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ABSTRACT
Guiding active microswimmers by external fields to requested target locations is a promising strategy to realize complex transport on the
microscale. For this purpose, one possibility consists of attaching the microswimmers to orientable passive components. Accordingly, we
analyze theoretically, using a minimal model, the dynamics of a microswimmer when rigidly attached to a (significantly larger) microplatelet,
here represented by a thin circular disk. In this way, we first determine the flow field in the whole space induced by a Stokeslet that is located
above the center of a spatially fixed rigid disk of no-slip surface conditions. Finally, we determine and analyze possible trajectories of the
overall composite. To this end, the platelet is additionally endowed with a permanent magnetic moment, which allows us to steer the motion
of the whole composite by a homogeneous external magnetic field. As previous experimental studies suggest, related setups may be helpful to
guide sperm cells to requested targets or for the purpose of coordinated drug delivery.
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I. INTRODUCTION

The world of slow viscous flows, characterized by the lack of
inertia, or, equivalently, by a vanishingly small Reynolds number,1

encompasses multiple time and length scales, spanning from geo-
physical creeping flows such as in marine ice sheets2,3 to the motion
of nanoparticles in aqueous environments4 and at interfaces,5 which
are relevant to technological applications in microfluidic devices.6

Creeping flows are also an essential component of microscale active
matter and self-propelling particles. There, the resulting biological
fluid flows are directly related to the motility of micro-organisms.7–9

Considerable attention has been given both to the modeling of
swimmers in the context of biological locomotion and to the arti-
ficial biomimetic systems capable of self-propulsion by exploiting
various types of available fuel.10–14 Some examples include the use
of chemically active surfaces for catalyzed decomposition of solu-
tions, which produces local diffusiophoretic surface flows,15–17 local
targeted heating inducing thermophoretic motion in the fluid,18 or
controlled decomposition of the surrounding medium,19,20 as well
as temperature changes coupled to the elastic properties of model

swimmers.21 Other propulsion mechanisms are based on bead-
model designs capable of net swimming when the mutual distance
between the constituents are periodically changed in a controlled
way such that time reversibility is broken.22–30 A characteristic fea-
ture of these objects is the force- and torque-free swimming of the
individual units, which is a low-Reynolds-number flow property
generally shared by motile microswimmers. It results from the over-
all balance between propulsive forces generated by the swimmer
and the fluid drag, which leads to the adjustment of the swimming
velocity.31

The specific propulsion mechanisms greatly depend on the
swimmer geometry. Bacterial cells often rely on the translation–
rotation coupling of their helical filaments, which produce thrust
force when the bacterial motors induce their rotation.7 Ciliated
eukaryotic cells generate surface flows by a coordinated motion of
cilia covering their bodies, leading effectively to a surface flow, which
can be represented mathematically using the squirmer model.32

However, the elucidation of a specific mechanism for a given organ-
ism requires the inclusion of all its geometric and kinematic fea-
tures.8
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One area of prospectively exploiting the self-propulsion of such
active micromachines contains the context of directed transport
on the microscale. For this purpose, artificial self-propelled mag-
netic colloidal Janus particles were generated that could be steered
by external magnetic fields.33,34 Similar guidance was achieved for
magnetic bubble-driven tubes.35

Yet, for many applications of microscale transport, biocompat-
ibility is a central issue. Therefore, biological microswimmers may,
for instance, prove as vehicles of choice for such promising tasks as
directed drug delivery. In this context, sperm cells as driving motors
were loaded with drugs and combined with magnetically address-
able microscopic steering components.36 Naturally, if only the sperm
cells themselves shall be guided to requested target areas, similar
strategies of forming microscopic composites by anchoring them to
magnetic steering units have proven successful.37

In this spirit, we study in the present contribution a motile
composite consisting of a microswimmer (such as a bacterium
or a sperm cell) attached to a (significantly larger) microplatelet.
We consider this microplatelet to be given by an infinitely thin
rigid disk. The microswimmer is attached on the top surface of
the disk. For simplicity, we represent its active forcing (resulting,
e.g., from the rotation of a flagella bundle or beating of cilia) by a
Stokeslet located at a fixed distance above the center of the disk.
The adsorption of the microswimmer to the rigid microplatelet
will effectively and qualitatively change its swimming trajectory.
Instead of a tendency of straight propulsion of the single microswim-
mer, now circling results for the composite system. Moreover, the
disk now acts as a steering unit. We assume it to carry a per-
manent in-plane magnetic dipole moment. Through a homoge-
neous external magnetic field, the composite can thus be guided
from outside. Depending on the strength of the resulting mag-
netic torques and the orientation of the magnetic moment rela-
tive to the swimming direction, different types of trajectories are
found.

We base our study on analytical solutions to the problem of
Stokes flow due to a point force in the presence of a planar no-slip
disk of negligible thickness.38,39 In this context, we include in the
Appendix an analytical approach to find the corresponding flow field
when the disk is kept rigidly fixed in space and the Stokeslet is ori-
ented parallel to the disk surface, which complements existing routes
to this subject. The problem is formulated as a mixed boundary-
value problem for finding three harmonic functions that describe
the reflected flow due to the presence of the disk. The resulting dual
integral equations are solved by a method described by Kim38 and
introduced by Sneddon40 and Copson.41 We ultimately use the flow
solutions to analyze the motion of our microswimmer–microplatelet
composite, also in the presence of an external field, which can couple
to the dynamics via a permanent magnetic moment of the platelet.

The paper is structured as follows: First, we introduce our
model microswimmer–microplatelet composite in Sec. II, where
we discuss in detail its geometry and the symmetry features.
Then, in Sec. III, we describe the solution technique for a
point force rigidly attached to the axis of the disk at a fixed
height above the disk. The obtained analytical solutions are
used to calculate the resulting hydrodynamic force and torque
on the disk due to the presence of the attached microswim-
mer. We then use these results in Sec. IV to elucidate the
swimming trajectories of the composite system under different

magnitudes and relative orientations of the permanent magnetic
moment of the disk and the external magnetic field. We conclude the
paper in Sec. V. The mathematical details of deriving the solution to
the flow problem described in Sec. III are shifted to the Appendix.

II. MATHEMATICAL MODEL
We consider a composite of a microswimmer, for instance,

a self-propelled sperm or bacterial cell, attached or adsorbed to a
microplatelet. The form of the microplatelet is an ideally thin, rigid,
microscopic disk of radius R (see Fig. 1). For our calculations, we
assign an orthogonal base unit frame of reference {x̂D, ŷD, ẑD} to the
disk, where ẑD points along the normal of the disk and the origin of
this frame of reference coincides with the center of the disk. To deci-
pher a mathematical approach to the dynamics of the composite, we
are guided by the following reasoning. A microswimmer that is not

FIG. 1. (a) Perspective and (b) cross-sectional views of the considered ideal-
ized system, representing a microswimmer–microplatelet composite. The action
of the microswimmer that is attached or adsorbed to the disk is represented by
a Stokeslet acting on the fluid at a fixed height h above the center of the disk. It
exerts a force −F onto the surrounding fluid. This drives the disk forward through
the fluid by a force F. Along the same lines, a torque L rotates the disk against
the fluid [where −L = hẑD × (−F)]. The whole space is filled with an otherwise
quiescent Newtonian viscous fluid of constant viscosity η. Since the fluid is set into
motion by the force −F, an additional hydrodynamic force FH and torque LH are
acting on the disk. Moreover, the disk carries a permanent magnetic moment m
aligned within the plane of the disk relatively to F by an angle δ. The coordinate
frame {x̂D, ŷD, ẑD} represents the frame of reference of the disk.
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yet adsorbed or attached to another component but freely propelling
through the fluid is force- and torque-free. For instance, consider-
ing a bacterial or sperm cell, their rotating flagella bundle or beating
cilia work on the surrounding fluid and push the fluid backward.
We refer to this net active forcing by the microswimmer on the fluid
to achieve self-propulsion by an active force −F acting on the fluid.
Through this action, the cell body or head of the microswimmer is
pushed forward through the fluid. Friction between the swimmer
body and the surrounding fluid takes the fluid along and thus pushes
it forward as well. In a simple model and under low-Reynolds-
number conditions, this forward forcing of the fluid through fric-
tion can be represented by a force +F. Together, the two forces −F
and +F form a force dipole acting on the fluid with vanishing total
force.42–49

In our situation, the microswimmer is rigidly attached,
adsorbed, or anchored to the (significantly larger) disk. Still, its
active propulsion force −F on the fluid persists. It now drives the
whole composite forward. However, since the disk is much more
bulky than the small head or cell body of the microswimmer, we
may now neglect the frictional force of the head or cell body of
the microswimmer with the fluid. The main frictional contribution
now arises because the disk is pushed through the fluid. Therefore,
we may assign the corresponding frictional force +F dragging the
fluid forward to the disk, instead of to the head or cell body of the
microswimmer.

Our mathematical representation of this situation is illustrated
in Fig. 1. We represent the active backward forcing of the fluid by
a Stokeslet −F at a fixed height h above the center of the disk, at
position rD = hẑD. Along the above lines, the forward forcing, by
which the disk is thus pushed through the fluid by the mechan-
ical attachment of the microswimmer is thus +F. Except for the
action of the composite, the surrounding fluid is quiescent and of
viscosity η.

Furthermore, from the location of the Stokeslet at a finite dis-
tance above the disk, a net torque −L = rD × (−F) is exerted on
the fluid by the active forcing of the fluid through the Stokeslet −F.
Through the rigid attachment of the microswimmer or Stokeslet to
the disk, the corresponding countertorque +L is mechanically trans-
mitted to the disk. By this torque +L, the disk is rotated, against
the frictional resistance of the fluid. (Together, the two torques −L
and +L lead to a vanishing total torque on the surrounding fluid, in
agreement with the corresponding low-Reynolds-number condition
of torque-free-swimming of the whole composite). In our geometry,
depicted in Fig. 1, the torque +L is pointing into the direction ŷD.
Also for the rotational dynamics of the whole composite, we neglect
the friction of the cell body or head of the microswimmer with the
surrounding fluid against the frictional drag between the fluid and
the significantly larger disk.

In addition to that, the microplatelet is endowed with a perma-
nent magnetic moment m rigidly anchored to the disk frame and
pointing into a fixed direction within the plane of the disk. In the
presence of a homogeneous, constant, external magnetic field, an
aligning magnetic torque thus results on the disk, which allows us to
guide the whole composite and thus the adsorbed microswimmer,
for instance, a sperm cell, into a requested direction. The angle of m
relative to the axis x̂D is denoted as δ so that

m = m(cos δ x̂D + sin δ ŷD). (1)

We denote by {x̂0, ŷ0, ẑ0}, the basis unit vectors associated with
the laboratory frame. Without loss of generality, we set the external
magnetic field in the fixed laboratory frame of reference as B = Bx̂0.

There is still more to that. Since the Stokeslet sets the sur-
rounding fluid into motion, the corresponding fluid flows act on
the disk as well. Through the viscous stresses on the surface of the
disk, additional hydrodynamic forces and torques result that we
denote as FH and LH, respectively. They will be calculated explicitly
below. For the moment, collecting all these forces and torques on
the disk, we can, because of the linearity of the underlying Stokes
equations, formulate the resulting overall velocity V and angular
velocity Ω as

V = μtt(F + FH), (2a)

Ω = μrr(rD × F + m × B + LH). (2b)

Here, the components of the translational and rotational hydro-
dynamic self-mobility tensors μtt and μrr of the disk expressed in the
body-fixed frame of reference read50–56

μttij = μtt∥(δij − δi3δj3) + μtt⊥δi3δj3, (3a)

μrrij = μrrδij, (3b)

with the mobility coefficients for a negligibly thin disk being

μtt
∥
= 3

32ηR
, μtt⊥ =

1
16ηR

, μrr = 3
32ηR3 . (4)

Notably, the mobility coefficient μtt
∥

associated with edgewise
translation is larger than that associated with broadside translation
along the axis of symmetry. We note that no coupling between
translational and rotational degrees of freedom occurs for this disk
immersed in a bulk fluid in the Stokes regime due to the symmetry.

The hydrodynamic force FH and torque LH acting on the disk
from the fluid flow driven by the force −F can be calculated explic-
itly. For this purpose, we first suppose the whole configuration, that
is, the Stokeslet and the disk, to be rigidly fixed in space. We can
solve the flow problem under these circumstances. From the fluid
flow driven by −F, viscous stresses result on the surface of the disk,
where we assume no-slip conditions. From these stresses, we can
calculate the corresponding hydrodynamic force FH and torque LH
acting on the disk when it is fixed in space. In other words, the disk is
actually maintained fixed in space by applying some effective coun-
terforce −FH and countertorque −LH from outside. Thus, we know
how to return to the situation of the freely movable disk again. We
simply have to lift the fixation force −FH and fixation torque −LH by
a corresponding counterforce −(−FH) and countertorque −(−LH).
The latter act on the disk and appear in Eq. (2).

More precisely, in the situation of keeping the disk fixed, the
flow velocity and pressure fields can be obtained by introducing an
image system represented by a set of harmonic functions, which
can be expanded into Fourier–Bessel integrals. Implementing the
relevant boundary conditions, the solution for the hydrodynamic
flow field can be formulated using a mixed boundary value problem,
which can then be transformed into a system of dual integral equa-
tions for the expansion coefficients on the inner and outer regions
of the domain. An analogous resolution procedure has previously
been utilized by Kim38 to address the flow problem due to a Stokeslet
directed purely along the normal of the disk.
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Before we proceed further, it is worth stressing that, in our
idealized setup, only the disk experiences the frictional force with
the surrounding fluid. Accordingly, here the hydrodynamic center
of mobility coincides with the origin of the disk. In general, for
an extended object of finite size attached to the disk, the effective
frictional force should be exerted on the hydrodynamic center of
mobility of the composite. This aspect is beyond the scope of the
present article and merits investigation in a future work.

III. STOKESLET NEAR A DISK: A DUAL INTEGRAL
EQUATION METHOD
A. Formulation of the mathematical flow problem

Under creeping flow conditions, the fluid dynamics are gov-
erned by the incompressible Stokes equations1,4

−∇p + η∇2v − Fδ(r − rD) = 0, (5a)

∇ ⋅ v = 0, (5b)

where p and v denote, respectively, the pressure and fluid velocity
fields at position r = x x̂D + y ŷD + z ẑD expressed in the frame of
reference attached to the disk, the latter being held fixed in space.

The force F can be decomposed into the components along the
directions normal and tangential to the disk, respectively, denoted by
F� = F� ẑD and F∥ = F∥ x̂D. The solution of the flow problem for an
axisymmetric configuration of a Stokeslet acting normal to the sur-
face of a rigid disk at a certain distance above the disk has previously
been derived by Kim.38 We will thus make use of this result and,
employing an analogous dual integral equation approach, derive the
corresponding solution for a Stokeslet acting tangentially to the disk.
The total flow field can then be obtained by superposition of the two
solutions owing to the linearity of the Stokes equations.

In an unbounded, infinitely extended fluid (i.e., in the absence
of the confining disk), the solution of Eqs. (5) for a Stokeslet of tan-
gential orientation, located at a certain distance above the center of
the disk is expressed in terms of the free-space Green’s function,
also known as the fundamental solution of Stokes flow. In cylindri-
cal coordinates (r, ϕ, z), the components of the velocity field due to
the point force in an otherwise quiescent fluid are given by

vr
S
∥
=
−F∥
8πηs
(1 +

r2

s2 ) cosϕ, (6a)

vϕ
S
∥
=

F∥
8πηs

sinϕ, (6b)

vz
S
∥
=
−F∥
8πη

r(z − h)
s3 cosϕ, (6c)

wherein s = ∣r − rD∣ = (r2 + (z − h)2)1/2
stands for the distance from

the Stokeslet position. The corresponding solution for the pressure
field reads

pS
∥
= −

F∥r
4πs3 cosϕ. (7)

Thanks to the linearity of the Stokes equations, the solution
of the flow problem near a rigid disk of no-slip surface conditions

can conveniently be written as a superposition of the solution in
an infinitely extended fluid and a complementary solution that is
needed to satisfy the regularity and boundary conditions.57,58 Then,

v∥ = vS
∥

+ v∗
∥

, p∥ = pS
∥

+ p∗
∥

, (8)

where v∗
∥

and p∗
∥

denote the complementary solution, also com-
monly referred to as the image solution.

For an asymmetric Stokes flow, the solution of the homoge-
neous equations of fluid motion can be expressed in terms of three
harmonic functions Π, Ψ, and Ω, as59

v∗
∥
= ∇Π + z∇(Ψ +

∂Π
∂z
) − (Ψ +

∂Π
∂z
)ẑD +∇ × (Ω ẑD),

p∗
∥
= 2η

∂

∂z
(Ψ +

∂Π
∂z
),

with
∇

2Π = ∇2Ψ = ∇2Ω = 0, (9)

where the gradient ∇ and Laplace ∇2 operator of a scalar quantity
f are, respectively, given in the cylindrical coordinates system by

∇f = ∂f
∂r

x̂D +
1
r
∂f
∂ϕ

ŷD +
∂f
∂z

ẑD, (10a)

∇
2f = 1

r
∂

∂r
(r∂f

∂r
) +

1
r2

∂2f
∂ϕ2 +

∂2f
∂z2 . (10b)

The projected components of the fluid velocity field are given
by

vr
∗

∥
= ∂

∂r
(Π + z

∂Π
∂z
) + z

∂Ψ
∂r

+
1
r
∂Ω
∂ϕ

, (11a)

vϕ
∗

∥
= 1
r
∂

∂ϕ
(Π + z

∂Π
∂z
) +

z
r
∂Ψ
∂ϕ
− ∂Ω

∂r
, (11b)

vz
∗

∥
= z ∂

∂z
(Ψ +

∂Π
∂z
) −Ψ. (11c)

Since Π, Ψ, and Ω are harmonic functions, the solution of
Eq. (9) can be expressed in terms of infinite series of Fourier–Bessel
integrals.60,61 By requiring the regularity condition that both ∣v∗

∥
∣

and p∗
∥

must vanish as r →∞ or z → ±∞, the general solution can
be presented as a superposition of Bessel functions with exponen-
tial weights and unknown wavelength-dependent coefficients π±k (λ),
ψ±k (λ), and ω±k (λ), for k = 0, 1, . . ., that will be determined from the
boundary conditions in the plane of the disk at z = 0. The plus sign
in the superscripts denotes a quantity in the upper-half space z ≥ 0,
whereas the minus sign denotes the corresponding quantity in the
lower-half space, for which z ≤ 0. We now write the solution as

Π± =
−F∥
8πη ∑k≥0

cos(kϕ)∫
∞

0
π±k (λ)Jk(λr)e−λ∣z∣ dλ, (12a)

Ψ± =
−F∥
8πη ∑k≥0

cos(kϕ)∫
∞

0
ψ±k (λ)Jk(λr)e−λ∣z∣ dλ, (12b)

Ω± =
−F∥
8πη ∑k≥0

sin(kϕ)∫
∞

0
ω±k (λ)Jk(λr)e−λ∣z∣ dλ. (12c)

Phys. Fluids 32, 021902 (2020); doi: 10.1063/1.5142054 32, 021902-4

Published under license by AIP Publishing

https://scitation.org/journal/phf


Physics of Fluids ARTICLE scitation.org/journal/phf

B. Boundary conditions and dual integral equations
The boundary conditions at z = 0 represent the continuity of the

flow velocity at z = 0, vanishing velocity on the surface of the disk,
and continuity of normal stresses on both sides of the disk, outside
the disk, respectively,

v+
∥ − v−∥ ∣z=0

= 0, (13a)

v+
∥
∣
z=0
= v−

∥
∣
z=0
= 0 for r < R, (13b)

(σ+
∥ − σ−∥ ) ⋅ ẑD∣z=0

= 0 for r > R, (13c)

where σ±
∥
ẑD represents the hydrodynamic stress vector on the plane

of the disk, with its components given by

σrz±∥ = η(
∂vr

±

∥

∂z
+
∂vz

±

∥

∂r
), (14a)

σϕz±
∥
= η
⎛
⎝
∂vϕ

±

∥

∂z
+

1
r
∂vz

±

∥

∂ϕ
⎞
⎠

, (14b)

σzz±∥ = −p±∥ + 2η
∂vz

±

∥

∂z
. (14c)

To satisfy the natural continuity of the fluid velocity field at
z = 0, given by Eq. (13a), we require π+

k ≡ π−k , ψ+
k ≡ ψ−k , and ω+

k ≡ ω−k ,
for all k. In the remainder of this manuscript, we will thus drop the
± sign and denote the unknown wavenumber-dependent functions
in the upper- and lower-half domains by πk(λ), ψk(λ), and ωk(λ).

Next, applying the no-slip boundary conditions at the surface
of the disk, as prescribed by Eq. (13b), yields the following integral
equations for r < R:

∑
k≥0

cos(kϕ)∫
∞

0
Γrk(r, λ)dλ = −

(2r2 + h2) cosϕ

(r2 + h2)3/2
, (15a)

∑
k≥0

sin(kϕ)∫
∞

0
Γϕk(r, λ)dλ = sinϕ

(r2 + h2)1/2
, (15b)

∑
k≥0

cos(kϕ)∫
∞

0
Γzk(r, λ)dλ = hr cosϕ

(r2 + h2)3/2
, (15c)

where we have defined for convenience the integrands

Γrk(r, λ) =
k
r
(πk(λ) + ωk(λ))Jk(λr) − λπk(λ)Jk+1(λr), (16a)

Γϕk(r, λ) = −
k
r
(πk(λ) + ωk(λ))Jk(λr) + λωk(λ)Jk+1(λr), (16b)

Γzk(r, λ) = −ψk(λ)Jk(λr). (16c)

The right-hand sides of Eqs. (15) derive from the Stokeslet contri-
bution to the total flow field, in addition to the image solution v∗

∥
.

Above, the infinite sums can be dealt with by using the orthogonality
property of Fourier series components to obtain

∫
∞

0
Γrk(r, λ)dλ = − 2r2 + h2

(r2 + h2)3/2
δk1, (17a)

∫
∞

0
Γϕk(r, λ)dλ = δk1

(r2 + h2)1/2
, (17b)

∫
∞

0
Γzk(r, λ)dλ = hr

(r2 + h2)3/2
δk1. (17c)

We now make use of the recurrence identity62

Jk−1(λr) + Jk+1(λr) =
2k
λr

Jk(λr) (18)

and introduce the following shorthand notations:

f −k (r) =
r2

(r2 + h2)3/2
δk1, (19a)

f +
k (r) = −

(3r2 + 2h2)
(r2 + h2)3/2

δk1, (19b)

fk(r) = −
hr

(r2 + h2)3/2
δk1, (19c)

to rewrite Eqs. (17) as

∫
∞

0
λ(πk(λ) − ωk(λ))Jk+1(λr)dλ = f −k (r), (20a)

∫
∞

0
λ(πk(λ) + ωk(λ))Jk−1(λr)dλ = f +

k (r), (20b)

∫
∞

0
ψk(λ)Jk(λr)dλ = fk(r). (20c)

Equations (20) constitute the integral equations for the inner
region. To obtain the corresponding equations for the outer region,
we require the continuity of the hydrodynamic stress tensor, which
is stated by Eq. (13c). Defining

Λr
k(r, λ) =

kλ
r
(2πk(λ) + ωk(λ))Jk(λr) − 2λ2πk(λ)Jk+1(λr),

Λϕ
k(r, λ) =

kλ
r
(2πk(λ) + ωk(λ))Jk(λr) − λ2ωk(λ)Jk+1(λr),

Λz
k(r, λ) = λψk(λ)Jk(λr),

we obtain three equations:

∫
∞

0
Λj
k(r, λ)dλ = 0 , j ∈ {r,ϕ, z}. (21)

Rearranging terms and making use of Eq. (18), Eqs. (21) can be
recast in a finalized integral form as

∫
∞

0
λ2(2πk(λ) − ωk(λ))Jk+1(λr)dλ = 0, (22a)

∫
∞

0
λ2(2πk(λ) + ωk(λ))Jk−1(λr)dλ = 0, (22b)

∫
∞

0
λψk(λ)Jk(λr)dλ = 0. (22c)
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Equations (22) represents the integral equations for the outer region.
As detailed in the Appendix, the solution of the resulting

dual integral equations for the unknown wavenumber-dependent
quantities can conveniently be presented in an integral form as

πk(λ) =
λ−

1
2

4 ∫
R

0
(ξ̂−k (t)Jk+ 1

2
(λt) + ξ̂+

k (t)Jk− 3
2
(λt))dt,

ωk(λ) =
λ−

1
2

2 ∫
R

0
(−ξ̂−k (t)Jk+ 1

2
(λt) + ξ̂+

k (t)Jk− 3
2
(λt))dt,

ψk(λ) = λ
1
2 ∫

R

0
ψ̂k(t)Jk− 1

2
(λt)dt,

where the functions appearing in the integrands as coefficients of the
Bessel functions are explicitly given by

ξ̂−k (t) = (
2t
π
)

1
2 4ht2

(t2 + h2)2 δk1,

ξ̂+
k (t) =

2
h
(2t
π
)

1
2 ⎛
⎝
t2(t2 − h2)
(t2 + h2)2 −

3R2 + 4h2

3(R2 + h2)
⎞
⎠
δk1,

ψ̂k(t) = −(
2t
π
)

1
2 2h2t
(t2 + h2)2 δk1.

Notably, all the series coefficients vanish except for k = 1.
Having obtained expressions for the hydrodynamic flow field

caused by a point force acting tangent to a finite-sized disk fixed in
space, we next employ the full solution to obtain expressions for the
resulting hydrodynamic force and torque on the disk.

C. Hydrodynamic force and torque
Through the fluid flows induced by the force −F that the

microswimmer exerts on the fluid, a net hydrodynamic force and
torque result on the rigid disk. From the solution described above
for the resulting flow field, we can calculate the associated hydro-
dynamic stress vector. From there and a complementary expression
by Kim,38 the hydrodynamic force and torque on the disk follow via
integration over the surface of the disk.

The total hydrodynamic force exerted by the surrounding fluid
on both sides of the disk is obtained by integrating the stress vector
over the top and bottom surfaces of the disk A = {0 ≤ r ≤ R, 0 ≤ ϕ
≤ 2π, z = 0}. Specifically,

FH = ∫
A
(σ+ − σ−) ⋅ ẑD dA. (23)

The total hydrodynamic force exerted on the disk can be
decomposed into an out-of-plane component FH⊥ ≡ FH ⋅ ẑD result-
ing from the normal part of the Stokeslet F� and an in-plane com-
ponent FH∥ ≡ FH ⋅ x̂D resulting from the tangential part of the
Stokeslet.

FH⊥ is calculated as

FH⊥ = 2∫
R

0
σzz+
⊥∣z=0

2πr dr. (24)

By inserting the expression of the normal component of the hydro-
dynamic stress vector for an axisymmetric Stokeslet as derived by
Kim38 and evaluating the resulting integral, we find

FH⊥ = −F⊥(1 − 2
π
(arctan ξ − ξ

1 + ξ2 )), (25)

where we have introduced the dimensionless number ξ = h/R.
In addition to that, the component FH∥ is given by

FH∥ = 2∫
2π

0
∫

R

0
(σrz+

∥ cosϕ − σϕz+
∥

sinϕ)∣
z=0

r dr dϕ. (26)

By inserting the expressions of the tangential components of
the stress vector as given by Eqs. (14a) and (14b) into Eq. (26) and
performing the double integration over the surface of the disk, we
obtain

FH∥ = −
Fh

3π(R2 + h2) ∫
R

0
W(t)dt, (27)

where we have defined

W(t) =
t4 + (9R2 + 11h2)t2 + h2(3R2 + 4h2)

(t2 + h2)2

and used the fact that (for t < R)

∫
∞

0
J1(λR) cos(λt)dλ = 1

R
.

After integration of Eq. (27) and rearranging terms, the hydro-
dynamic force takes the final form

FH∥ = −F∥(1 − 2
π
(arctan ξ +

ξ
3(1 + ξ2))). (28)

Due to the action of the asymmetric point force component
exerted tangent to the surface of the disk, the latter will also be
subject to a total hydrodynamic torque given by

LH = ∫
A
(r × (σ+ − σ−)) ⋅ ẑD dA. (29)

We find that the resulting hydrodynamic torque has only one
non-vanishing component LH ≡ LH ⋅ ŷD. The latter results from the
tangential component of the Stokeslet and is given by

LH = 2∫
2π

0
∫

R

0
−r2 σzz+

∥
∣
z=0

cosϕdr dϕ. (30)

By inserting the expression of the normal component of the
stress vector stated by Eq. (14c) into Eq. (30) and carrying out double
integration over the surface of the disk, we obtain

LH = −
4F∥h2

π ∫
R

0

t2 dt
(t2 + h2)2 , (31)

where we have made use of the identity (for t < R)

∫
∞

0
(2λ−1J1(λR) − RJ0(λR)) sin(λt)dλ = 2t

R
.

Finally, the total hydrodynamic torque exerted on the disk
readily follows upon performing the integration in Eq. (31) as

LH = −F∥h(1 − 2
π
( ξ

1 + ξ2 + arctan ξ)). (32)

In particular, for ξ = 0 (corresponding to a Stokeslet attached
to the disk or equivalently to an infinitely extended disk), we obtain
FH = −F and LH = rD × (−F). In this case, it correctly follows from
Eqs. (2) that V = 0 and Ω = 0 for a vanishing external magnetic field.
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IV. SWIMMING TRAJECTORIES OF THE COMPOSITE
Having derived the hydrodynamic force and torque exerted on

the disk due to the presence of the Stokeslet, we next examine in
detail the swimming trajectories performed by the microswimmer–
microplatelet composite. Obtaining for the resultant force and
torque exerted on the disk

FD =
2F∥
π
( ξ

3(1 + ξ2) + arctan ξ)x̂D +
2F⊥
π
(arctan ξ − ξ

1 + ξ2 )ẑD,

(33a)

LD =
2F∥h
π
( ξ

1 + ξ2 + arctan ξ)ŷD, (33b)

the translational and rotational swimming velocities can be written
as

V = μtt ⋅ FD, (34a)

Ω = μrr(LD + m × B). (34b)

The position of the moving frame attached to the disk
{x̂D, ŷD, ẑD} relative to the laboratory frame {x̂0, ŷ0, ẑ0} can con-
veniently be described by three Euler angles (ψ, θ, ϕ), commonly
denominated as precession, nutation, and proper rotation or spin.
The Euler angles are sketched in Fig. 2. Within this framework, the
angular velocity of the composite is obtained as

Ω = ψ̇ẑ0 + θ̇ŷ1 + ϕ̇ẑ2. (35)

The equations governing the translational degree of freedom of
the composite in the laboratory frame then read

dr
dt
≡ V = μtt

∥
FD∥

⎛
⎜⎜
⎝

cosψ cos θ cosϕ − sinψ sinϕ
sinψ cos θ cosϕ + cosψ sinϕ

− sin θ cosϕ

⎞
⎟⎟
⎠

+μtt⊥FD⊥

⎛
⎜⎜
⎝

cosψ sin θ
sinψ sin θ

cos θ

⎞
⎟⎟
⎠

, (36)

where we have defined FD∥ = FD ⋅ x̂D and FD⊥ = FD ⋅ ẑD.

Combining Eqs. (34b) and (35), and recalling that B = Bx̂0, it
follows that the temporal variations of the Euler angles are governed
by

⎛
⎜⎜⎜
⎝

ψ̇

θ̇

ϕ̇

⎞
⎟⎟⎟
⎠
= μrrLD

⎛
⎜⎜
⎝

sinϕ csc θ − α cosψ sin(ϕ + δ)
cosϕ − α cosψ sin θ cos(ϕ + δ)
− sinϕ cot θ − α sinψ cos(ϕ + δ)

⎞
⎟⎟
⎠

, (37)

where we have defined the dimensionless number

α = mB
LD

, (38)

which can be viewed as a measure for the possible magnitude of
the torque resulting from the external magnetic field relative to the
strength of the hydrodynamic torque acting on the disk due to the
fluid flows induced by the Stokeslet.

In order to characterize the swimming trajectories in detail, we
decompose the angular velocity into a component Ω∥ = Ω∥ t̂ parallel
to the swimming direction and a component Ω� perpendicular to it
so that Ω = Ω∥ + Ω�. Here, we have defined the swimming direction
of the composite by the unit vector

t̂ = cos ϑ x̂D + sin ϑ ẑD (39)

so that

tan ϑ = μ
tt
⊥FD⊥

μtt
∥
FD∥
= 2

3
FD⊥

FD∥
. (40)

In terms of Euler angles, the components of the projected
angular velocity are obtained as

Ω∥ = αμrrLD(Λ1 cos ϑ −Λ2 sin ϑ), (41a)

Ω⊥ = μrrLD(α(Λ1 sin ϑ + Λ2 cos ϑ)(sin ϑ x̂D − cos ϑ ẑD)

+ (1 − α cos δ cosψ sin θ)ŷD), (41b)

where we have defined

Λ1 = sin δ cosψ sin θ, (42a)

Λ2 = sinψ cos(ϕ + δ) + cosψ cos θ sin(ϕ + δ). (42b)

FIG. 2. Schematic diagram of Euler angles and axes. The reference frame attached to the disk {x̂D, ŷD, ẑD} is obtained via three successive rotations by angles (ψ, θ, ϕ),
which represent the precession, nutation, and spin, from the laboratory frame {x̂0, ŷ0, ẑ0}.
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We now determine the instant curvature and unsigned torsion
of the trajectory from the translational and rotational swimming
velocities as63,64

κ = ∣Ω ×V ∣
∣V ∣2

= ∣Ω⊥∣∣V ∣ , (43a)

τ = ∣Ω ⋅V ∣
∣V ∣2

=
∣Ω∥∣
∣V ∣ . (43b)

In the absence of an external magnetic field (α = 0), it follows
that τ = 0. In this case, the composite will swim along a circular path
with a constant curvature

κ0 = (1 + tan2 ϑ)−
1
2 ξ
R

ξ
1+ξ2 + arctan ξ
ξ

3(1+ξ2)
+ arctan ξ

. (44)

Accordingly, the curvatures amount to the maximum value
when ϑ = 0, for which the Stokeslet is directed parallel to the
surface of the disk. For ϑ = π/2, the Stokeslet is directed nor-
mal to the surface of the disk, and it follows that κ = 0; thus, the
composite swims along a straight trajectory without changing its
orientation.

Apart from that, we did not observe ϑ to change qualitatively
the resulting swimming trajectories. Therefore, we now set ϑ = 0.

A few exemplary trajectories of microswimmer–microplatelet
composites initially starting from the origin of the laboratory frame
of reference are presented in Fig. 3. For α ≠ 0 and δ = 0, imply-
ing that m ∥ x̂D, it readily follows that the torsion τ = 0. Thus,
the composite moves in the plane set by the initial orientation, as
shown in Figs. 3(a) and 3(b). From our numerical evaluation for
different sets of parameter values, we made the following obser-
vations. When α < 1, then the composite moves along a cycloidal
path65 in a plane normal to Ω�. This behavior is analogous to that
of a noise-free circle swimmer moving under the action of a con-
stant external force.66 In contrast to that, when α ≥ 1, then both
κ and τ in the steady state vanish. Correspondingly, the compos-
ite after a transient evolution will move along a straight trajec-
tory. For α ≠ 0 and δ ≠ 0, the swimming trajectories in the steady
state, after a transient initial regime, in our numerical observa-
tions were found to form regular helices of radius r = κ/(κ2 + τ2),
a pitch 2πℓ = 2πτ/(κ2 + τ2), and a helix angle ε = arctan(ℓ/r)
[see Fig. 3(c)].

The radius and pitch of the steady-state helical trajectory
found numerically after a transient reorientation depend on the
relative strength of the magnetic and hydrodynamic forcing, as
quantified by α. This dependence of these geometric features on
the increasing field strength is illustrated in Fig. 4. While the
pitch of the helix increases monotonically with increasing field
strength, the curvature of the helix depends non-trivially on the
magnetic field strength, where the curvature reaches a maximum at
some intermediate value of the scaled magnitude of the magnetic
field.

In this context, analogous helical trajectories have been
observed for anisotropic self-propelled colloidal particles mov-
ing under gravity,67,68 and self-diffusiophoretic active particles
anisotropically covered with activity and mobility patches.69 In
addition, it has been demonstrated that biaxial self-propelling

active particles with arbitrary shape can swim along helical or
even superhelical trajectories.70 For biological microswimmers,
helical swimming paths have been observed in various types of
bacteria such as Leptospira,71 Spiroplasma,72 Caulobacter crescen-
tus,73 and Helicobacter pylori.74 These experimentally observed
wiggling trajectories are connected to the rotations of their chi-
ral flagella bundles.75 Meanwhile, sea urchin sperm cells76–79 and
human sperms80 have also been shown to swim along well-defined
helical paths. Further studies have accounted for the effect of
thermal fluctuations on the helical motion of active Brownian
particles.81,82

FIG. 3. Exemplary swimming trajectories of composites starting from the origin
of the laboratory coordinate system for (a) α = 0.5 and δ = 0, (b) α = 1 and
δ = 0, and (c) α = 0.2 and δ = π/4. Here, we set the initial angles ψ0 = θ0
= φ0 = π/2, implying that the trajectories in (a) and (b) are confined to the plane
z0 = 0. Moreover, we set ξ = 1 and ϑ = 0. Arrows show the direction of time
evolution.
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FIG. 4. (a) Scaled curvature and (b) pitch of the helical swimming trajectory in the
steady state vs the scaled strength of the magnetic field for various values of the
angle of the magnetic moment relative to the swimming direction. Here, we set
ξ = 1 and ϑ = 0.

V. CONCLUSIONS
In this work, we have analyzed the dynamics of a

microswimmer–microplatelet composite propelling at low Reynolds
numbers through an otherwise quiescent, incompressible, and vis-
cous environment. The action of the microswimmer was represented
by a Stokeslet pushing the fluid at a fixed height above the disk
that represents the microplatelet. We derived the translational and
rotational equations of motion for this composite, including hydro-
dynamic effects. On the way, we also presented an alternative way to
analytically determine the fluid flow induced by the Stokeslet when
the disk is rigidly fixed in space under no-slip surface conditions.

In addition, we numerically evaluated the equations of motion
of the composite. Without further action, in general, circular tra-
jectories result. We then additionally considered the disk to fea-
ture a permanent in-plane magnetic moment so that it is subject
to an additional torque in a homogeneous external magnetic field.
With the magnetic moment in the same plane as the propelling
Stokeslet cycloidal or steady-state straight trajectories were found

with increasing magnetic field amplitudes. In the more general case
of the magnetic moment not in the same plane as the propelling
Stokeslet, helical trajectories were observed. Our results may be
important in the context of recent attempts to guide sperm cells
or other microswimmers through the combination with non-active
steering components to requested target areas.

For some swimming micro-organisms, such as flagellated bac-
teria, which perform a screw-like motion to achieve propulsion,83

accounting for the self-generated active torque may become impor-
tant. In the present context, to include this aspect, one would require
the knowledge of the flow field generated by a point torque acting
near a finite-sized disk under no-slip surface conditions. This is an
interesting extension of the problem for future studies.
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APPENDIX: SOLUTION OF THE DUAL INTEGRAL
EQUATIONS

In this appendix, we present an analytical approach to obtain
closed-form solutions for the flow field that we have formulated as
a mixed boundary value problem in the main body of the paper in
Sec. III B.

1. Solution for ψk
We first consider the dual integral equations

∫
∞

0
ψk(λ)Jk(λr)dλ = fk(r) (0 < r < R), (A1a)

∫
∞

0
λψk(λ)Jk(λr)dλ = 0 (r > R), (A1b)

where the expression of the known radial function fk(r) is given by
Eq. (19c).

A formal solution of these types of dual integral equations with
Bessel function kernels was first derived by Titchmarsh.84 The solu-
tion procedure involves the theory of Mellin transforms,85 but this
method presents some mathematical difficulty. In some particular
cases, Sneddon and later Copson have shown that the dual inte-
gral equations problem can be reduced to classical Abel integral
equations upon suitable substitutions.40,41 An analogous resolution
approach has recently been employed by some of us to compute
the creeping flow field due to a Stokeslet near a finite-sized elastic
interface.86

Following the recipes by Copson,41 we write the solution of the
dual integral equations in terms of unknown functions ψ̂k as

ψk(λ) = λ
1
2 ∫

R

0
ψ̂k(t)Jk− 1

2
(λt)dt. (A2)

The latter equation can be rewritten as

ψk(λ) = λ−
1
2 ∫

R

0
ψ̂k(t)t−(k+ 1

2 )
d
dt
(tk+ 1

2 Jk+ 1
2
(λt))dt. (A3)
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Defining

Ψ̂k(t) = tk+ 1
2

d
dt
(ψ̂k(t) t−(k+ 1

2 )) (A4)

and assuming that lim
t→0+

tk+ 1
2 ψ̂k(t) = 0, Eq. (A3) takes the final form

after integrating by parts

ψk(λ) = λ−
1
2 ψ̂k(R)Jk+ 1

2
(λR) − ∫

R

0
λ−

1
2 Ψ̂k(t)Jk+ 1

2
(λt)dt. (A5)

By making use of the following identity given by Watson,87

∫
∞

0
λ1+q−pJp(aλ)Jq(bλ)dλ =

bqH(a − b)
apΓ(p − q) (

a2 − b2

2
)
p−q−1

, (A6)

with H(⋅) denoting the Heaviside step function and Γ(⋅) Euler’s
Gamma function,62 it can readily be checked that Eq. (A5) satis-
fies the outer integral equation (A1b) upon inversion of the order
of integration.

Substitution of Eq. (A2) into the inner problem stated by
Eq. (A1a) leads to

( 2
π
)

1
2
r−k ∫

r

0
tk−

1
2 ψ̂k(t)(r2 − t2)−

1
2 dt = fk(r). (A7)

The latter result is obtained after making use of Eq. (A6) and noting
that Γ(1/2) = π1/2.

Equation (A7) is a Volterra integral equation of the first
kind,88–90 which can be transformed into an Abel integral equation.
The latter admits a unique solution if fk(r) is a continuously differ-
entiable function.91–93 More generally, the solution of the integral
equation

∫
r

0
g(t)(r2 − t2)−α dt = h(r) (0 < r < R), (A8)

defined for 0 < α < 1 is of the form

g(r) = 2
π

sin(απ) d
dr ∫

r

0
h(t)(r2 − t2)α−1t dt. (A9)

Hence, the solution of Eq. (A7) is obtained as

ψ̂k(r) = (
2
π
)

1
2
r−k+ 1

2
d
dr ∫

r

0
tk+1fk(t)(r2 − t2)−

1
2 dt. (A10)

Finally, we get

ψ̂k(t) = −2( 2
π
)

1
2 h2t3/2

(t2 + h2)2 δk1, (A11)

and the sought-for functions ψk are obtained from Eq. (A2). We note
that

J 1
2
(λt) = ( 2

πλt
)

1
2

sin(λt). (A12)

2. Solution for πk (λ) and ωk (λ)
We next consider the system of dual integral equations for the

unknown wavenumber-dependent functions πk(λ) and ωk(λ), which

is given for the inner region r < R by

∫
∞

0
λ(πk(λ) − ωk(λ))Jk+1(λr)dλ = f −k (r), (A13a)

∫
∞

0
λ(πk(λ) + ωk(λ))Jk−1(λr)dλ = f +

k (r), (A13b)

while for the outer region r > R, we have

∫
∞

0
λ2(2πk(λ) − ωk(λ))Jk+1(λr)dλ = 0, (A14a)

∫
∞

0
λ2(2πk(λ) + ωk(λ))Jk−1(λr)dλ = 0, (A14b)

where f −k (r) and f +
k (r) are defined by Eqs. (19a) and (19b), respec-

tively. Notably, the integral equations for πk(λ) and ωk(λ) cannot be
decoupled, rendering the problem more challenging. Consequently,
we have to solve simultaneously for these two quantities.

In order to satisfy the equations for the outer region, we follow
the approach outlined by Copson41 and seek solutions of the integral
form

2πk(λ) − ωk(λ) = λ−
1
2 ∫

R

0
ξ̂−k (t)Jk+ 1

2
(λt)dt, (A15a)

2πk(λ) + ωk(λ) = λ−
1
2 ∫

R

0
ξ̂+
k (t)Jk− 3

2
(λt)dt, (A15b)

where ξ̂−k (t) and ξ̂+
k (t) are unknown functions to be determined by

satisfying the mixed dual integral equations in the inner region.
Performing integration by parts in Eqs. (A15) yields

2πk(λ) − ωk(λ) = λ−
3
2
⎛
⎝
ξ̂−k (R)Jk+ 3

2
(λR)

−∫
R

0
tk+ 3

2
d
dt
(ξ̂−k (t) t−(k+ 3

2 ))Jk+ 3
2
(λt)dt

⎞
⎠

,

(A16a)

2πk(λ) + ωk(λ) = λ−
3
2
⎛
⎝
ξ̂+
k (R)Jk− 1

2
(λR)

−∫
R

0
tk−

1
2

d
dt
(ξ̂+

k (t) t−(k−
1
2 ))Jk− 1

2
(λt)dt

⎞
⎠

,

(A16b)

where we have assumed that lim
t→0+

tk+ 3
2 ξ̂−k (t) = lim

t→0+
tk−

1
2 ξ̂+

k (t) = 0.
By making use of the identity by Watson given by Eq. (A6)

and inverting the order of integration, it can readily be verified that
Eqs. (A16) satisfy the outer problem stated by Eqs. (A14).

Solving Eqs. (A15) for πk(λ) and ωk(λ) yields

πk(λ) =
λ−

1
2

4 ∫
R

0
(ξ̂−k (t)Jk+ 1

2
(λt) + ξ̂+

k (t)Jk− 3
2
(λt))dt, (A17a)

ωk(λ) =
λ−

1
2

2 ∫
R

0
(−ξ̂−k (t)Jk+ 1

2
(λt) + ξ̂+

k (t)Jk− 3
2
(λt))dt. (A17b)
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Next, substituting Eqs. (A17) into Eqs. (A13) and interchanging
the order of integration yields

∫
R

0
(3

4
Kk+1

k+ 1
2
(r, t)ξ̂−k (t) −

1
4
Kk+1

k− 3
2
(r, t)ξ̂+

k (t))dt = f −k (r), (A18a)

∫
R

0
(−1

4
Kk−1

k+ 1
2
(r, t)ξ̂−k (t) +

3
4
Kk−1

k− 3
2
(r, t)ξ̂+

k (t))dt = f +
k (r), (A18b)

where we have defined the kernel functions

Kq
p(r, t) = ∫

∞

0
λ

1
2 Jp(λt)Jq(λr)dλ, (A19)

where p = − 3
2 ,− 1

2 , 1
2 , 3

2 , . . . and q = −1, 0, 1, 2, . . .. It can be shown
that Kq

p(r, t) is always convergent in the range of definition of p
and q.

In particular, the kernel functions appearing in Eqs. (A18) are
explicitly given by

Kk+1
k+ 1

2
(r, t) = ( 2

π )
1
2 r−(k+1)tk+ 1

2 (r2 − t2)−
1
2 H(r − t), (A20a)

Kk+1
k− 3

2
(r, t) = ( 2

π )
1
2 r−(k+1)tk−

3
2 ((2k − 1)(r2 − t2)

1
2

− t2(r2 − t2)−
1
2 )H(r − t), (A20b)

Kk−1
k+ 1

2
(r, t) = ( 2

π )
1
2 r−(k+2)tk+ 1

2 Λk( tr )H(r − t)

+ 2
1
2 rk−1t−(k+ 1

2 )Γ(k + 1
2)Γ(k)

−1H(t − r), (A20c)

Kk−1
k− 3

2
(r, t) = ( 2

π )
1
2 r−(k−1)tk−

3
2 (r2 − t2)−

1
2 H(r − t). (A20d)

In addition to that, we have defined the series function

Λk(x) =
(1 + 2k(1 − x2))δ+

k (x) − 2(k + 1) δ−k (x)
(1 + 2k)(1 − x2) ∣x∣ < 1,

(A21)
where

δ±k (x) = 2F1(±
1
2

, k +
1
2

; k +
3
2

; x2), (A22)

with 2F1 denoting the Gauss hypergeometric functions.62 We note
that lim

k→0
Γ(k)−1 = 0. It is worth mentioning that, for k ≥ 1, the

series function Λk(x) can be represented in terms of usual analytic
functions as

Λk(x) =
2−(2k−1)x−(2k+1)

(k − 1)!

× ((2k)!
k!

arcsin(x) +
2k

2k + 1
(1 − x2)−

1
2 Qk(x)), (A23)

where

Qk(x) = (2k + 1)‼(−x +
k−1

∑
i=1

22i−1 i!(i − 1)!
(2i + 1)! x

2i+1) (A24)

is a polynomial in powers of x of degree 2k − 1. Here, k!! denotes the
double factorial of k (also sometimes called semifactorial), defined as
the product of all the preceding integers that have the same parity.94

For k = 0, we note that Λ0(x) = −(1 − x2)−
1
2 .

By inserting Eqs. (A20) into Eq. (A18) and using the
substitution

χ̂±k (t) =
1
4
( 2
πt
)

1
2
ξ̂±k (t), (A25)

the integral equations for the inner problem can be presented in the
final form

r−(k+1) ∫
r

0
(3(r2 − t2)−

1
2 χ̂−k (t) − (t−2(2k − 1)(r2 − t2)

1
2

−(r2 − t2)−
1
2 )χ̂+

k (t))tk+1 dt = f −k (r), (A26a)

r−k ∫
r

0
(−Λk( tr )r

−2χ̂−k (t) + 3rt−2(r2 − t2)−
1
2 χ̂+

k (t))tk+1 dt

−π
1
2 Γ(k + 1

2)Γ(k)
−1 rk−1 ∫

R

r
t−kχ̂−k (t)dt = f +

k (r). (A26b)

For the solution of Eqs. (A26), we use the standard series expan-
sion technique.95–97 The method consists of writing the solutions
of the integral equations as power series expansions with unknown
coefficients of the form

χ̂±k (t) =∑
p∈Z

a±k,pt
p (A27)

and solving for the unknown coefficients by identification of terms
of the same power when comparing with the series expansion of the
known function. Since f ±k (k) = 0 for k ≠ 1, we set a±k,p = 0,∀p ∈ Z
in this case. As a result, it follows that χ̂±k (t) = 0 for k ≠ 1. As for

k = 1, knowing that Λ1(x) = x−3 arcsin(x) − x−2(1 − x2)−
1
2 ,

Eqs. (A26) yield

∫
r

0
(3t2(r2 − t2)−

1
2 χ̂−1 (t) + (t2(r2 − t2)−

1
2 − (r2 − t2)

1
2 )χ̂+

1 (t))dt

= r4

(r2 + h2)
3
2

, (A28a)

∫
r

0
(((r2 − t2)−

1
2 − t−1 arcsin( t

r
))χ̂−1 (t) + 3(r2 − t2)−

1
2 χ̂+

1 (t))dt

− π
2 ∫

R

r
t−1χ̂−1 (t)dt = − 3r2 + 2h2

(r2 + h2)
3
2

. (A28b)

We express the solution as an even function of t as

χ̂±1 (t) =
1
πh∑p≥0

c±p (
t
h
)

2p
, (A29)

where t < h and c±p are constants to be determined by identification.
Substituting Eqs. (A29) into Eq. (A28) and expanding the right-hand
sides in Taylor series about the origin yields

3
4
c−0 ρ

2 +
9c−1 + 2c+

1

16
ρ4 +

15c−2 + 4c+
2

32
ρ6 +

15(7c−3 + 2c+
3)

256
ρ8 +⋯

= ρ4 − 3
2
ρ6 +

15
8
ρ8 −⋯,

3
2
c+

0 −
1
4∑p≥1

c−p
p
(R
h
)

2p
+

3(c−1 + 2c+
1)

8
ρ2 +

3(5c−2 + 12c+
2)

64
ρ4

+
5(7c−3 + 18c+

3)
192

ρ6 +⋯ = −2 +
3
4
ρ4 − 5

4
ρ6 +⋯,
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where we have defined ρ = r/h. By identification, we obtain the series
coefficients

c−p = (−1)p+12p (p ≥ 0), (A30a)

c+
p = (−1)p(2p − 1) (p ≥ 1), (A30b)

c+
0 = −

3R2 + 4h2

3(R2 + h2) . (A30c)

By inserting Eqs. (A30) into Eq. (A29) and evaluating the
infinite series, we obtain

χ̂−1 (t) =
2ht2

π(t2 + h2)2 , (A31a)

χ̂+
1 (t) =

1
πh
⎛
⎝
t2(t2 − h2)
(t2 + h2)2 −

3R2 + 4h2

3(R2 + h2)
⎞
⎠

. (A31b)

Finally, the expression of ξ̂±1 (t) can be obtained from Eq. (A25)
and the solution for π1(λ) and ω1(λ) can then be calculated from
Eqs. (A17). We note that

J 3
2
(λt) = ( 2

πλt
)

1
2
( sin(λt)

λt
− cos(λt)), (A32a)

J
−

1
2
(λt) = ( 2

πλt
)

1
2

cos(λt). (A32b)

We have checked the correctness of our derived solution by
direct comparison of the left-hand sides of Eqs. (20) using our
expressions for πk(λ), ωk(λ), and ψk(λ).

3. Solution for R → ∞
Having derived the solution of the flow problem for a Stokeslet

force near a finite-sized disk, we next check the correctness of the
solution for an infinitely extended disk that is fixed in space. By tak-
ing the upper limit of integration to infinity in Eqs. (A2) and (A17),
we obtain

πk(λ) =
λh − 1
λ

e−λh δk1, (A33a)

ωk(λ) = −
2
λ
e−λh δk1, (A33b)

ψk(λ) = −λhe−λh δk1. (A33c)

It is worth mentioning that these solutions can likewise be
obtained by applying inverse Hankel transforms98 to Eqs. (20). Then,

πk(λ) − ωk(λ) = ∫
∞

0
rf −k (r)Jk+1(λr)dr, (A34a)

πk(λ) + ωk(λ) = ∫
∞

0
rf +
k (r)Jk−1(λr)dr, (A34b)

ψk(λ) = λ∫
∞

0
rfk(r)Jk(λr)dr. (A34c)

By inserting Eqs. (A33) into Eqs. (12), the harmonic functions
Π±k , Ψ±k , and Ω±k are expressed in the limit R→∞ by

Π±k =
−F
8πη

cosϕ
r
(2h ± z − s± −

h(h ± z)
s±

)δk1, (A35a)

Ψ±k =
F

8πη
hr cosϕ

s3
±

δk1, (A35b)

Ω±k =
−F
4πη

sinϕ
r
(h ± z − s±)δk1, (A35c)

where we have defined

s± = (r2 + (h ± z)2)
1
2 . (A36)

This solution is in full agreement with the familiar solution
originally obtained by Lorentz99 for a Stokeslet exerted tangent to
an infinitely extended stationary plane boundary using the method
of reflections. The solution has later been derived and analyzed by
Blake using a Fourier transform technique.100,101
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