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I. FORMULATION OF THE PROBLEM

We present several ways of solving the following prob-
lem: a force F is applied to a point particle immersed in
space filled with viscous liquid. We are looking for the
fundamental solution (stokeslet) in case of incompress-
ible flow. The full system of flow equations in the low
Reynolds number regime (Re� 1) has the form

−∇p(r) + µ∇2v(r) = −Fδ(r), (1)

∇ · v = 0.

We demand that the flow field vanishes at infinity, i.e.

|v(r)| r→∞−→ 0. Then the solution is uniquely determined.
By solving this problem we mean finding the form of
velocity and pressure fields in the fluid.

II. SOLUTION À LA KIM & KARILLA

A very ’physical’ approach to this phenomenon can be
made by making use of the linearity of Stokes equations
and symmetries of the system. Here, we preform detailed
calculations according to hints from Exercise 2.9 from
the textbook [Kim & Karilla].

As the Stokes equations are linear in p and v, the pres-
sure field p(r) can be written as a scalar product of a
certain vector field P(r) and the point force F and the
velocity field v(r) can be represented by a a tensor G(r)
acting on a point force F with certain factors:

p(r) =
F ·P(r)

8πµ
, v(r) =

G(r) · F
8πµ

. (2)

Applying Einstein’s summation rule we can write these
equations using the vector components

p(r) =
PjFj
8πµ

, vi(r) =
GijFj
8πµ

.

Applying the Fourier transform (App. A.1) to Stokes
equations (1), we get

−ikp̂− µk2v̂ = −F.

Inserting the expected field form to this equation we have
for component i:

−iki
P̂j

8πµ
Fj − k2

Ĝij
8π

Fj = −Fi = −FjδKij .
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We have introduced the Kronecker delta to eliminate Fj
and therefore can write

− iki
P̂j

8πµ
− k2 Ĝij

8π
= −δKij . (3)

The incompressibility condition reads

kiGij = 0.

Multiplying the Stokes equation in the form as above
and using the incompressibility relation we eliminate the
velocity tensor part of the equation and get

P̂j
8πµ

= − ikj
k2

We can directly calculate the inverse Fourier transform
of this equation to get Pj

Pj
8πµ

= − i

(2π)3

∫
R3

dk
kj
k2
eik·r (4)

Let us now consider a function φ = 1
4πr . One can show

that its Fourier transform equals k−2. Indeed, let us
calculate the inverse transform. Choosing r to be parallel
to the x3 axis in the k-space, we can perform integration
in spherical coordinates (fig. 1)

F−1{k−2} =
1

(2π)2

∫ ∞
0

dkk2
1∫
−1

eikr cos θ

k2
d(cos θ) (5)

=
2

(2π)2r

∫ ∞
0

d(kr)
sin kr

kr
=

1

4πr
,

where we have used the (A1) integral (see App. A.2).
By taking the gradient of φ, we reproduce the Fourier
terms from eq. (4). We can therefore explicitly write
down the solution for pressure:

P(r) = −2µ∇
(1

r

)
. (6)

Now we shall use expression for P̂j to construct the ve-

locity field. We insert P̂j into eq. (3) and get a closed
expression for the G tensor

Ĝij
8π

=
δKij
k2
− kikj

k4
. (7)

Once again, the first term on the RHS is the transform
of the Green’s function for Laplace equation and after
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Figure 1: Integration in the k–space with fixed orientation of
r = r · x̂3.

inversion contributes
δkij
4πr . It remains to find the inverse

transform

F−1
{kikj
k4

}
(8)

Now we can use the symmetry argument to deduce the
form of the inverted transform. We know that in the
k-space Ĝ decreases as k−2. This condition transforms
to the real space resulting in an asymptotic decay of G
as r−1. Moreover, the expression (8) is symmetric with
respect to index switching. Therefore we deduce the form
of the inverse transform to be

F−1
{kikj
k4

}
= C1

δKij
8πr

+ C2
xixj
8πr3

The last task is to determine the values of numerical con-
stants C1, C2. Taking the trace of both sides, we get one
condition 3C1 +C2 = 2. Taking now i = j = 3 and again
fixing r = (0, 0, x3) in Cartesian coordinates, we perform
the integration in k–space.

F−1
{kikj
k4

}
=

1

(2π)3

∫
R

dk
k23
k4
eik·r = [k3 = k cos θ] =

1

(2π)2

∞∫
0

dk

1∫
−1

d(cos θ) cos2 θeikr cos θ =

1

(2π)2

∞∫
0

dk

1∫
−1

dξξ2eikrξ = (∗)

Performing integration by parts, we transfer the ξ–
integral into known definite integrals (A1,A2,A3).

(∗) =
1

(2π)2

∞∫
0

dk
[2 sin kr

kr
− 2

ikr

1∫
−1

dξξeikrξ
]

=

=
1

(2π)2

∞∫
0

dk
[2 sin kr

kr
− 4 cos kr

(kr)2
− 2

(kr)2

1∫
−1

dξ eikrξ
]

=
1

(2π)2r

∞∫
0

du
[2 sinu

u
− 4 cosu

u2
− 4 sinu

u3

]
= 0

We therefore must have C1 + C2 = 0. From these two
conditions we can deduce the constants C1 = −C2 = 1
and sum up the results writing

Gij =
δKij
r

+
rirj
r3

, or G =
1

r

(
I +

r⊗ r

r2

)
. (9)

The pressure and velocity fields can be written as:

p(r) =
F · r
4πr3

v(r) =
F

8πµr
·
(
I +

rr

r2

)
(10)

III. SOLUTION À LA ZAPRYANOV &
TABAKOVA

This method has been proposed by
[Zapryanov & Tabakova]. It follows from the prop-
erties of Fourier transform and fundamental solutions of
Laplace and biharmonic equations. In fact, one does not
have to calculate any integral explicitly in this approach.

We start by taking the divergence of eq. (1), obtaining
a Poisson equation for pressure

∇2p(r) = ∇(Fδ(r)).

We can now apply Fourier transform to the above equa-
tion, which gives

k2p̂(k) = −ik · F =⇒ p̂ = −ik · F
k2

We can now apply the Fourier transform to Stokes equa-
tions and use the obtained expression to eliminate pres-
sure from the equations and get a closed expression for
the velocity field:

ik
(k · F
k2

)
+ µk2v̂(k) = F.

We find the expression for the velocity field in k-space:

v̂(k) =
1

µk2

[
F− k

(k · F
k2

)]
. (11)

Using the definition of the inverse Fourier transform, we
can easily write down the expressions for pressure and
velocity fields

v(r) =
1

8µπ3

∫
R3

dk
eik·r

k2

[
F− k

(k · F
k2

)]
(12)

p(r) =
i

8π3

∫
R3

dk
eik·r

k2
(k · F). (13)

We can proceed to solution of these equations. Basing on
the knowledge of fundamental solutions of the Laplace
equation (see App. A.1), we find useful expressions re-
lating derivatives of 1/r with their Fourier transforms.
We now note that by taking a scalar product of eq. (A6)
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with F, we get an integral which describes the pressure
field. Inserting it into the relation (13), we get

p(r) = −F · ∇
( 1

4πr

)
=

F · r
4πr3

(14)

In a similar manner, taking the scalar product of eq. (A7)
with F, we reproduce the integral present in the first part
of the expression for velocity field (12), so that

v(r) =
F

4πµr
− 1

8µπ3

∫
R3

dk
eik·r

k2
k
(k · F
k2

)
(15)

Taking a scalar product of eq. (A10) with F, we get the
second term of the RHS of velocity field equation. We
have used the identity kk ·F = (F · k)k. These relations
imply

v(r) =
F

4πµr
− F

µ
· ∇ ⊗∇

( r

8π

)
(16)

Due to the fact that ∇r = r
r and ∇ ⊗ r = I - the unit

tensor, we can write

1

8π
∇⊗ (∇r)) =

1

8π
∇⊗

(r
r

)
= − 1

8π

rr

r3
+

I
8πr

,

where we have used the Leibniz chain rule for calculation
of ∇⊗ r

r . We can always write a vector in a form F = IF,
so that in the end we can write down the expression for
velocity field

v(r) =
F

8πµr
·
(
I +

rr

r2

)
(17)

IV. SOLUTION À LA DHONT

A very physical approach, basing on the linearity of
Stokes equations has been presented by [Dhont]. In this
approach we clearly see the Green’s functions role in the
solution of the problem of external force density in the
fluid and illustration of the superposition principle.

Consider an external force F acting on a fluid only in
a single point r′, so that F(r) = Fδ(r − r′). Since the
Stokes equations (1) are linear, the fluid flow velocity in
a point r somewhere in the fluid is proportional to the
force and has to depend on the direction of the force
and the distance to the point where the force is exerted.
Moreover, this relation has to be a linear transformation
(which can be represented as a matrix). Hence, in a
natural way, we can write

v(r) = T(r− r′) · F. (18)

Similarly, pressure is linearly related to the force by a
vector quantity

p(r) = g(r− r′) · F. (19)

The usual terminology is the Oseen tensor for T and the
pressure vector for g.

Consider now an external force which is continuously
distributed over the entire fluid (i.e. there is a nonzero
external force density f(r′) in the fluid). The linearity of
Stokes equations implies the superposition principle - the
fluid velocity in a certain point r is a vector sum of the
fluid velocity increments stemming from the forces acting
in every point of the fluid. We can therefore express this
sum as an integral

v(r) =

∫
dr′T(r− r′) · f(r′).

For pressure the same arguments hold and we can write

p(r) =

∫
dr′g(r− r′) · f(r′).

In this structure one immediately sees the role of Green’s
functions for linear problems. Once the force field is
specified, knowing the Green’s functions for a particu-
lar geometry, the pressure and velocity are easily found
by integration. Deriving the Green’s functions needs an
’inversed’ reasoning. It involves solving the Stokes equa-
tions with a specific force field, namely a point force (con-
centrated in one point, what is represented by a Dirac
delta function). Let us substitute eq. (18) and (19) into
the Stokes equations . We get∫

dr′[∇ · T(r− r′)] · f(r′),= 0 (20)∫
dr′[∇g(r− r′)− µ∇2 · T(r− r′)− Iδ(r− r′)] · f(r′) = 0,

where we have used an identity F =
∫

dr′f(r′)δ(r − r′).
Since the external force density is arbitrary, the expres-
sions in brackets must vanish and hence we get the equa-
tions for the Green’s functions

∇ · T(r− r′) = 0, (21)

∇g(r− r′)− µ∇2 · T(r− r′)− Iδ(r− r′) = 0. (22)

In this equation we have now tensor quantities and we
shall in fact write ∇⊗ g instead of ∇g. An usual opera-
tion is now to take the divergence of the second equation
and use the incompressibility condition to get a Poisson
equation fo the pressure vector:

∇2g = −∇ · Iδ(r) = δ(r)

We can now recall the fundamental solution of the
Laplace equation (A4), which yields the form of g

g = −∇
( 1

4πr

)
+ G(r),

as we can alway add a vector G(r) which satisfies the
laplace equation, i.e. ∇2G = 0. One can show that if we
demand an asymptotic decay so that G → 0 as r → ∞,
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this implies G ≡ 0 (see App. A.4). Hence, we find the
pressure vector

g = −∇
( 1

4πr

)
=

1

4π

r

r3
(23)

Now we can substitute (23) to eq. (22). Noting that
∇ ⊗ r

r3 = I
r3 −

r⊗r
r5 and eliminating the Dirac delta by

substituting the fundamental solution of Laplace equa-
tion, one gets

∇2
[ 1

4π

I
r
− µT(r)

]
=

1

4π

[
3
rr

r5
− I
r3

]
(24)

We now choose, basing on the RHS form of the above
equation, the appropriate form of the LHS to be

∇2
[ 1

4π

I
r
− µT(r)

]
= α0

1

rn
I− α1

1

rm
rr

r2
, (25)

where α0, α1, m and n are constants. These con-
stants can be chosen in such a way that this Ansatz pro-
vides a solution for the Oseen tensor decaying at inifinity
(T(r) → 0 as t → ∞) and after some algebra we arrive
at the known result

T(r) =
1

8πµr
·
(
I +

rr

r2

)
. (26)

V. SOLUTION À LA POZRIKIDIS

The fourth method in our review was proposed by
[Pozrikidis]. In this case we consider Stokes equations
with arbitrary force F, concentrated on one point. Be-
cause pressure is a harmonic function, and replacing the
delta function on the RHS of eq. (1) basing on the fun-
damental solution of Laplace equation, we can set (to
balance the dimensions of pressure)

p = − 1

4π
g · ∇

(1

r

)
.

This can be obtained by taking the divergence of Stokes
equation and then replacing the delta function with

−∇( 1
4πr . Substituting the delta function and the pres-

sure function to the Stokes equations, we get

µ∇2v = − 1

4π
g(∇∇− I∇2)

(1

r

)
. (27)

We can introduce a scalar function H and express the
velocity field in the form

v =
1

µ
g · (∇∇− I∇2)H. (28)

One can prove that such an operation can always be pre-
formed and H can be found. By replacing v in eq. (27),
we arrive at a closed expression for H (if we discard an
arbitrary constant g):

(∇∇− I∇2)

(
∇2H +

1

4πr

)
= 0.

This equality can be surely satisfied by any solution of
Poisson’s equation ∇2H = − 1

4πr . We therefore find (by
applying the Laplace operator to this condition) that H
satisfies the biharmonic equation ∇4H = δ(r). We know
the form of the fundamental solution ((see App. A.3) so
that

H = − r

8π

Substituting this result into eq. (28), we arrive (after
some algebra, the same as in eq. (16) at our result

vi(r) =
1

8πµ
Sijgj ,

where the Oseen tensor Sij is defined as follows:

Sij(r) =
δij
r

+
xixj
r3
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Appendix A: MATHEMATICAL ADDENDUM

1. Fourier transform

We define the Fourier transform pair in the following
manner

F{f} = f̂(k) =

∫
R3

drf(r)e−ik·r,

F−1{f} = f(r) =
1

(2π)3

∫
R3

dkf̂(k)eik·r.
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2. Useful integrals

We have the following integrals

∞∫
0

dk
sin k

k
=

π

2
(A1)

∞∫
0

dk
1− cos k

k2
=

π

2
(A2)

∞∫
0

dk
k − sin k

k3
=

π

4
(A3)

The second and third integral actually can be obtained
from integration by parts of the first integral.

3. Fundamental solutions

We introduce fundamental solutions for Laplace and
biharmonic equations. These are such functions ψ and φ
that satisfy the corresponding equations with Dirac delta
functions:

∇2φ(r) = −δ(r)

∇4ψ(r) = −δ(r)

It appears that in 3D the fundamental solutions have the
form

φ =
1

4πr
; ψ =

r

8π
(A4)

Finding these solutions involves inverting Fourier trans-
forms of the corresponding equations and involves inte-
gration in complex plane.

By differentiating the fundamental solution of Laplace
equation we get the corresponding terms in Fourier space

∇2
( 1

4πr

)
= −δ(r) = − 1

(2π)3

∫
R3

dkeik·r, (A5)

∇
( 1

4πr

)
=

i

(2π)3

∫
R3

dk
k

k2
eik·r, (A6)( 1

4πr

)
=

1

(2π)3

∫
R3

dk
1

k2
eik·r. (A7)

Analogical operations on fundamental solutions of bihar-

monic equation lead to

∇4
( r

8π

)
= −δ(r) = − 1

(2π)3

∫
R3

dkeik·r, (A8)( r

8π

)
= − 1

(2π)3

∫
R3

dk
1

k4
eik·r, (A9)

∇∇
( r

8π

)
=

1

(2π)3

∫
R3

dk
kk

k4
eik·r. (A10)

The last term contains tensor product of two vectors:
∇∇( r

8π ) ≡ ∇ ⊗ [∇( r
8π )] and kk ≡ k ⊗ k. This notation

defines a second–rank tensor which can be represented as
a matrix. In terms of matrix components one can write
(kk)ij = kikj . We have created a tensor on the LHS of
the last equation so that the character of the RHS is the
same in the k–space.

4. Laplace equation solutions’ properties

We encounter the problem of showing that a function
G(r) satisfying the following conditions:

∇2f(r) = 0 on R3,

f(r)→ 0 for r →∞,

is identically equal to 0.
For this, we use the Green’s integral formula for two

scalar fields φ, ψ:∫
V

dr(φ∇2ψ) =

∫
∂V

φ(n · (∇ψ)dS −
∫
V

dr(ψ∇2φ)

Taking ψ = f(r′) and φ = 1
|r−r′| , the boundary integral

vanishes as r →∞ and we get∫
dr′f(r′)∇′2 1

|r− r′|
= −

∫
dr′

1

|r− r′|
∇′2f(r′) = 0,

as f satisfies the Laplace equation. But we know the
fundamental solution of the Laplace equation, so that
∇′2 1

|r−r′| = −4πδ(r − r′). From the above equation we

deduce

4πf(r) = 0 =⇒ f(r) ≡ 0.

We have proved that a harmonic function decreasing to
0 at infinity is identically 0 everywhere.
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