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Abstract
In the approach of biomolecules to a nanopore, it is essential to capture the effects of
hydrodynamic anisotropy of the molecules and the near-wall hydrodynamic interactions which
hinder their diffusion. We present a detailed theoretical analysis of the behaviour of a rod-like
molecule attracted electrostatically by a charged nanopore. We !rst estimate the time scales
corresponding to Brownian and electrostatic translations and reorientation. We !nd that
Brownian motion becomes negligible at distances within the pore capture radius, and
numerically determine the trajectories of the nano-rod in this region to explore the effects of
anisotropic mobility. This allows us to determine the range of directions from the pore in
which hydrodynamic interactions with the boundary shape the approach dynamics and need to
be accounted for in detailed modelling.
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1. Introduction

Nanopore sequencing is now a well-established technique for
the determination of structure of biomolecules [1, 2], such as
DNA [3], RNA [4], or proteins [5]. The molecules, which are
typically slender !laments, are electrophoretically transported
to the nanopore and then translocated through an ori!ce. The
process of passage or threading, controlled by a combination
of electric [6, 7], electrokinetic [8], entropic [9], osmotic [10,
11] and mechanical forces [12], is now well understood and
explored.

However, the approach to the pore is described in less detail.
Available models characterise the dynamics of the molecule by
its diffusion coef!cient D and electrophoretic mobility µe. This
simpli!ed approach has proved useful to establish the general
properties of the system. In reference [13], Grosberg and Rabin
determined the concentration of DNA near the pore using the
Smoluchowski equation formalism. Qiao et al de!ned the cap-
ture radius of the pore [14], being the distance at which thermal
"uctuations become comparable to the electrostatic potential
energy, which bounds the region of attraction of the pore. In the
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following works, they extended this notion by introducing the
orientational capture radius [15], being the range at which the
electric !eld strongly orients the colloidal rods. These mod-
els, however, neglect the anisotropy of the particles, and of the
hydrodynamic interactions with the wall which hinder diffu-
sion at close distances. Hydrodynamic effects are known to
alter the trajectories of close sedimenting particles [16, 17]
by coupling to their inherent shape anisotropy and lead to a
general slow-down of colloidal dynamics [18].

In this contribution, we !ll this gap by formulating a
detailed theoretical approach which accounts for anisotropic
diffusivity of a model nano-rod both due to its non-isotropic
shape and due to the particle-wall "ow-mediated interactions.
We !rst use this model to determine the time scales cor-
responding to the subsequent phases of motion of a nano-
rod approaching a pore: purely Brownian motion far from
the pore, electric !eld-induced translation and reorientation,
and the wall in"uence region. Then we provide a quanti-
tative insight by solving the equations of motion numeri-
cally for a collection of initial positions and orientation. We
describe the resulting trajectories and mechanisms shaping
the motion. This allows us to determine the wall in"uence
region.
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Figure 1. Sketch of a nanorod close to a nanopore denoted by a red
dot. The pore generates a radial electric !eld, modelled by a point
charge placed in its location at the origin. The con!guration of the
rod is given by its position r and orientation u, which corresponds to
an inclination angle θ. In addition, we denote by α the polar angle at
which the rod is seen from the pore.

We focus on microparticles which can be modelled as
stiff rods. This is appropriate for biomolecules of length L
shorter than their persistence length Lp. Examples of such
nano-rods include dsDNA shorter than Lp ≈ 50 nm (or ca
150 bp) or fd-viruses [19], with L = 880 nm and Lp = 2.8 µm,
translocating through solid-state pores [20]. For longer
molecules, the effects of elasticity and changing conformation
can lead to coiling [21] or knotting [12, 22] and must be taken
into account for proper modelling.

The paper is organised as follows. First, we describe the
general model in section 2.1, specifying the form of elec-
trostatic interactions in section 2.2 and hydrodynamic inter-
actions in section 2.3. The following section 3 presents our
results, divided into scaling insights in section 3.1, and a
numerical analysis of the trajectories in section 3.2. We sum-
marise our conclusions in section 4.

2. Model

2.1. Motion of the nanorod

We consider an ellipsoidal rod of length L with its centre
located at a point r, as sketched in !gure 1. The aspect ratio
of the rod is p = 10. The director of the rod is a unit vector
u. The nanopore is at the centre of a Cartesian lab coordi-
nate system, with the z axis being normal to the wall, de!ned
by the xy plane. Thus, the rod is at a distance H = r · ez

from the wall and its inclination angle θ is determined by
cos θ = u · ez.

The rod is charged and moving in an electric !eld gener-
ated by the nanopore. The !eld exerts an electrostatic force,
Fe and torque, Te, on the rod. On the other hand, the sus-
pending "uid reacts to the motion of the particle by exerting a
frictional force, Fh, and torque, Th. Because the "ow is charac-
terised by a small Reynolds number, the lack of inertia yields
the following equations of motion of the particle

Fe + Fh = 0, (1)

Te + Th = 0, (2)

which determine the translational and rotational velocity of the
particle, V andΩ, respectively. These are then used to evaluate
the trajectory and orientation according to

∂r
∂t

= V, (3)

∂u
∂t

= Ω× u. (4)

2.2. Electrostatic interactions with a nanopore

Following previous works [15], we model the interaction
between a pore and a rod using the Coulomb potential from
a point source. We assume that in the capture process rods
are uniformly charged with an effective electrophoretic charge
Q [13]. We will measure the strength of the electric !eld by
the capture radius λe: a distance where the potential energy
QΨ of the rod is comparable to the thermal "uctuations, so
QΨ(λe) = kBT, with kB being the Boltzmann constant and T
the temperature. In this setting, the electric !eld at a location r
can be written as

E(r) = −kBTλe

Q
r̂
r2 , (5)

where the hat denotes a unit vector. The potential energy of the
particle in the electric !eld is given by an integral along the rod

Ψe =
kBTλe

L

∫ L/2

−L/2

ds
r(s)

, (6)

where r(s) represents distance from the pore to the rod element
s. From this we can obtain exact integral expressions for the
force Fe and torque Te acting on the rod by appropriate differ-
entiation. Since in the remainder of the paper we will be inter-
ested in intermediate particle–pore distances, when L/r % 1,
we expand them and to leading order we !nd

Fe = −kBTλe
r̂
r2 + O((L/r)2), (7)

Te = −kBTλeL2

4
(̂r.u)(̂r × u)

r3 + O((L/r)4). (8)

The force is radially attracting the rod and falls off as r−2.
When rod is oriented at an angle to the direction towards the
pore, uneven force distribution generates a torque which reori-
ents the rod, forcing it to point towards the pore. This torque
is proportional to the electric !eld gradient, thus it scales
as r−3.

2.3. Near-wall mobility of a rod-like particle

On the colloidal length and time scales, relevant for nanopore
experiments, the "ow !eld v(r) around a particle is described
by the stationary Stokes equations [23]

η∇2v(r) −∇p(r) = − f (r), ∇ · v(r) = 0, (9)

where f (r) is the force density the particle exerts on the "uid,
and p(r) is the modi!ed pressure !eld. If a particle is moving
in a quiescent "uid, the frictional force and torque are linearly
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related to its translational and angular velocities, V and Ω, via
the friction (or resistance) tensor [23, 24]

(
Fh

Th

)
= −

(
ζ tt ζ tr

ζrt ζ rr

)(
V
Ω

)
. (10)

The indices tt and rr above denote the translational and rota-
tional parts, respectively, while the tensors ζ tr and ζrt describe
the translation–rotation coupling.

If a particle is moving under the action of a known force
and torque, a complementary problem is formulated using the
mobility tensor µ which is an inverse of the friction tensor

µ =

(
µtt µtr

µrt µrr

)
=

(
ζ tt ζ tr

ζ rt ζrr

)−1

= ζ−1. (11)

Finally, the mobility tensor is related to the diffusion matrix D
by the "uctuation–dissipation theorem

D = kBTµ. (12)

Thus, the diffusive properties of the particle are completely
determined by its hydrodynamic mobility.

For an axisymmetric particle, the friction (and mobility)
tensors have a high degree of symmetry. In a bulk system, the
con!guration of a particle is given by its axial unit vector u,
and the friction tensor can be explicitly written as

ζ tt = ζ t
‖uu + ζ t

⊥(1 − uu), (13)

ζrr = ζr
‖uu + ζr

⊥(1 − uu), (14)

ζ tr = ζ rt = 0, (15)

using only four coef!cients. For ellipsoids, analytical formu-
lae are available for the bulk diffusion tensor and are listed in
appendix A. Otherwise, ef!cient schemes for the calculation of
bulk hydrodynamics properties of macromolecules modelled
as collections of beads, such as Hydro++ [25, 26], GRPY
[27], or Hydromultipole [24, 28] are also available.

The presence of a con!ning boundary changes this situa-
tion, since the hydrodynamic tensors now depend both on the
distance to the boundary, and on the orientation of the nano-rod
with respect to the surface. The friction tensors of a near-wall
particle, ζw, may be written as:

ζw = ζ0 + ∆ζw, (16)

where ζ0 is the bulk resistance tensor, and the last term is a
wall-induced correction. An analytical leading-order approxi-
mation to ∆ζw, with the expansion parameter L/H being the
ratio of the size of the particle, L, to the wall–particle distance
H, was derived previously by some of us [29]. Earlier works
provide the components of the diffusion tensor for very slender
!laments close to walls only for particular alignments [30, 31].
The treatment proposed in reference [29] allows for an ef!cient
calculation of the diffusion tensor of a slender rod-like particle
for moderate and large wall–particle distances. By inverting
ζw from equation (16), we arrive at a convenient approxima-
tion to the near-wall mobility µw = ζ−1

w , which will serve as

the starting point for present work. The correction terms have
the following form

∆ζ tt
w = − A1

2H
+

A2

(2H)2 + O(H−3), (17)

∆ζ tr
w = − B

(2H)2 + O(H−3), (18)

∆ζrt
w = − BT

(2H)2 + O(H−3), (19)

∆ζrr
w = − C

(2H)3 + O(H−4). (20)

The tensors A1,2, B, C above are derived from the multipole
expansion of the Blake tensor [32] (Green’s function for the
wall-bounded geometry) and they depend on the bulk com-
ponents of the friction tensor of a rod-like particle and its
orientation angle θ but not on the wall–particle distance. For
completeness, we write them explicitly in appendix B.

Notably, there are other strategies for tackling the problem
of near-wall mobility or various levels of accuracy, such as
boundary integral equations [33] or !nite element method sim-
ulations [34]. Approximate bead-model numerical schemes on
a similar level of accuracy to the analytical correction above
supplemented by lubrication treatment of close con!gurations
have been introduced by Swan and Brady [35]. More accu-
rate multipole expansion approaches have also been developed
[36]. However, comparisons of the analytical correction pre-
sented above in equations (17)–(20) with accurate bead-model
hydromultipole scheme [36] for a rod of aspect ratio p = 10
have shown the validity of the correction for distances up to
H/L ∼ 1, provided that the rod is far from touching the wall,
in which case lubrication corrections become important. Thus,
in this contribution we will use the approximate correction,
bearing in mind that the analysed model has been developed
for moderate particle-nanopore distances. Here, we restrict our
attention to the semi-analytical scheme presented above, since
the dynamics occur mostly in the range of wide separations of
the particle and the wall.

3. Results

3.1. Scaling analysis

The length of the particle is L. For dsDNA the length of
L = 100 bp corresponds to ca 34 nm. Another length scale
in the problem is the electrostatic capture radius λe, which
at room temperature is in the range of micrometers [15], so
λe/L * 1.

The interplay between different time scales in the problem
determines the ranges in which different mechanisms of cap-
ture dominate. We list them all for convenience in table 1.
Far enough from the pore, the dynamics are purely Brownian,
and the relevant time scale is τB ∼ L2/〈Dt〉 ≈ 6πηL3/kBT,
where 〈Dt〉 is the average diffusion coef!cient of the nano-rod.
Rotational Brownian motion occurs on the same time scale
1/ 〈Dr〉 ∼ 8πηL3/kBT. In the presence of an electrostatic force
(7) driving the translational motion, the velocity scales as V ∼
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Table 1. Time scales in the system.

Symbol Scaling Description

τ 6πηL4/kBTλe Basic time scale
τB 6πηL3/kBT Brownian (diffusive) time
τ t

e 6πηL2r2/kBTλe Electrostatic translation time
τ r

e 6πηLr3/kBTλe Electrostatic rotation time
τw 6πηH2r2/kBTλe Wall-induced rotation time

〈Dt〉λe/r2 ∼ kBTλe/6πηLr2. Thus the relevant translational
time scale is τ t

e ∼ L/V ≈ 6πηL2r2/kBTλe. The electrostatic
torque falls off quicker with distance, so the relevant rota-
tion time scale derived from it becomes τ r

e ≈ 6πηL2r3/kBTλe.
By comparing the Brownian and electrostatic rotational time
scale, we recover the scaling for the orientational capture
radius de!ned in reference [15]. We note that in the mobility
(or diffusion) matrix µ, the translational elements scale as ηL,
the coupling terms as ηL2, and the rotational terms as ηL3. This
scaling changes close to the wall, where an additional length
scale, the wall–particle distance H, comes into play. When the
rod comes close to the wall, reorientation due to hydrodynamic
interactions with the boundary becomes important, with the
relevant time scale τw derived from the scaling form of the
equation Ω = µrt · Fe + µrr · Te. By comparing different time
scales we determine four general regimes of motion, sketched
in !gure 2. The furthest region is Brownian, but closer to the
pore when τB ∼ τ t

e, translational motion is driven by electro-
static forces but rotational motion remains Brownian. Moving
even closer, electrostatic torque dominates over thermal reori-
entation. The boundaries between these regions are determined
by the radial distance from the pore. However, in the vicinity
of the wall, the diffusivity and hence mobility are generally
hindered by hydrodynamic interactions with the wall, which
become the dominant driving mechanism. We thus conclude
that for the analysis of the behaviour of a !eld-driven nano-
rod, since we focus on the dynamics in the range L < r % λe,
Brownian motion may be neglected, as it would only in"u-
ence the initial orientations with which the rod would enter
the area dominated by electrostatic interactions. It is essential,
however, to retain the hydrodynamic anisotropy of the rod, as
it in"uences both the translational and rotational motion in the
presence of a strong electric !eld.

For quantitative calculations, we choose dimensionless
units with the basic length L. In the presence of an elec-
tric !eld, the more appropriate time unit is τ = τBL/λe =
6πηL4/kBTλe. For dsDNA mentioned above, this time scale
is of the order of 10−7 s. With this choice, we can write the
force and torque acting on the rod as

Fe = − r̂
r2 , Te = − (̂r · u)(̂r × u)

r3 . (21)

3.2. Discussion of trajectories

Before focussing on the numerical solutions of the full set of
equations, it is informative to consider a very simple case of
an anisotropic particle subject to a central force without the
wall in"uence and with no external torque. In this case, the

Figure 2. The division of near-pore space into regions coloured by
dominant terms determining the dynamics of the rod. The pore is
located at the origin, and the wall coincides with the bottom border
of the graph. Closest to the surface, wall interaction terms are the
most important. When the particle is moving further away from the
wall, we expect concentric regions of electrostatically determined
dynamics, electrostatic translations with Brownian rotations, and
fully Brownian respectively. This corresponds to the intuition that
electrostatic torque decays faster than force when moving away
from the pore. The boundaries between subsequent regions are
obtained by comparing the respective times scales of motion.
Expressions used to determine the time scales are collected for
convenience in table 1. For this calculation we assumed λe = 103L.

particle’s mobility tensor has the form as in equation (13),
with two coef!cients µ‖, µ⊥. For very slender rods, we have
µ‖ ≈ 2µ⊥.

We can describe such a situation by taking a coordinate sys-
tem centred at the pore, and oriented with the principal axes of
the body (‖,⊥). Within this parametrisation, the equations of
motion of the centre of the rod (r‖, r⊥) are

∂r‖
∂t

= µ‖
F(r)

r
r‖ (22)

∂r⊥
∂t

= µ⊥
F(r)

r
r⊥. (23)

By displaying the equations in this form, it is immediately clear
that the function F(r) only in"uences the time dependence
and has no bearing on the trajectory. For bounded F, there
is a hyperbolic !xed point at the origin with two important
trajectories intersecting at it: r‖ = 0 and r⊥ = 0. The !rst cor-
responds to slower, sideways motion and the second to faster,
axial motion. We conclude that a particle with different values
of the drag coef!cients along different axes will almost always
approach the !xed point along the slowest axis, which in the
case of a rod-like colloids means that the particles would most
often approach the pore broadside. This conclusion holds sway
whenever the torques acting on the rod are negligible and thus
it concisely describes the initial dynamics when starting far
enough from the pore. Approaching the slow rectilinear trajec-
tory is accomplished by hydrodynamic ‘gliding’ effect where
velocity stays at an angle to the force in the initial stages of
motion. Moreover, we predict the existence of two types of tra-
jectories—concave and convex—depending on whether rod
initially points towards or away from the wall compared to the
pore direction.
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Figure 3. Trajectories of the particle centre depending on the initial
orientation of the particle. Due to differences of drag coef!cients in
the direction along and across the particle, the velocity is never
aligned with the drag force. This leads to gliding, either higher
above the wall or closer to the wall depending on the orientation,
importantly ruling out a straight path towards the pore.

To explore the dynamics driven by the interplay between
electrostatic and hydrodynamic forces acting on the nanorod,
we integrate the deterministic equations of motion numeri-
cally. As argued before, we neglect the in"uence of Brown-
ian motion in the range of distances under consideration. The
equations of motion for the system are

(
V
Ω

)
= µw

(
Fe

Te

)
, (24)

which together with equations (3) and (4) allow us to calculate
the trajectories of nano-rods. We consider an ellipsoidal
rod of aspect ratio p = 10. We integrated the equations of
motion using NDSolve command of Mathematica 12.1
with Method -> {“EquationSimplification”
-> “Residual”} option enabled to deal with
algebraic-differential nature of the equations.

We present the resulting trajectories in !gure 3, starting
from a point r0 = (35, 25) above the wall, thus seen at an angle
α0 ≈ 2π/9 from the nanopore. Rods starting at different ori-
entations glide sideways with respect to the !eld direction
due to their shape (and therefore also mobility) anisotropy.
For the initial angle θ0 < α0, the trajectories are convex and
they approach the vicinity of the pore from below the direc-
tion α0 = θ0. The initial inclination θ0 > α0 leads to a con-
cave path gliding above the r0 direction. The shape of the
trajectories is also dependent on the aspect ratio of the nano-
rod, which determines the parallel and perpendicular fric-
tion (mobility) coef!cients. At large distances, the wall does
not in"uence the observed dynamics. A closer look into the
particles’ orientations, sketched in !gure 4 for four chosen ini-
tial orientations (θ0 = kπ/36, with k = 3, 11, 22, 34), reveals a
strong alignment with the !eld lines, predicted by earlier works
neglecting hydrodynamic anisotropy [15]. The time depen-
dence of the rods’ orientation shows a systematic change, the
rate of which increases when approaching the pore due to the

Figure 4. Top: four sample trajectories with the particle orientation
sketched at equal translation intervals. The particles start from an
initial position (35, 25) at four different initial orientations
(θ0 = kπ/36, with k = 3, 11, 22, 34), depending on which they
follow convex or concave gliding trajectories. Bottom: inclination
angles corresponding to the trajectories plotted above against
normalized time. Reorientation rapidly accelerates in the later stages
of motion because the initial offset due to the sideways glide close to
the starting point has an increasingly larger effect on the approach
angle.

increasingly strong attractive force and aligning torque. At the
considered separations from the pore, we see no pronounced
effect of the translation–rotation coupling due to the wall,
which in this case is too weak to compete with !eld-driven
motion. It would come into signi!cance at near-touching con-
!gurations where we also expect the detailed geometry of the
pore to matter.

To test how strong the alignment with the !eld lines is, in
!gure 5 we present the results of numerical simulations for a
spectrum of initial orientation angles θ0 for rods released far
away from the pore at three representative values of the polar
angle α0. For each starting con!guration, we determine the
!nal orientation θf and plot the !nal angle to the local !eld
line, |αf − θf |, at the !nal position of the particle. For most
initial values of the approach angle, conclusions are similar to
those from models neglecting wall interaction terms—the !nal
deviation angle from the !eld lines direction is typically of the
order of π/50. For small angles α0, however, the relationship
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Figure 5. The !nal angle between the rod and the !eld line plotted
against the initial inclination angle at different starting positions far
away from the pore with different polar angles: α0 = π/8—close to
the wall, α0 = π/4—intermediate, α0 = 3π/8—far from the wall.
Trajectories with θ0 < α0 are convex and initially glide towards the
wall, and trajectories with θ0 > α0 are concave and initially glide
away from the wall. Importantly, when the two angles are similar,
θ0 ≈ α0, a straight trajectory is unstable because of drag anisotropy
and leads to relatively large values of the !nal angle between the
!eld lines and the rod, |θ − α|. Additionally, for small α0 this
relationship is asymmetric due to wall in"uence where the
hydrodynamic torque from wall drag competes with electrostatic
reorientation in the late stages of movement.

between the initial inclination and the !nal angle to !eld lines
is asymmetric due to wall interactions, which increase the off-
set to the !eld lines. For example, we observe angles greater
than π/16 in the region (−π/8, π/8). When interpreting this
result, it is notable that in 3D under uniform distribution of
charged particles over the hemisphere of possible initial direc-
tions, small angles α0 occur much more often (proportionally
to cosα0), meaning that such effect can hinder the capture of
a substantial number of particles. The area of the region with
α0 < π/8 accounts for nearly 40% of the considered hemi-
sphere. Thus it remains important in a high percentage of cap-
ture events to properly resolve hydrodynamic interactions with
the con!ning boundary.

Notably, we have chosen the initial orientations to lie within
the xz plane. By solving the full, three-dimensional equations
of motion (3), (4) and (24), we con!rm that the qualitative
characteristics of motion remain unchanged even when the
initial orientation of the rod has an out-of-plane component.
The reorientation in the region far away from the wall remains
mostly Brownian, while in the near-pore region the strong
alignment mechanism brings the dynamics to a plane to which
we restrict our attention from the beginning. We thus do not see
any changes as compared to the axisymmetric con!gurations
analysed here.

4. Conclusions

We have presented an analysis of motion of a colloidal nano-
rod driven by the electric !eld of a nanopore in a viscous
"uid with a particular focus on the inclusion of hydrody-
namic interactions and a detailed analysis of the different
regimes of motion. The nanopore is modelled as a point charge

which attracts a uniformly charged rod-like particle. Basing on
scaling arguments, we identi!ed the various time scales of
motion and demonstrated that far away from the pore the
motion of the particle is purely Brownian but as soon as it
reaches the electrostatic capture radius λe it is systematically
attracted towards the pore. Its initial dynamics are then gov-
erned by an electrostatic force driving its translational motion,
with the velocity resulting from the balance of this force and
the "uid drag force. Since the latter is anisotropic, and depends
on the orientation of the particle, the motion resembles side-
ways gliding towards the pore. At closer distances, the elec-
trostatic torque becomes pronounced and strongly aligns the
rods with the electric !eld lines, as reported previously [15].
However, earlier studies neglected the role of hydrodynamic
interactions both on the level of the particle anisotropy, and
the wall-induced increase of friction.

In this contribution, we have outlined a theoretical approach
which takes into account both the anisotropy of the parti-
cle and the wall hindrance effect. Supported by scalings, we
explored the trajectories at intermediate distances, when Brow-
nian motion can be neglected, but the rod is far enough from the
pore to disregard the !eld and "ow effects of the pore geom-
etry. At large and moderate distances, we have employed an
approximate analytical scheme, in which the friction tensor of
a colloid close to the wall can be decomposed into its bulk
value, encoding the particle anisotropy, and a wall-induced
correction. This allowed us to formulate a deterministic system
of equations which can be solved for arbitrary initial position
and orientation of the nano-rod.

For starting points at a large polar angle α, we !nd that
gliding trajectories are governed by the shape anisotropy of
the rod, and the wall plays no signi!cant role. However, for
smaller approach angles, hydrodynamic interactions with the
wall signi!cantly alter the angle at which the rod approaches
the near-pore region. We have shown the extent of this region
to be as large as π/8 which accounts for nearly 40% of spher-
ical area in 3D, thus signifying the importance of wall effects
in the proper modelling of dynamics in con!ned geometry.

Our work shows, basing on a scaling analysis, that it is jus-
ti!ed to neglect the role of Brownian motion in the near-pore
region. Previous works on a similar system included Brownian
motion on the level of translational motion only, by imposing
a constant diffusion coef!cient of the particle [15]. However,
in order to properly resolve the question of Brownian dis-
placements and rotations, one should account for two facts:
(a) the non-spherical shape of the rod which makes its diffu-
sion anisotropic even in a bulk system, and (b) the presence
of the wall which renders the anisotropic diffusion tensor of
the particle a wall–particle distance-dependent and introduces
translation–rotation coupling. Even then, we would expect the
effect of Brownian motion to be pronounced outside the near-
pore region which is dominated by electrostatic interactions.
Including these effects would be an interesting direction of
future research.

The analysis of trajectories close to the pore remains a sep-
arate issue, since its non-planar geometry has a signi!cant
in"uence on the trajectories, both by changing the structure
of the electric !eld, which can no longer be modelled by a
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point charge, and by the different character of hydrodynamic
interactions, where the pore opening shapes the lubrication
"ow and friction landscape for the colloid. For an insight into
these dynamics, detailed models of the pore structure should
be implemented.
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Appendix A. Bulk friction tensors of an ellipsoid

The elements of the bulk friction tensor for an ellipsoidal col-
loid are known analytically [23]. For a prolate spheroid with
a long axis a = L/2 and a short axis c, corresponding to an
eccentricity e =

√
a2 − c2/a, the bulk friction coef!cients in

ζ0 can be written as

ζ t
‖ = (6πηa)

8
3

e3[−2e +
(
1 + e2) )

]−1
, (A.1)

ζ t
⊥ = (6πηa)

16
3

e3[2e +
(
3e2 − 1

)
)
]−1

, (A.2)

ζr
‖ = (8πηa3)

4
3

e3(1 − e2)
[
2e −

(
1 − e2) )

]−1
, (A.3)

ζr
⊥ = (8πηa3)

4
3

e3(2 − e2)
[
−2e +

(
1 + e2) )

]−1
,

(A.4)

ζdr = (πηa3)
16
3

e5[−2e +
(
1 + e2) )

]−1
, (A.5)

) = log
(

1 + e
1 − e

)
. (A.6)

The last coef!cient, ζdr, links the stresslet (symmetric dipole
moment) on the spheroid with the rate-of-strain tensor of an
external "ow.

Appendix B. Wall correction terms

The correction terms are described in detail in reference [29]. It
is most convenient to specify the components of the near-wall
friction tensor in a body-!xed frame of reference. It is de!ned
by a set of basis vectors {u, u⊥1, u⊥2}, where u is the director
along the long axis of the nano-rod, u⊥1 = (ez × u)/ |ez × u|
is parallel to the wall and perpendicular to the particle axis, and
u⊥2 = u⊥1 × u completes the orthonormal basis. We can write
the tensors in equations (17)–(20) explicitly in the body-!xed
frame RW. For convenience, we de!ne the following shorthand
notation

s ≡ sin θ, c ≡ cos θ. (B.1)

For the translational part (17), we !nd the correction’s angular
dependence as

A1 = − 3
16πη




(ζ t

‖)
2(1 + c2) 0 −ζ t

‖ζ
t
⊥sc

0 (ζ t
⊥)2 0

−ζ t
‖ζ

t
⊥sc 0 (ζ t

⊥)2(1 + s2)



 ,

(B.2)

A2 =
9

256π2η2




A‖ 0 A‖⊥
0 A⊥1 0

A‖⊥ 0 A⊥2



 . (B.3)

with the coef!cients

A⊥1 = (ζ t
⊥)3, (B.4)

A‖ = (ζ t
‖)

3(1 + c2)2 + ζ t
⊥(ζ t

‖)
2s2c2, (B.5)

A⊥2 = (ζ t
⊥)3(1 + s2)2 + (ζ t

⊥)2ζ t
‖s2c2, (B.6)

A‖⊥ = −ζ t
‖ζ

t
⊥[ζ t

‖(1 + c2) + ζ t
⊥(1 + s2)]sc. (B.7)

The translation–rotation coupling part reads

B =
3ζdr

16πη




0 ζ t

‖(1 + c2)s 0
0 0 ζ t

⊥c
0 −ζ t

⊥(1 + s2)c 0



 . (B.8)

Finally, the rotational part C in equation (20) has the form

C = − 1
16πη




(ζ r

‖)
2(5 − 3c2) 0 3ζr

‖ζ
r
⊥sc

0 5(ζr
⊥)2 0

3ζr
‖ζ

r
⊥sc 0 (ζr

⊥)2(5 − 3s2)





+
3ζdr

16πη




0 0 ζ r

‖sc
0 −2ζr

⊥(1 − 2c2) 0
ζr
‖sc 0 2ζ r

⊥c2





− 3(ζdr)2

16πη




0 0 0
0 3 + c2 − c4 0
0 0 1 + 2c2



 . (B.9)

ORCID iDs

Radost Waszkiewicz https://orcid.org/0000-0002-0376-
1708
Maciej Lisicki https://orcid.org/0000-0002-6976-0281

References

[1] Wanunu M 2012 Nanopores: a journey towards DNA sequenc-
ing Phys. Life Rev. 9 125–58

[2] Branton D et al 2008 The potential and challenges of nanopore
sequencing Nat. Biotechnol. 26 1146–53

[3] Henrickson S E, Misakian M, Robertson B and Kasianowicz J J
2000 Driven DNA transport into an asymmetric nanometer-
scale pore Phys. Rev. Lett. 85 3057–60

[4] Kasianowicz J J, Brandin E, Branton D and Deamer D W 1996
Characterization of individual polynucleotide molecules
using a membrane channel Proc. Natl Acad. Sci. 93 13770–3

[5] Pradeep W, Hu R, Prasad B, Yamazaki H, Cressiot B, Zhao Q,
Whitford P C and Wanunu M 2017 Nanopore-based mea-
surements of protein size, "uctuations, and conformational
changes ACS Nano 11 5706–16

7

https://orcid.org/0000-0002-0376-1708
https://orcid.org/0000-0002-0376-1708
https://orcid.org/0000-0002-0376-1708
https://orcid.org/0000-0002-6976-0281
https://orcid.org/0000-0002-6976-0281
https://doi.org/10.1016/j.plrev.2012.05.010
https://doi.org/10.1016/j.plrev.2012.05.010
https://doi.org/10.1016/j.plrev.2012.05.010
https://doi.org/10.1016/j.plrev.2012.05.010
https://doi.org/10.1038/nbt.1495
https://doi.org/10.1038/nbt.1495
https://doi.org/10.1038/nbt.1495
https://doi.org/10.1038/nbt.1495
https://doi.org/10.1103/physrevlett.85.3057
https://doi.org/10.1103/physrevlett.85.3057
https://doi.org/10.1103/physrevlett.85.3057
https://doi.org/10.1103/physrevlett.85.3057
https://doi.org/10.1073/pnas.93.24.13770
https://doi.org/10.1073/pnas.93.24.13770
https://doi.org/10.1073/pnas.93.24.13770
https://doi.org/10.1073/pnas.93.24.13770
https://doi.org/10.1021/acsnano.7b01212
https://doi.org/10.1021/acsnano.7b01212
https://doi.org/10.1021/acsnano.7b01212
https://doi.org/10.1021/acsnano.7b01212


J. Phys.: Condens. Matter 33 (2021) 104005 R Waszkiewicz and M Lisicki

[6] Amit M, Nivon L and Branton D 2001 Voltage-driven DNA
translocations through a nanopore Phys. Rev. Lett. 86 3435–8

[7] Forrey C and Muthukumar M 2007 Langevin dynamics simu-
lations of ds-DNA translocation through synthetic nanopores
J. Chem. Phys. 127 015102

[8] Ye A and Qian S 2011 Electrokinetic particle translocation
through a nanopore Phys. Chem. Chem. Phys. 13 4060–71

[9] Muthukumar M 2010 Theory of capture rate in polymer translo-
cation J. Chem. Phys. 132 195101

[10] Hatlo M M, Panja D and van Roij R 2011 Translocation of DNA
molecules through nanopores with salt gradients: the role of
osmotic "ow Phys. Rev. Lett. 107 068101

[11] Jeon B J and Muthukumar M 2014 Polymer capture by α-
hemolysin pore upon salt concentration gradient J. Chem.
Phys. 140 015101

[12] Szymczak P 2014 Translocation of knotted proteins through a
pore Eur. Phys. J. Spec. Top. 223 1805–12

[13] Grosberg A Y and Rabin Y 2010 DNA capture into a nanopore:
interplay of diffusion and electrohydrodynamics J. Chem.
Phys. 133 165102

[14] Qiao L, Ignacio M and Slater G W 2019 Voltage-driven translo-
cation: de!ning a capture radius J. Chem. Phys. 151 244902

[15] Qiao L and Slater G W 2020 Capture of rod-like molecules by a
nanopore: de!ning an ‘orientational capture radius’ J. Chem.
Phys. 152 144902

[16] Russel W B, Hinch E J, Leal L G and Tieffenbruck G 1977 Rods
falling near a vertical wall J. Fluid Mech. 83 273

[17] Mitchell W H and Spagnolie S E 2015 Sedimentation of
spheroidal bodies near walls in viscous "uids: glancing,
reversing, tumbling and sliding J. Fluid Mech. 772 600–29

[18] Happel J and Brenner H 1991 Low Reynolds Numbers Hydro-
dynamics (Dordrecht: Kluwer)

[19] Dogic Z and Fraden S 2001 Development of model colloidal
liquid crystals and the kinetics of the isotropic–smectic tran-
sition Phil. Trans. R. Soc. A 359 997–1015

[20] McMullen A, de Haan H W, Tang J X and Stein D 2014 Stiff !l-
amentous virus translocations through solid-state nanopores
Nat. Commun. 5 4171

[21] de Haan H W and Slater G W 2013 Translocation of ‘rod-coil’
polymers: probing the structure of single molecules within
nanopores Phys. Rev. Lett. 110 048101

[22] Sharma R K, Agrawal I, Liang D, Doyle P S and Garaj S 2019
Complex DNA knots detected with a nanopore sensor Nat.
Commun. 10 4473

[23] Kim S and Karrila S J 1991 Microhydrodynamics: Prin-
ciples and Selected Applications (Boston: Butterworth-
Heinemann)
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