example involving a torque-free doublet of counterrotating particles near an elastic membrane. We
find that the induced rotation rate of the doublet around its center of mass may differ in magnitude
and direction depending on the membrane shear and bending properties. Near a membrane of only
energetic resistance toward shear deformation, such as that of a certain type of elastic capsules, the
doublet undergoes rotation of the same sense as observed near a no-slip wall. Near a membrane of
only energetic resistance toward bending, such as that of a fluid vesicle, we find a reversed sense
of rotation. Our analytical predictions are supplemented and compared with fully resolved bound-
ary integral simulations where very good agreement is obtained over the whole range of applied
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. INTRODUCTION

The coupling between fluid flows and elastic membranes
plays an important role in many physiological phenomena
and is essential for understanding the biological functions and
transport properties in living cells.! The assessment of hydro-
dynamic interactions between membranes and suspended
tracer particles can be used as a monitor for determining the
membrane mechanical properties via interfacial microrheol-
ogy.” Such a technique has been widely employed for the
measurement of the membrane viscous and elastic moduli®~
and the characterization of the fluctuating forces in complex
and active fluids.'%-12

At small length and time scales of motion, an accurate
description of the fluid flow surrounding microscopic parti-
cles is well achieved by the linear Stokes equations.' In these
conditions, a complete description of particle motion is pos-
sible via the hydrodynamic mobility tensor, which bridges
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between the translational and rotational velocities of the sus-
pended particles and the forces and torques applied on their
surfaces. In an unbounded medium, hydrodynamic interac-
tions are instantaneous, but long-ranged, where the flow field
due to a point force (Stokeslet) decays with the inverse dis-
tance from the singularity position. However, motion in real
situations often occurs in geometric confinements, where the
hydrodynamic mobility is notably changed relative to the
bulk value with an additional anisotropy of interactions close
to boundaries.'*!> The need to understand and characterize
these interactions has led to the development of a number
of experimental techniques which allow for an accurate and
reliable measurement of the particle mobility near interfaces.
Among the most popular and efficient techniques that have
been utilized are optical tweezers,'®"'° fluorescence’*?! and
digital video microscopy,?>~2° evanescent wave dynamic light
scattering,?’%° and three-dimensional total internal reflection
velocimetry techniques.*”

The linearity of the Stokes equations enables the use of
Green’s functions to describe the flow created by an isolated
point force in confined geometries, such as near a planar
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no-slip wall,>'=7 a free interface or an interface between
two immiscible fluids,*$*! and also for a range of non-
Cartesian geometries.*>*} Analytical calculations have been
carried out to include particles near interfaces with partial
slip**¢ or inside a liquid film between two fluids.*” Many
of the results are laid out in the monograph by Happel and
Brenner.'* Additional studies have examined particle dynam-
ics near viscous interfaces*®*? or an interface covered with
surfactant.>0-52

More recently, motion of colloidal particles close to mem-
branes with surface elasticity has attracted some attention, due
to their relevance as realistic models for cell membranes.>3~>%
Unlike fluid-solid or fluid-fluid interfaces, elastic membranes
stand apart as they endow the system with memory. The motion
of the particles thus depends strongly on their prior history.
This implies the emergence of an induced long-lived sub-
diffusive behavior resulting from the presence of the elastic
membrane in the vicinity of particles.’*~°! Particle motion near
elastic cell membranes has been experimentally investigated
using optical traps,5%~% magnetic particle actuation,®® and
quasi-elastic light scattering,®”-°® where a significant decrease
in the mobility normal to the cell membrane has been observed
in line with theoretical predictions.

In our earlier work,*” we have studied analytically and
numerically the hydrodynamic interactions between spherical
particles undergoing translational motion near a planar elastic
membrane. We have found that the steady approach of two
particles toward an idealized membrane with pure shear resis-
tance may lead to attractive interactions, in contrast to the
behavior known near a rigid wall where the interactions are
repulsive.””

In this paper, we complete and supplement our analysis by
computing the hydrodynamic coupling and rotational mobil-
ities of a pair of particles moving near an elastic membrane.
This is relevant to systems in which translations are restricted
and the dynamics are dominated by rotational motion, such
as in the case of birefringent spheres trapped in a harmonic
potential interacting via their rotation-induced flow fields.”!
We thus provide the full mobility matrix for pair interactions
of spheres in the presence of the elastic membrane. The mem-
brane is modeled using the Skalak model’? for shear and area
dilatation, and the Helfrich model’? for bending. We find that
the contributions due to shear and bending of the particle self-
and pair-mobility functions may have additive or suppressive
effects depending on the membrane properties and the relative
separation between the interacting particles and the membrane.
Finally, we illustrate the physical importance of the rotational
components of the self- and pair-mobility functions near a
planar membrane, as these are relevant to self-propulsion of
certain types of bacterial microswimmers. In typical models of
microscale swimming,’+7> the thrust force generated by, e.g.,
a rotating flagellum is balanced by the overall drag force on
the combined cell body and the flagellum to yield the swim-
ming speed. The forced rotation of the flagellum leads to a
counterrotation of the cell body, together with a balancing rota-
tional drag on the latter. Thus a microswimmer is force- and
torque-free. However, to evaluate the forces and torques act-
ing on sub-elements of the swimmer, it is essential to know
its mobility tensor that relates its motion to applied forces
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and torques. For example, rotating helicoidal flagella bundles
of the bacterium E. coli leads to a counterrotation of its cell
body’6-8 to guarantee an overall torque-free nature of this sus-
pended microswimmer in flow. It is thus particularly important
to understand the coupling between the applied torque (e.g.,
generated by the flagellar motor) to the resulting translational
velocity, which is partly motivating this work. To illustrate
these ideas in practice, we study the behavior of a torque-free
doublet of two spherical particles counterrotating around their
centers of mass.

The remainder of the paper is organized as follows. In
Sec. II, we present the theoretical framework we use to ana-
Iytically compute the particle mobility functions by combin-
ing the multipole expansion and Faxén’s theorems for Stokes
flows. Sec. III provides explicit analytical expressions of the
frequency-dependent coupling and rotational self mobilities
and pair mobilities together with a close comparison with
numerical simulations where very good agreement is obtained.
Concluding remarks summarizing our findings and results are
contained in Sec. IV. We have added Appendix A contain-
ing the details of the mathematical formulation of Green’s
function in the presence of a planar elastic membrane. In
Appendix B, we present the completed double layer boundary
integral method (BIM) and the approach we have employed to
numerically compute the hydrodynamic mobility functions.

Il. MATHEMATICAL MODEL

In the following, we consider two identical spherical parti-
cles of radius ¢ immersed in a quiescent Newtonian fluid above
a planar elastic membrane infinitely extended in the xy plane;
the z direction is perpendicular to the undeformed plane. The
fluid on both sides of the membrane has the same dynamic
viscosity 7, and the flow is considered incompressible. Both
spheres feature no-slip surface conditions. The low-Reynolds-
number hydrodynamics of a suspending incompressible fluid

is governed by the forced Stokes equations'*
NV - Vp+fi+f, =0, (la)
V.-v=0, (1b)

where v and p are the velocity and pressure fields, respectively.
Here f , is an arbitrary time dependent force density acting on
the fluid due to the presence of particle A. The total force and
torque exerted by the spherical particle A are determined by
integration over its surface. Specifically,

fadS, L/1=j£r><f/ld5. 2)
Sa

Sa

If we combine the forces and torques exerted on the fluid

by the particles into FF = (F{, F») and L = (L1, L), and group
the velocities and angular velocities into V = (V, V;) and
Q= (Q, Q), the 12 X 12 mobility tensor y is defined by the

relation!3 o
v\ (#" u"\(F
= . 3
Q [.l” ﬂrr L

The off-diagonal components are the hydrodynamic cou-
pling mobilities between the torque and translation (¢r) and
between the force and rotation (rf), and they are the trans-
pose of each other, as required by the overall symmetry of

F,=
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FIG. 1. Illustration of the system setup. A sample configuration of a pair of
particles of radius a, labeled as y and A, located at a distance & apart from
each other and a distance zo above an elastic cell membrane. Here ry, = (0, 0,
zo0) and ry = (h, 0, zp). We define the dimensionless parameters € := a/zg and
o = alh characterizing the system.

the mobility matrix. The mobility matrix and each of its
entries can be separated into the self part that stems from
the interactions of the particle with the membrane, and the
pair contribution accounting in addition for the influence of
the other particle. In order to determine the mobility, that is,
the response of the fluid to a given distribution of forces on
the spheres to leading order, we now introduce the multipole
expansion.

We consider a representative configuration of a pair of
finite-sized particles denoted as y and A located at a distance
h apart from each other, and a distance zy above an elastic
membrane, as schematically sketched in Fig. 1. In the present
article, we restrict our analysis to the far-field limit, for which
a < zo. The disturbance velocity field caused at any obser-
vation point r by a particle labeled as A located at r, can be
written as

v(r,ry,w) = 0O, r) + v (r,ry, w), )

where v@ denotes the fluid flow in an unbounded (infinite)
fluid and v* is the flow field required to satisfy the boundary
conditions at the membrane.

Since the elasticity of the membrane introduces memory
to the system, the response to forcing will depend on its history.
As any forcing can be represented by its Fourier decomposi-
tion, we consider an oscillating force f ,(r, w) = f /l(r)ei‘“’ with
a characteristic frequency w. In the following, we thus work
in the frequency space. The disturbance field can be written as
an integral over the surface of the sphere A as

v(r,ry,w) = Gr,r',w) -f ', w) d%r, 5)

Sa
where G denotes the velocity Green’s function, i.e., the flow
velocity field resulting from a point force acting at position r’.
Similarly, the Green’s function can be split up into two distinct
contributions,

Gr,r',w) = GO, r)+ G (r,r',w), (6)

where GO is the infinite-space Green’s function (Oseen’s
tensor)

5(1’3 SaSp ) (7)

0) ’ 1

O ry=—£+
ap 1) 8\ s $3
with s :==r — r’, s := Is|, and 6, being the Kronecker tensor.
The second term G* represents the frequency-dependent cor-
rection to Green’s function due to the presence of the elastic

membrane.
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Far away from the particle A, the integration vector vari-
able r’ in Eq. (5) can be expanded around the particle center
r, following a multipole expansion approach. Expanding in
surface moments of the force density, and truncating at the
leading Stokeslet level, the disturbance velocity reads™

v(r,ry,w) = (1 + %ZVfd)g(r,r,l,a)) -F(w)

. % v, xGrrnw) L),  ®)

wherein V., stands for the gradient operator taken with respect
to the singularity position r,, and the curl of a given tensor T
is calculated as®!

(V x T)aﬁ = Ea/yvayTv B 9

with €4, being the Levi-Civita tensor. Note that for a single
sphere in bulk, the flow field given by Eq. (8) satisfies exactly
the no-slip boundary conditions at the surface of the sphere.®’
Using Faxén’s theorems,3? the translational and rotational

velocities of the particle y in this flow reads®>-¢

Vy(w) = yFy(w)+ (1+ %ny)v(ry,r,l,a)), (102)

Q,(w) = py Ly(w) + % V., Xo(ry,ry, w), (10b)
where ug = 1/(6na) and " =1/ (8m]a3) denote the trans-
lational and rotational bulk mobilities, respectively. We further
emphasize that the disturbance flow v incorporates both the
disturbance from the particle 4 in addition to that caused by
the presence of the membrane. By inserting Eq. (8) into Faxén’s
formulas stated by Eqgs. (10), the frequency-dependent trans-
lational, coupling, and rotational pair-mobility tensors can be
calculated as

2 2

ww) = (1 5V ) (1+ 592 )00y o) ()
2

pr W) = 1 (1+£V2 )V, x Gry.ra. w), (11b)

ﬂrr’y/l(w) = %Vry X Vp, X G(ry,ry, w). (11c)

For the self mobilities, the correction in the flow field v* due to
the presence of the second particle should be discarded as only
the correction due to the presence of the membrane should be
considered in Faxén’s formulas. Accordingly, the frequency-
dependent self-mobility tensors read

ityy _ : a* g2 a2 \o*
e = i (1 292) (14592 )00,

(12a)
pr (W) =1 }L% (1+ %ny)v, X G*(r, 1y, w), (12b)
E (W)= 1+ ) lim V. xV, xG(r.ry, ), (120)

Y

where 1 denotes the unit tensor. Having constructed the self-
and pair-mobility tensors, Green’s functions associated with
the elastic membrane need to be introduced at this point.

The exact Green’s functions for a point-force acting near
a planar elastic membrane has been determined in our earlier
studies; see, e.g., Refs. 60 and 84. For completeness, we have
repeated the key expressions in Appendix A. The membrane
is modeled as a two-dimensional sheet made of a hyperelas-
tic material that exhibits resistance toward shear and bending.
Membrane shear elasticity is described by the Skalak model’?
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which is often used as a practical model for red-blood-cell
membranes.®>-8 The model is characterized by the shear mod-
ulus kg and the area dilatation modulus « 5, which are related
to each other by the coefficient C := «a/ks. The strain energy

for the Skalak model is given by”%°!
Es = ks (112+211 —2]2+C122)d5’ (13)
12 /s

where /| and I, are the invariants of the right Cauchy-Green
deformation tensor, employed in finite strain theory by Green
and Adkins,”>%*

I = GPgap -2, L =detG¥detgas — 1, (14)

for @, B €{1, 2}. These are related to the principal in-
plane stretch ratios via the relations /; = A7 + 2% — 2 and
L = /l%/lg — 1. Here g,p are the covariant components of the
metric tensor in the deformed state, and G®® are the corre-
sponding contravariant components in the undeformed state.
Using the more familiar Lamé coefficients for a homogeneous
and isotropic material in the small-strain regime, it follows
that kg = %h,u and xp = hA, where h denotes the membrane
thickness.”>

The resistance toward bending is modeled by the Hel-
frich model,’>% with the corresponding bending modulus «p.
Accordingly, the bending energy is described by a quadratic
curvature-elastic continuum model of the form®®

Ep = /2KB(H — Hy)? ds, (15)
S

wherein H denotes the mean curvature and H is the spon-
taneous curvature which is taken consistently with a planar
undeformed membrane.

In this approach, the linearized traction jumps across the
membrane are related at z = 0 to its displacement field # and
the dilatation e := uy + dyu, via®

(00l = —%(A“ua +(1420)d0¢), a€lxyl, (16)
[072] = kBAjus, (17)

where [f] denotes the jump of a given function f across
the membrane. Here A = 92 + (')f is the two-dimensional
Laplace operator along the membrane. The components of the
stress tensor of the fluid are 0, = —p9, + (00, + 0,0, ) for
a@e{xy z}.13

The membrane displacement field # and the fluid veloc-
ity v at the membrane are coupled by the no-slip boundary
condition prescribed to leading order in deformation at the
undisplaced membrane, given in the frequency space by

Vo = iWUg =0, a € {x,y,2}, (18)

where i is the imaginary unit such that i> = —1.

lll. RESULTS

In our previous work,%® we have provided analytical
expressions for the translational mobility functions for the
motion near an elastic membrane. We have shown that the
frequency-dependent corrections to the particle self- and pair-
mobility functions can be written as a linear superposition
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of the contributions stemming from shear and bending resis-
tances. We now complete this result by computing the leading-
order translation—rotation coupling and rotational elements
of the mobility matrix, both for the self mobilities and pair
mobilities.

A. Self mobilities

For an isolated particle, there is no coupling between
translation and rotation. In the two-particle system, how-
ever, this coupling occurs only when considering higher-
order reflections, and it is not captured in the Rotne-Prager
approximation.”’-

Mathematical expressions for the hydrodynamic coupling
and rotational self-mobility corrections are expressed in terms
of power series of the ratio of particle radius to the particle-
membrane distance € := a/zy. We have shown that for the trans-
lational mobility corrections, the leading-order term scales
as €. We will now show that the coupling and rotational
self-mobility corrections scale to leading order as €* and €,
respectively.

The translation—rotation coupling mobility is readily
obtained after inserting the Green’s functions stated in
Appendix A into Eq. (12b). In the following, we scale the
coupling mobilities by uff = uff = 1/(6na?).

After computation, we find that the self-related contribu-
tions to the mobility tensor due to membrane shear and bending
can explicitly be expressed as

tr,S

'uxyj,S _ 3¢€? 2 . . 2 4l:B 3ﬁ2

/,[g —6—4(ﬁ (2+lﬂ)r1+lﬁ—ﬁ —2+?+FF2

B (. 02 _ 3 4

+(—a+ﬁ(21+ﬁ—lﬁ —ﬁrl)f, (193)

tr.S .03

l‘lxy,B _ 3 lﬁB 2

,Ug —<32— oA W +d4) e

( 3 ’8 ]33 . ’ ) 4
+|l-—+-—@Bi- By —y’) |€", (19b)
where the subscripts S and B, respectively, stand for shear
and bending and S appearing as a superscript stands for self.
The total coupling mobility is obtained by linear superposi-
tion. It follows from the symmetry of the mobility tensor that
My = —uf, and that k. = . Here B = 6Bzonwl/ks is
a dimensionless frequency associated with shear resistance,
where B = 2/(1 + C) and Bg = 2z0(4nw/kg)'/? is a dimen-
sionless number associated with bending.®® Furthermore, we
define the auxiliary functions

¢+ = ¢ B (~iZp) £ ¢ "Ey(~izp),
Y = e PE (=i pp).

where zp := jBp and j := ¢*™/3 is the principal cubic-root of

unity (such that j3 = 1). The function E, denotes the generalized

exponential integral defined as'%

E,(x) = / " ey, (20)
1

The bar designates a complex conjugate. We further define
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. j 2i
I = PE(B),  Tr= e?El(’?ﬂ), 1)
and o _
lﬁ’ = Ee_lZBEl (—li) + ZBe_lzBEl (—iZB). (22)

By taking the vanishing-frequency limitin Eqs. (19), the shear-
and bending-related corrections for the xy component of the
coupling mobility read

tr,S
li Mlos __3 JERE R (23a)
B0 pr 320 64
r,.S
A'uiy,B 3 3

2o ¢ (23b)

leading to the hard-wall limit obtained upon summing up both
contributions term by term, namely,*

tr,S

S3
lim 22 o2 (24)
BBr—0 gy 32

as first computed by Goldman.!°"' Interestingly, the leading-
order terms with €> drop out in the steady limit where the
resulting correction to the coupling pair mobility scales rather
as €*. Notably, the shear and bending related parts have
opposite contributions to the total mobility to leading order.
This feature will play a prime role in the rotational dynam-
ics of a torque-free doublet of particles above an elastic
membrane.

In Fig. 2, we show the scaled coupling self mobility ver-
sus the scaled frequency S of a particle located at a distance
Zo = 2a above a planar elastic membrane. Here we consider a
reduced bending modulus Ep = «p/ (KsZ(z)) = 2/3 for which
the characteristic time scale for shear T's := 6zon/ks and for
bending Tp = 4nz;/kp are equal.”’ We observe that the

0.03 T T

Tt
0

0.02 pmm=====m=mme .

o

0.01

tr,S tr _ ,rt,S
Ty /MO - uyw
S
o
—_ o

I
S
o
[\

104 102 100 102
3

FIG. 2. The scaled frequency-dependent coupling self mobility versus the
scaled frequency. The solid particle is set at a distance zp = 2a above
a planar elastic membrane, the reduced bending modulus of which is
Eg = K‘B/(KSZ(z)) = 2/3. Here we take C = 1 in the Skalak model. The theoreti-
cal predictions are shown as dashed lines for the real (reactive) part and as solid
lines for the imaginary (dissipative) part. Symbols refer to boundary integral
simulations results, where squares and circles denote the real and imaginary
parts, respectively. Overall theoretical results are shown by the black lines.
The shear/area dilatation and bending-related parts as stated by Eqs. (19a)
and (19b) are shown in green (light gray in a black-and-white printout) and
red (dark gray in a black-and-white printout), respectively. The thin horizon-
tal dashed line stands for the coupling self mobility near a no-slip wall given
by Eq. (24). Blue symbols refer to the r# component of the total mobility as
obtained numerically.
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real and imaginary parts are nonmonotonic functions of fre-
quency that vanish for larger frequencies, thus recovering the
behavior in a bulk fluid. In the low-frequency regime, the cou-
pling mobility approaches that predicted near a hard wall as
given by Eq. (24). Moreover, we remark that shear manifests
itself in a more pronounced way than bending. The coupling
mobilities #r and rt as obtained numerically clearly satisfy
the symmetry property required for particles in Stokes flows.
Good agreement is obtained between theoretical predictions
and boundary integral simulations over the whole range of
applied frequencies. Technical details regarding the numerical
method and the procedure we have employed for the compu-
tation of the particle hydrodynamic mobilities are provided in
Appendix B.

It is worth mentioning that the oscillation frequency w
of the particle should be chosen small enough for the linear
response theory to be valid. Therefore, it is essential to ensure
that the Strouhal number St = aw/V satisfies St < 1, where
V = IVl is the velocity amplitude. In typical physiological
situations, ks ~ 107 N/m, B ~ 1, and  ~ 1073 Pa s. By
considering a particle of radius a = zo/2 with a linear velocity
of V ~ 107% my/s, it follows that St ~ 10~* . In the present
work, we consider a maximum scaled frequency 3 = 107 such
that the condition St < 1 remains always satisfied.

1. Rotational mobilities

The correction to the rotational mobility for the rotation
around an axis parallel to the membrane is likewise read-
ily obtained by inserting the Green’s functions contained in
Appendix A into Eq. (12c) to obtain

ALY 4r 2
S 03 2) 2 “
= 16(1’8 (F1+ ) B(1+ )

#(r)r ﬁ BZ
1
—i,B(l +—) +3)e3, (25a)
B
AT
ﬂrr’B = 5w +4.)-6)¢ (25b)
0

for the shear and bending related parts, respectively. Similarly,
the total mobility is obtained by superposition of the contri-
butions due to shear and bending. The component yy has an
analogous expression due to the system symmetry along the
horizontal plane. In addition, for the rotation around an axis
perpendicular to the membrane, the shear and bending related
corrections read

A rr,S . . .
Has _ —3’—3(4e215E5(2’—B) - 1)53, (26a)
e 165 B
Alurr,S
B o, (26b)
Ho

Thus the rotational self mobilities have a leading-order term
scaling as €*. Furthermore, the zz component depends only on
the membrane shear properties and does not depend on bend-
ing. Not surprisingly, the torque exerted on the particle along
an axis normal to the planar membrane induces only an in-
plane displacement of the membrane. Therefore the resulting
stresses do not cause any out-of-plane deformation or bending.
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By taking the vanishing-frequency limit in the xx component
of the rotational mobilities in Eqs. (25), we obtain

A'urr,S 3
lim #—xfs T e, (27a)
- 0
rr,S 1
Jim, oB o & (27b)
B0 U,

leading after summing up both contributions term by term to
the result near a hard wall®

S
hm A 5 o (28)
B.Bs—0 ﬂ(r)r 16
For the zz component, we obtain
S
AT AT
ﬁ};lmo ~— = lim fi =3 €. (29)
L0 Uy B—0 Hy

In the steady limit, the correction to the xx component of the
rotational self mobility is found to be 2.5 times larger than that
of the zz component. Therefore, it is easier to rotate the par-
ticle along an axis perpendicular than parallel to a membrane
endowed with a finite shear rigidity.

In Fig. 3, we show the scaled rotational self mobilities ver-
sus the scaled frequency 3 for the rotation about an axis parallel
(a) and perpendicular () to the planar elastic membrane. We
observe that the real part is a monotonically increasing func-
tion of frequency, while the imaginary part exhibits the typical

(a) 0.02 . .
. 0
=
~
528
£8
= 20.02
-0.04 ..-----Q--Q,-J;-,-:;‘f?, o
104 1072 100 102
g
(b) 0.01 . .
. 0 A@
~ g
U:'N 1’
B 7
= ’
-0.01 %{ ]
4
R il s M N
_(]02 1 !
104 1072 100 102
8

FIG. 3. The scaled frequency-dependent rotational self mobility versus the
scaled frequency. The analytical predictions are given to leading order by
Eqgs. (25) and (26). Here we use the same color code as in Fig. 2. Thin horizontal
dashed lines are the hard-wall predictions given by Eqgs. (28) and (29) for the
components xx and zz, respectively.
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peak structure occurring at S ~ 1, which has already been seen
in previous studies involving a planar membrane, particularly
for the translational motion.®

Considering the xx component, we see that shear and
bending both have negative contributions to the total mobility,
in contrast to the behavior observed for the coupling mobilities.
The zz component is solely determined by the shear resistance
of the membrane, while bending does not play a role for this
component. Again, the simulation results agree well with the
theoretical predictions.

B. Pair mobilities

Having calculated the coupling and rotational self mobil-
ities, we now consider the fluid-mediated hydrodynamic
interactions between two particles.

We express the pair-mobility corrections in terms of a
power series in o = a/h. The latter takes only physical values
strictly between 0 and 1/2 to avoid overlap between the two
particles. For the translational mobility, we have shown that
the leading-order corrections scale linearly with o-. Similar to
self contributions, the leading-order correction terms for the
coupling and rotational pair mobilities scale as o> and o,
respectively.

We first consider the translation—rotation coupling com-
ponents of the pair-mobility tensor near an elastic membrane.
By inserting the expressions for the Green’s functions as stated
in Appendix A into Eq. (11b), the coupling pair mobilities
can be expressed in terms of convergent infinite integrals
as

T [*icte( 1 (T 208 s
,Ug = o £12\ g2 2iu—- B
413 A 3iB
) T ) ow
8iu’ — By u+ip
me /°° 0'214(_ 3By
wr =)y e 2 Bu+if
I 4’ y 1A
t ol s+ S e, (30b)
E12\2iu—- B 8iud - B3
tr,p
T * 3Bo2u? >
! 0 & Bu+ip
#tZ;,P ) /oo 2ic2u y A N 4ul’_ o2 du
W)y T e \2u-B suc-py ’
(30d)

where P appearing as a superscript stands for pair and is a
shorthand for the component yA. Furthermore, we define the
geometric parameter ¢ := 4z5/h* = 40%/€? and

A =40%u -3¢,

L = 402U - 3ué + 3¢,

a 2u
)(n -— Jn gl_/Z s

@ = &2 x1 = 2uxo.
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The terms involving S and S in Egs. (30) are the con-
tributions stemming from shear/area dilatation and bending,
respectively. The component yz (and thus zy of the rf coupling
mobility) does not depend on membrane bending properties.
In the limit of vanishing frequency, or, equivalently, for infinite
membrane shear and bending moduli, we recover the coupling
pair-mobility functions near a hard wall, with no-slip boundary
conditions. Specifically,

P
i A 9_€7 o 3604 (3la)
BBs—0 g 4(1+&)52 2 (1+&72 "7
tr,P
r 3 1/2
lim M“‘f =Z 3 o, 31b)
BBs—0 py 21+
tr,P
- 3 2
:uytz =2 , (31c)
BBB—0 py 4 (1+&)32
r,P
:utzy 3 1+48 5 3 4E-1 . GB14)

g0 gt A+ 2’ T2+’
in agreement with the results by Swan and Brady.>> Note that
the components xy and zy keep a negative sign and that xy and
vz keep a positive sign in the physical range of parameters in
which € € [0, 1] and o € [0, 11.

By considering independently the shear and bending con-
tributions to the pair-mobility corrections from Egs. (30) and
taking the limit of vanishing frequency, we obtain for the xy
component

tr,p

Hys _ 3E2E+4) 3¢ -4 4
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leading to Eq. (31a) after summing up both contributions. It can
be shown that the shear-related part is negative, whereas the
bending related part undergoes a change of sign. By equating
Eq. (32b) to zero and solving perturbatively for €, the threshold
line where the bending contribution changes sign is given in a
power series of o by

2
€t = \/50(1 s T2 0'4) +0(0). (33)
3 54
Hence, for € > €y, the bending-related part in the coupling
mobility is negative, whereas it is positive for € < ey,.
Next, considering the shear and bending contributions to
the component yx, we obtain

tr,p

Hys 3 &2, 3 g2
m— =30 70t 520 (34a)
po0 i 8 (1+6) (1+0)

tr,p

Hyp 3 &2 5, 3 &2
hI_I}OT = —§—3/Z0' +Z—5/20' , (34b)
o 4l (1+6) (1+6)

which keep positive and negative signs, respectively, leading
to Eq. (31b) by adding both contributions. Finally, for the yz
component, we get

tr,P

u 9 3 4¢6-1
lim —Zi;s =73 ¢ 572 o’ + _6—72 o', (350)
B-0 plr T 8 (1+£)Y 41 +&y7

tr,P
. My _ 3 2+5¢ PRI Sl g (35b)
om0l 8(L+H2T T AQ+ERT

both of which are negative valued, leading together to
Eq. (31d).

Figure 4 shows the ¢ and rt coupling pair mobilities versus
the scaled frequency for a pair of particles located above the
elastic membrane at zgp = 2a, far apart from each other at a

FIG. 4. The scaled frequency-
dependent coupling pair mobilities

versus the scaled frequency as predicted
theoretically by Eqgs. (30). The color
code is the same as in Fig. 2. Here
the pair is located at zp = 2a above

the membrane with an interparticle
distance & = 4a. Thin horizontal dashed
lines are the hard-wall predictions
given by Eqgs. (31).
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distance & = 4a. Membrane shear manifests itself in a more
pronounced way for the components xy, yx, and yz, whereas the
effect of bending is more significant for the zy component. The
simulation results are consistent with the fact that the ¢+ and r¢
coupling mobility tensors are the transpose of each other, as
required by the overall symmetry of the mobility matrix. Very
good agreement is obtained between theoretical predictions
and boundary integral (BIM) simulations.

We now turn to the rotational pair mobility near an elastic
membrane. In a bulk fluid, the particle rotational mobilities
are obtained by inserting the infinite-space Green’s function
(Oseen’s tensor) given by Eq. (7) into Eq. (11c) as
Y A B
/Jg =0, ,ugr —lu—g———a', (36)

where ;16’ =1/ (87rna3) is the rotational bulk mobility. Clearly,
the two particles undergo a rotation in the same direction along
their line of centers, but in opposite direction for the rotation
about a line perpendicular to the line of centers, if a torque
is exerted on only one of them. Moreover, the rotational pair
mobility along the line of centers connecting the two particles
is twice larger in magnitude than the rotational pair mobility
for the perpendicular case.

The components of the correction to the rotational mobil-
ity are obtained from Eq. (11c) as

AP _/°° 20%u*| B )
it Jo € \EVBu+ip

4 1 N 4u?
N2iu— 8" 8- g3

))e—”‘ du, (37a)

A )FCV,P © ABo-3u3 —2u
e _ / T, (37b)
My 0 f/ Bu+ip
Ay /°° 20312 4i<p( [ e
Ho o Joo & \&EVP\2u—-B il - B}
Bxi1 \ _a,

- Bu—ﬂ,ﬁ)e 2 g, (37¢)
Auz” (7 4Bo Wy e 37d)
wJo &2 Bu+ip

Similarly, the terms involving 8 and Bp are related to
shear/area dilatation and bending, respectively. It can be
remarkably seen that the components xz and zz depend on
membrane shear only. In particular, the correction near a no-
slip hard wall is recovered in the zero frequency limit to
obtain

A rr,P 1 2

o 1 245 5 (384)
My 2(1+¢)32

A" 3 g

S S S (38b)
W2+

A rr‘,P 1 _

A (38¢)
Wy 20+

AT 1 26-1

e 1 2ol (38d)
Wy 20+
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in agreement with the results by Swan and Brady.® Interest-
ingly, the components yy and zz undergo a change of sign for
& =17/5and & = 1/2, respectively. By considering the shear and
bending contributions to the pair-mobility corrections inde-
pendently, from Eqgs. (37), and taking the vanishing frequency
limit, we obtain for the xx component

rr,P

H 3
lim —=2 = ——% o3, (39a)
B—0 2(1+&)5/
rr,P
'uxx,,B 0-3

leading to Eq. (38a) after summing up both contributions. For
the component yy, we obtain

rr,P
. #y)f,S 3 f -1 3
é 0 4 T 2(+epr (40a)
-0 My (1+$)
rr,P
Fob 622 (40b)
a0 W A+

leading to Eq. (38c). Accordingly, the shear and bending
related parts in the steady limit vanish for & = 1 and ¢ = 2,
respectively.

In Fig. 5, we show the particle scaled rotational pair
mobility functions versus the scaled frequency using the
same parameters as in Fig. 4, i.e., for a distance from the
membrane zop = 2a and an interparticle distance i = 4a.
As already mentioned, the components xz and zz depend
solely on membrane shear resistance, whereas both shear and
bending manifest themselves for xx and yy components. As
& =1, the shear-related part in the yy mobility vanishes in the
zero frequency limit, and the behavior in the low frequency
regime is mainly bending-dominated. Since the rotational pair
mobilities exhibit a scaling as o3, we observe that the correc-
tions are significantly smaller as compared to the coupling pair
mobilities.

C. Doublet of two counterrotating spheres

To elucidate the effect and role of the change of sign
observed in the particle self mobilities and pair mobilities, we
consider an example involving the co-rotation within a dou-
blet of particles close to an elastic membrane (see Fig. 6). We
impose external torques, equal in magnitude but oppositely ori-
ented on the pair of particles along the line of centers, causing
the particles to rotate in opposite directions. This setup may
serve as a simple model system to study in an isolated way
the rotational effects arising, e.g., during the self-propelled
motion of certain types of bacterial microswimmers near an
elastic membrane. For example, the bacterium E. coli pro-
pels by rotating a bundle of helicoidal flagella anchored to the
cell body. This rotational motion leads to a counterrotation of
its actual cell body in the suspending fluid, guaranteeing an
overall torque-free motion of the whole microswimmer. Near
fluid-solid or fluid-fluid substrates, such rotational properties
can qualitatively affect the overall bacterial motion, leading,
e.g., to circular trajectories.’”!9%193 In corresponding theoret-
ical studies of bacterial motion, the involved counterrotations
have previously been included by an overall torque-free dou-
blet of two antiparallel torques of equal magnitude,'%* similar
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to the discretization by our two counterrotating particles in
Fig. 6.

Due to the hydrodynamic coupling between the two coun-
terrotating particles and the membrane, the two particles
undergo circular motion along the direction perpendicular to
the line of centers. Accordingly, an induced rotational motion
occurs about the center of mass of the doublet with an angular
velocity € along the z direction, and a rotation rate

Q=22 (s - i), 1)
where for the calculation the external torques are applied on
both particles along the x axis such that Ly, = —L, . = L(t). In
fact, Eq. (41) holds in the small deformation regime in which
the membrane remains almost planar. Since the steady state of
the membrane deformation is reached quickly, i.e., the memory
of the membrane decays significantly quicker than the doublet
rotates, we may for our calculation consider the doublet as

€

€z

sy

FIG. 6. Illustration of the two spheres forming a torque-free dimer. Torques
+L of the same magnitude and opposite directions along the center-to-center
line are applied to the spheres. As a result, the membrane-induced rotation—
translation coupling leads to a collective rotation about the axis normal to the
membrane with an angular velocity €. As the zx components of the coupling
mobilities vanish, the doublet remains parallel at the same height above the
undistorted membrane.

102

oriented along the x axis during the whole time scale relevant
for our analytical description.

In the frequency domain, the rotation rate can conve-
niently be cast in the following generic form:

() +iwT

Q(w) = L(w) / N O (42)
0o ¥2

where the integral represents either the shear- or bending-
related parts. Here ¢(u) €{u,2u/B} for the shear contri-
bution and (1) = u? for bending. Moreover, (1) is a
real function that does not depend on frequency. We con-
sider now a Heaviside-type function L(f) = Lo 6(¢) for the
torque, the temporal Fourier transform of which to the fre-
quency domain reads L(w) = (16(w) — i/w)Ly, with 6(w) the
Dirac delta function. Then the time-dependent rotation rate
901(14)

reads o
(t) o) /
sﬂz(u

wherein 7 .= t/T is a scaled time. In the steady limit, for which
T — o0, the rotation rate can be written in a scaled form as

Q 80> 1
lim = 0'64(i - —), (44)

where p?> = € + 402, Now, by considering an idealized
membrane with pure shear or pure bending rigidities, we obtain

1—e#®7) du, 43)

1 2 2 3 2 2.2
lim —oe—- - v (1422 E , (453)
T—00 Iu"LO 4 8 ,03 ,02
Q 1 2 203 20%€?
lim — =0'62(——6——i3(1— s )) (45b)
T—00 :u()LO 4 8 o 0

leading to Eq. (44) after summing up both contributions. The
steady rotation of a torque-free doublet about its center near
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FIG. 7. Scaled rotation rate of the doublet in Fig. 6 versus the scaled time
near a membrane of pure shear (green), pure bending (red), and both rigidities
(black). Analytical predictions correspond to Eq. (43), and symbols refer to
boundary integral simulations. Here we use the same parameters as in Fig. 4
for zo = 2a and h = 4a. The time scale of the induced rotation of the pair is
considerably slower than that related to the internal rotation of each sphere
under the applied torque.

a membrane with pure shear is of the same sense as near a
hard wall. The rotation is, however, found to be of opposite
sense near a membrane with pure bending rigidity. We note
that since the zx components of the ¢r-coupling self mobilities
and pair mobilities vanish, the pair remains at the same height
during its rotational motion above the membrane.

In Fig. 7, we present the time-dependent rotation rate of
the doublet rotating under a constant external pair of torques
exerted along the line of centers, near a membrane with shear-
only (green), bending-only (red), or both rigidities (black), as
predicted theoretically by Eq. (43). We observe that at smaller
time scales, for which ¢/Ts < 1, the rotation rates amount
to small values because the doublet does not yet perceive the
presence of the membrane at these short time scales. As the
time progresses, the rotation rates asymptotically approach the
values predicted in the steady limit. The resulting rotational
motion is slow compared to the angular velocity of each of
the spheres under the applied torque. This is due to the weak
nature of translational-rotational coupling of a sphere close to
a surface, as seen in theoretical calculations®* and numerical
simulations for a no-slip wall.» For a membrane with both
shear and bending rigidities, the effect of shear is noticeably
more pronounced, leading to the same sense of rotation as
predicted near a no-slip wall. However, for a membrane with
pure bending rigidity, such as that of a fluid vesicle,'? the
steady-state rotation rate is of opposite sign, and therefore the
pair undergoes rotation of the opposite sense. This interesting
behavior can alter the near-membrane dynamics and behavior
of force- and torque-free flagellated bacteria and swimming
microorganisms that use helical propulsion as a locomotion
strategy. %104

IV. CONCLUSIONS

In this paper, we have studied analytically the translation—
rotation coupling and rotational hydrodynamic mobilities of a
pair of particles moving close to an elastic membrane that
exhibits resistance toward shear and bending. We have mod-
eled the elastic membrane by combining the Skalak model

J. Chem. Phys. 149, 014901 (2018)

for the in-plane shear resistance and the Helfrich model for
the out-of-plane bending resistance. For example, membranes
of red blood cells can be described accordingly. For a van-
ishing actuation frequency or, equivalently, for higher mem-
brane shear and bending moduli, our results perfectly coincide
with those predicted near a hard wall with no-slip boundary
conditions.

Using the multipole expansion and Faxén’s theorems, we
have expressed the leading order coupling and rotational self-
and pair-mobility functions as power series of the ratio between
the particle radius and membrane distance as well as between
the radius and interparticle distance. We have found that the
shear- and bending-related contributions may manifest them-
selves in a supportive or suppressive manner, depending on
the membrane properties and the geometric configuration of
the particle-membrane system. As a model system to study the
rotational effects involved in certain types of bacterial locomo-
tion, we have studied the rotational dynamics of a torque-free
doublet of two counterrotating particles in close vicinity to
an elastic membrane. We find that the magnitude and direc-
tion of rotation under parallel alignment with the membrane
in the steady limit strongly depend on membrane properties:
A shear-only membrane rigidity leads to a rotation of the
same sense as near a hard wall, opposite to the one near a
bending-only membrane rigidity. Finally, we have verified our
theoretical predictions via numerical simulations using a com-
pleted double boundary integral method. Very good agreement
is observed in this way. Our analytically computed mobil-
ity functions may find applications, for instance, as a basis
for Brownian simulation studies of colloidal suspensions near
planar elastic confinements.

In view of experimental developments involving con-
trolled manipulation of particles in a fluid using optical trap-
ping techniques,”! an experimental verification of the results
presented in the paper might be possible. It would be partic-
ularly interesting to explore the dynamics of a rotation-based
microswimmer close to the membrane. We have quantified the
rotational motion induced by the presence of the membrane
and related it to its elastic properties. These predictions could
be tested in a system involving a robotic swimmer in a viscous
fluid, perhaps also in larger-scale experiments, as long as the
low-Reynolds-number conditions are satisfied.
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APPENDIX A: GREEN’S TENSOR FOR A
MEMBRANE-BOUNDED FLUID

Green’s functions can conveniently be computed using a
two-dimensional Fourier transform technique>!%® and appro-
priately applying the no-slip boundary conditions stemming
from shear and bending deformations of the membrane.

For a point force exerted at position r; above the mem-
brane, the Green’s functions can be expressed in terms of
infinite integrals over the wavenumber ¢ as

1 R
Gur.ra) = 7 /0 (64,2 20,0)0(p19)

+ G_(q. 220, 0)J2(pag) cos 2eﬂ)q dg.

1 <
Golrran) = 1 /0 (60220, 0)op20)

- G-(q, 2,20, 0)J2(paq) cos 294)q dq,

1 .
gzz(r’ Fa,w) = ﬂ /0 gzz(q’ 25205 w)JO(p/lq)q dq’

sin 20,
4r

Goy(ro 120 ) = / G (q.2 20, )a(pag)q g,
0

I R
Gr(r,ry,w) = ﬂ/ G12(q, 2, 20, w)J1(paq)q dg,
0
I R
Go(r,ry,w) = ﬂ/ G(q,z, 20, w)J1(pag)q dg,
0

where p% = (x — x3)? +? and 6, = arctan(y/(x — x,)) being
the polar angle. Here J,, denotes the Bessel function of the first
kind of order 1.9 Moreover,
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where @ := «s/(3Bnw) is a characteristic length scale for
shear with B = 2/(1 + C) as defined in the main body of
the paper, and a/% = kp/(4nw) a characteristic cubic length
scale for bending. Thus, the terms involving a and a% in
the above equations are associated with shear and bending,
respectively. Furthermore, the remaining Cartesian compo-
nents can readily be determined from the usual transformation
relations, G,; = G, cos 0y, Gy, = Gz sin6,, G = G, cosb,,
Gy = Gysiné,, and G, = G,y. In the limit of vanishing
frequency, the Green’s functions near an elastic membrane
reduce to the Blake tensor'?” near a rigid no-slip wall, which
corresponds to the limit of an immobile and infinitely stiff
membrane.

APPENDIX B: BOUNDARY INTEGRAL METHODS

In order to assess the accuracy of the multipole expan-
sion approach employed in this paper, we have compared our
analytical predictions with fully resolved computer simula-
tions based on the completed double layer boundary integral
equation method (CDLBIEM).!%-112 The method is known
to be particularly suited for the simulation of Stokes flows!!3
when both rigid and deformable boundaries are present. In
this way, the translational and rotational velocities of the
particles can be determined, provided that the forces and
torques exerted on their surfaces are known. Hereafter, we
briefly provide some technical details regarding the numerical
method.

The integral equations for the particle membrane system
are expressed as' !4

vg(x) = Hp(x), x € Sum,

1 S
5@+ ) e @@ 9) = Hp), x € Sp,
a=1

where Sy and Sp denote the surface of the elastic mem-
brane and the particles, respectively. v is the velocity of points
belonging to the membrane surface and ¢ is the so-called
double layer density function on the surface of the parti-
cles Sp, related to the translational and rotational velocities
via

3
V) = ) e Pwe ™, 8), x e Se,
a=1

3
Q@) X (x—x0) = ) eV @@, ), x € Sp,

a=1

where x. is the particle center and ¢(®) are known vectorial
functions that depend on the position of a particle, its surface
area, and the moment-of-inertia tensor.!> The brackets stand
for the inner product, which is defined as

('@, p) = ;f e () - p(y)dS(y),

Sp

and the function Hg is defined by

Hp(x) = ~(MuAS)p(x) — (Kpd)p(x) + G (x. Xc)F,
+ R (X, X)Ly
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The single and double layer integrals are given by

Wme:LAMﬂ&mnmn

(&szé@MW%mmmwwn

with n being the outer normal vector on the particle surfaces.
Moreover, Af is the traction jump of the fluid stress tensor
across the membrane, 7'((?;;” is the stresslet, and R'g): is the rot-

let'? in an infinite space. From the instantaneous deformation
of the membrane, the traction jump across the membrane A f
is readily determined from the membrane constitutive models.
For further details with regard to the numerical computation
of the traction jumps, we refer the reader to Refs. 61 and 115.

In our simulations, the planar membrane is a flat quadratic
surface with a size of 300a X 300a and is meshed with 1740
triangles created using the open-source and freely-available
software Gmsh.!® The spherical particle is discretized by 320
triangular elements obtained by consecutive refinement of an
icosahedron.!!7-120

For the numerical determination of the particle mobil-
ity functions, a harmonic force F (t) = A€/ or torque
La(t) = B e is exerted at the surface of the particle A.
After a brief transient evolution, the translational and rotational
velocities of the particle y evolve as V,,(f) = C, /@) and
Q,(1) = D, e @™y respectively, and analogously for the
particle 4. The amplitudes and phase shifts can accurately be
determined by a fitting procedure of the numerically recorded
velocities using the trust region method.'?! In this way, the rt
components can be computed for a torque-free particle as

rt,yd _ D?’u ei(p/l

a1 Daia oio1
-— , ﬂaﬁ A/lﬁ

[<7: 2 A/I,B

For a force-free particle, the components #r and rr are
computed from

Al _ C/laf eié,{ rrAd _ D/la/ eiw,l
ap Bags » Tap Bags

for the self mobilities and
tryyd — C?’a/ €i67 rryyd — Dy(l ei(py
@ By TP By

for the pair mobilities.
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