
The most exciting roller coaster

Team number 404

Problem selected: B

Abstract: In this paper we discuss the design of a roller coaster. Firstly we
define what ’exciting roller coaster’ means. Secondly, we will discuss safety of
people being subjected to enormous accelerations, which occur during ride.
Then we present our model of the dynamics of the car during roller coaster
ride. The paper explains used assumptions and our reasoning behind them.

In order to simulate car moving along the tracks, and to calculate it’s
acceleration, velocity, rotation in every single point, we’ve made a program
using ROOT - an open source scientific software made by CERN. We will pro-
vide detailed explanation of how our simulation works, as well as present all
assumptions we’ve made. Later we will describe elements used to construct
the track, talking about functions we used to design them. We will empha-
size usage of clothoid functions, also known as Euler’s spiral, explaining why
we’ve used it in elements of a roller coaster.

We will then present the result of our program - a track that is safe as
well as exciting. In the end we will discuss what further work and research
could be done to improve roller coasters even more.

1

Team number 404

1 Introduction

Although most of people associate the roller coasters with pure fun, there is
also a more complicated side of the subject. The dynamics of a roller coaster
car and the architecture of the track pose troubles in front of many engineers.
Our paper is an attempt to design and present a safe and, most importantly,
exciting roller coaster ride. Our team created a model of dynamics of a roller
coaster ride and used it to simulate the parameters of the motion of the the
car.

2 Measuring excitement, enjoyment and safe-

ness of a ride

2.1 Positive factors

When it comes to designing most exciting roller coaster, one has to ask: what
excitement is, and how to measure it?

Four main sources of enjoyment while riding roller coaster were consid-
ered:
- speed
- acceleration
- duration of the ride
- diversity of the track.

2.2 Negative factors

On the other hand there are some major restrictions on the shape of the track
to assure safety. The one most important task is controlling the acceleration.

In the following paragraphs we will refer to the acceleration in units of g
with 1g being equivalent of a standard gravity.

What kind of acceleration human body can withstand depends on factors
such as rate of its changes, time of exposure and even its direction[1]. So, if
g-force is applied parallel to the spine, directed downwards, 5g is a maximum
a human can take without fainting, but in practice in might be lower. G-
force applied upwards presents much greater risk, since all the fluids flow into
upper parts of the body, including brain. The limit for this kind of force is
1g.

2

Team number 404

When it comes to horizontal forces, human body has much higher toler-
ance. During experiments, it was shown that a person can withstand up to
20g for the duration of 10s, or up to 10g for 1 minute. This means that cars
accelerating along the track present no danger to people inside.

Negative impact on the enjoyment have been determined to be caused also
by the forces perpendicular to the velocity which happen to not be countered
by the the force of reaction of the track. It is of great importance to minimize
that effect while designing a roller coaster track.

3 Model of the physics of the roller coaster

used

3.1 Assumption made

The model used in the paper is based on following assumptions:

Firstly, the cars are assumed to have no moment of inertia, therefore no
rotational energy is taken into account. We can make such assumption due
to rotational velocity being low.

The main source of energy losses is rolling resistance. We use basic model
of rolling resistance, given by the equation[2]:

Frol = CrolN (1)

Where Crol is a rolling resistance coefficient dependant on the materials
witch collide and the size of used wheels. N is ground reaction force.

Another source of energy loss is air resistance. The used model of air
resistance was a simple force proportional to the square of velocity.

Fair = −κv2 (2)

Where v stands for velocity and κ is a coefficient of air resistance depen-
dant on the aerodynamics of the moving car.

Our model also assumed that effects caused by geometry of cars are neg-
ligible. It treated cars as points.

We also neglected differences of normal acceleration of different cars
caused by their different velocities at the same point in space. (full ac-
celeration normal to track presented on graphs and used for computations of
friction was calculated for first car)

3

Team number 404

3.2 Dynamics of the motion

In our paper, the movement of a car is deterministic, dependant only of the
beginning conditions (starting height and velocity) and shape of the track.
There are only four acting forces: gravitational, centripetal force given by
the reactant force of the track and two resistance forces described above.
The friction forces are not conservative, therefore the principal of energy
conservation of the system can be written as:

mg∆h1 +mg∆h2 + = ∆s ∗ (an + gn) +
v21 ·M

2
− v20 ·M

2
− v2α∆s (3)

Where ∆h1, ∆h2...are changes of height for cars, m is weigh of one car, M
is weight of all cars, an is normal component of acceleration, gn is normal
component of gravity acceleration, v0 is velocity of roller coaster on step
before, v1 is velocity of roller coaster on next step.

4 Simulating roller coaster

We’ve used ROOT made by CERN to simulate car travelling on track. We’ve
created tracks using various functions, which are described later on, in sec-
tion 5. Our program can be used to calculate dynamics roller coaster for
any track. In order to work it needs some parameters of roller coaster like
number of cars, distance between center of mass of cars, friction coefficient
and aerodynamics friction coefficient.

We numerically calculated step by step velocity using principal of energy
conservation.

mg∆h1 +mg∆h2 + = ∆s ∗ (an + gn) +
v21 ·M

2
− v20 ·M

2
− v2α∆s (4)

Where ∆h1,∆h2...are changes of height for cars, m is weigh of one car,
M is weight of all cars, an is normal component of acceleration, gn is normal
component of gravity acceleration, v0 is velocity of roller coaster on step
before, v1 is velocity of roller coaster on next step, ∆s was length of piece
of curve. We have decided to use this way of computing velocity because it
allowed us to use different parametrization on different parts of curve. Only
additional assumption needed was that steps are small for each fragment of
curve. When we had values of velocity at all ∆s we could calculate ∆t (time
needed to travel ∆s).

4

Team number 404

Value of an was calculated by computing radius of curvature. It was made
by calculating area of triangle defined by three points in space using Heron’s
formula. (position of first car one step before, current position and position
at the next step). Then comparing area of this triangle with another formula:

S =
abc

4R
(5)

We calculated radius of curvature at current point. Then using this ra-
dius and velocity using formula for centrifugal acceleration it was possible to
calculate value of normal acceleration to the curve.

In simulation we also calculate vector of reaction force of track. It is
calculated in few steps. Firstly, vector of normal acceleration is calculated.
It is done by numerically finding vector which is normal to the curve and
lays in plain of triangle described above. Then this vector is normalized
and multiplied by value of an. Then we find normal to the curve part of
gravitational acceleration and these two are added. The result is vector of
reaction force divided by mass of roller coaster.

4.1 Track segments

We represented one segment of a track by parametrized function: X(τ),
Y (τ), Z(τ). Each segment was a different, continuous and differentiable
function. We were choosing functions on different segments in such a way
that transitions between them were also continuous and differentiable. We
were testing our assumptions by running simulation and checking whether
velocity and acceleration are continuous functions.

Each function was only evaluated for a certain interval of τ , effectively
making them finite curves.

We used our algorithm to move and rotate each segment, so they fit
together. We ensured that adjacent curves have one point in common, so
our calculations did not loose accuracy.

5 Track elements

5.1 Loop

In this subsection we describe possible loops’ shapes and we select the ones
that provide exciting, yet safe experience.

5

Team number 404

Figure 1: Circular loop. B. means car’s position at the bottom of a loop,
while T. - being at the top

5.1.1 Circular loop

The most obvious shape of a loop is a circle. However, this shape comes with
few problems, that disqualify it from being used.

Figure 1 shows a simple diagram of a circular loop. Let vb, vt be car’s
velocity at the bottom and top of the loop, and ab, at - its centripetal accel-
eration. Thus:

ab =
v2b
R

(6)

at =
v2t
R

(7)

Then, from principle of energy conservation (friction and air resistance
are neglected, since we only want to get the general idea about acceleration
values)

v2b
2

=
v2t
2

+ gh (8)

v2b = v2t + 4gR (9)

Then, from 6, 7 and 9:

ab = at + 4g (10)

Since the lowest possible centripetal acceleration at the top of a loop is g, if
we want the force of gravity to act as centripetal force, not allowing the car
to fall down, then the lowest possible centripetal acceleration at the bottom
is 5g. Which is something rather to be avoided, because it might pose a

6

Team number 404

Figure 2: Euler’s spiral

danger. However, if we attach the car to the tracks, making it unable to fall
off, then the car can go as slowly as we want, even barely making it through
the loop’s top point. In this kind of scenario, the centripetal acceleration
at the bottom is around 4g, while almost 0 at the top. Although, hanging
upside - down is unpleasant, and if done for a long time - might be dangerous.

Secondly, when a car approaches circular loop, it has no centripetal ac-
celeration (since it’s riding on a plain track), then it suddenly is subjected
to 4 or 5g. It is not pleasant feeling at all, we believe.

Hence, vertical circular loops should be avoided.

5.1.2 Clothoid loop

The solution of problems stated above is to use a loop that gradually de-
creases its radius, allowing passengers for a more gentle onset of additional
acceleration[3]. Such shape can be obtained by using Euler’s spiral, given by
equations:

y(t) =

∫ t

0

sin(
x2

2
)dx (11)

x(t) =

∫ t

0

cos(
x2

2
)dx (12)

This spiral is presented on figure 2. When we use only part of it, with
t varying from 0 to ... (those numbers were found using ROOT numerical
methods to find maximum of a function), then combine it with other spiral’s
part, mirrored and shifted, we achieve shape of a loop (figure 3.

7

Team number 404

Figure 3: Loop made from two parts of Euler’s spiral

Although, we can use other equations than 11 and 12 to obtain loop
shape, for example y(t) =

∫ t

0
sin(x

4

4
). It is hard to say which one is better,

because the acceleration along the loop varies, when different initial velocity
is concerned. So, we’ve decided that in order to see which from those two and
many other shapes fits our needs the best, computer simulation is needed.

5.2 Turn

To ensure that there are no rapid onsets of acceleration felt by the passengers,
turns are designed using clothoid function. It also allows the track to rotate
gently in order to compensate centrifugal force. We were using the first
clothoid until it was rotated by 45o, and then we were adding mirrored one
to complete a full 90o turn.

5.3 Hill

Hills we’ve made were also designed using Euler’s spiral, allowing for contin-
uous change of normal (perpendicular to velocity) acceleration.

6 Results

The final results were calculated via simulation done by the program we have
written. The track consists of 8 segments, which are as follows:

1. Short downhill ride (to gain speed)
2. First loop
3. A turnaround

8

Team number 404

4. Second loop
5. Double loop
6. Second short downhill ride
7. A second turnaround
8. The end (or the beginning) made out of line followed by an elevator

(to ”charge” the car with the potential energy)

All used segments were constructed out of clothoid functions connected
in a proper way to assure continuity of the change of acceleration. Simulated
ride of one car provided following results: 33.08s on a track of length 520.34m.
Used coefficients were as follows: 0.5 - air resistance coefficient, 0.0004 -
friction coefficient.

Time of a ride for all coefficients equal to zero: 30.66s.

Time of a ride for only non-zero coefficient being friction of 0.0004: 30.83s.

Time of a ride for only non-zero coefficient being air resistance of 0.5:
33.12s.

The non-zero coefficients were approximated for a car of shape of cuboid
and track made of steel with wheels of radius 0.1m. The results show that
for used approximations air resistance was a more dominant factor.

Figures 4 and 5 show our roller coaster in 3 dimensions. Figure 6 shows
projection of the same track along y axis. Figure 7 shows velocity, figure 8
shows acceleration calculated for α = 0.5 (air resistance coefficient), and
β = 0.0004 (friction coefficient)

References

[1] Wikipedia. g-force.

[2] Wikipedia. Rolling resistance.

[3] Nick Berry. Why roller coaster loops are never circular. Gizmodo.com,
2014.

9

Team number 404

Figure 4: 3D model of the roller coaster

10

Team number 404

Figure 5: 3D model of the roller coaster from a different perspective

11

Team number 404

Figure 6: Projection of the roller coaster along y axis

12

Team number 404

Figure 7: Velocity-time graph of the roller coaster ride for the first set of
coefficients

13

Team number 404

Figure 8: Acceleration-time graph of the roller coaster ride for the first set
of coefficients

14

Team number 404

Our program

{

int k = 0;

double M = 1500.; // mass of roller coaster

double g = 9.81; // acceleration of gravity

const int N = 1e3; // number of iterations

// double tauE = 100.; // ending curve parameter

double alpha = 0.5; // aerodinamic friction coefficient

double beta = 0.0005;

// double Numberiter=10e5;

const int ilev = 0; // number of cars

double dist = 0.5; // distance between cars

double tau0 = 0;

double x0 = tabtor1[k].X->Eval(0);

double y0_ = tabtor1[k].Y->Eval(0);

double z0 = tabtor1[k].Z->Eval(0);

double s0 = 0;

double v0 = 20;

double t0 = 0;

double an0 = 0; // to do poprawki w zalenoci od toru

double anwithg0[3] = {0, 0, g};

struct dataline {

double tau;

double x;

double y;

double z;

double s;

double v;

double t;

double at;

double an;

double anwithg1;

double anwithg2;

double anwithg3;

};

15

Team number 404

struct dataline Tab[N]; // our data in function of the

↪→ parameter tau

struct dataline d0 {

tau0, x0, y0_, z0, s0, v0, t0, an0, 0, 0, g

};

Tab[0] = d0;

double X[N];

double Y[N];

double Z[N];

double V[N];

double TAU[N];

double T[N];

double AT[N];

double AN[N];

double S[N];

double ANWITHG[N][3];

double ANGT[N];

T[0] = 0;

double tau = tabtor1[0].taub;

long double sigma_tau = 0;

for (int i = 0; i < Iranges; i++) {

sigma_tau += tabtor1[i].taue - tabtor1[i].taub;

}

k = 0;

int i = 0;

double delta_x = 0, delta_y = 0, delta_z = 0;

double hx = 0; // tabtor1[k].X->Eval(tau);

double hy = 0; // tabtor1[k].Y->Eval(tau);

double hz = 0; // tabtor1[k].Z->Eval(tau);

double deg = tabtor1[0].deg;

while (k < Iranges) {

16

Team number 404

if (k < Iranges && tau > tabtor1[k].taue) {

k++;

if (k == Iranges) {

n = i + 1;

break;

}

tau = tabtor1[k].taub;

hx = tabtor1[k].X->Eval(tau);

hy = tabtor1[k].Y->Eval(tau);

hz = tabtor1[k].Z->Eval(tau);

deg = tabtor1[k].deg;

double hx2 = hx;

hx = hx * cos(deg) - hy * sin(deg);

hy = hx2 * sin(deg) + hy * cos(deg);

cout << cos(deg);

delta_x = X[i] - hx;

delta_y = Y[i] - hy;

delta_z = Z[i] - hz;

continue;

}

double tau1 = tau;

double x1 = tabtor1[k].X->Eval(tau);

double y1 = tabtor1[k].Y->Eval(tau);

double z1 = tabtor1[k].Z->Eval(tau);

double hx2 = x1;

x1 = x1 * cos(deg) - y1 * sin(deg);

y1 = hx2 * sin(deg) + y1 * cos(deg);

x1 += delta_x;

y1 += delta_y;

z1 += delta_z;

tau += sigma_tau / N;

17

Team number 404

i++;

if (i >= N)

break;

double norm = sqrt((Tab[i - 1].x - x1) * (Tab[i - 1].x - x1

↪→) +

(Tab[i - 1].y - y1) * (Tab[i - 1].y - y1)

↪→ +

(Tab[i - 1].z - z1) * (Tab[i - 1].z - z1))

↪→ ;

if (norm == 0)

norm = 1;

double s1 = Tab[i - 1].s + norm;

double v1;

int nzcar[ilev];

for (int l = 0; l < ilev; l++) {

nzcar[l] = 0;

}

if (s1 > ilev * dist) {

for (int c = 1; c < ilev + 1; c++) {

int j = i - 1;

nzcar[c - 1] = j;

// cout<<s1-Tab[j].s<<endl;

while (s1 - Tab[nzcar[c - 1]].s < c * dist) {

j--;

nzcar[c - 1] = j;

}

}

}

double x0 = Tab[i - 1].x;

double y0 = Tab[i - 1].y;

double z0 = Tab[i - 1].z;

double anwithg1[3];

double x2 = 0;

double y2 = 0;

18

Team number 404

double z2 = 0;

if (i + 1 < N) {

x2 = tabtor1[k].X->Eval((i + 1) * sigma_tau / N);

y2 = tabtor1[k].Y->Eval((i + 1) * sigma_tau / N);

z2 = tabtor1[k].Z->Eval((i + 1) * sigma_tau / N);

}

double q1 = sqrt((x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 -

↪→ y2) +

(z1 - z2) * (z1 - z2));

double q2 = sqrt((x2 - x0) * (x2 - x0) + (y2 - y0) * (y2 -

↪→ y0) +

(z2 - z0) * (z2 - z0));

double q3 = sqrt((x1 - x0) * (x1 - x0) + (y1 - y0) * (y1 -

↪→ y0) +

(z1 - z0) * (z1 - z0));

double p = (q1 + q2 + q3) / 2;

double P = sqrt(p * (p - q1) * (p - q2) * (p - q3));

double R = 0;

double an1;

if (P == 0) {

an1 = 0;

}

else {

R = q1 * q2 * q3 / (4 * P);

an1 = Tab[i - 1].v * Tab[i - 1].v / R;

}

double b = 10;

double a = 0;

if (((x1 - x0) * (x2 - x0) + (y1 - y0) * (y2 - y0) +

(z1 - z0) * (z2 - z0)) != 0)

a = -b *

((x2 - x1) * (x2 - x0) + (y2 - y1) * (y2 - y0) +

(z2 - z1) * (z2 - z0)) /

((x1 - x0) * (x2 - x0) + (y1 - y0) * (y2 - y0) +

19

Team number 404

(z1 - z0) * (z2 - z0));

double anvector[3] = {a * (x1 - x0) + b * (x2 - x1),

a * (y1 - y0) + b * (y2 - y1),

a * (z1 - z0) + b * (z2 - z1)};

double normalization =

sqrt(anvector[0] * anvector[0] + anvector[1] * anvector

↪→ [1] +

anvector[2] * anvector[2]);

double gvectortangent[3] = {g * (z1 - z0) * (x1 - x0) / (

↪→ norm * norm),

g * (z1 - z0) * (y1 - y0) / (norm

↪→ * norm),

g * (z1 - z0) * (z1 - z0) / (norm

↪→ * norm)};

double gvectornormal[3] = {0 - gvectortangent[0], 0 -

↪→ gvectortangent[1],

g - gvectortangent[2]};

if (normalization != 0) {

anvector[0] = an1 * anvector[0] / normalization +

↪→ gvectornormal[0];

anvector[1] = an1 * anvector[1] / normalization +

↪→ gvectornormal[1];

anvector[2] = (an1 * anvector[2] / normalization +

↪→ gvectornormal[2]);

} else {

anvector[0] = gvectornormal[0];

anvector[1] = gvectornormal[1];

anvector[2] = gvectornormal[2];

}

double atangent =

sqrt(anvector[0] * anvector[0] + anvector[1] * anvector

↪→ [1] +

anvector[2] * anvector[2]);

// cout<<atangent<<" "<<gvectornormal[2]<<endl;

double v1square = 0;

20

Team number 404

if (s1 < ilev * dist) {

v1 = sqrt(Tab[i - 1].v * Tab[i - 1].v + g * 2 * (Tab[i -

↪→ 1].z - z1) -

2 * Tab[i - 1].v * Tab[i - 1].v * alpha * norm /

↪→ M -

2 * fabs(atangent * beta * norm));

}

else {

double m = M / (ilev + 1);

v1square =

(g * 2 * m * (Tab[i - 1].z - z1) + M * Tab[i - 1].v *

↪→ Tab[i - 1].v -

2 * Tab[i - 1].v * Tab[i - 1].v * alpha * norm -

2 * fabs(atangent * M * beta * norm)) /

M;

// cout<<i<<" "<<Tab[i-1].v<<" "<<v1square<<"

// "<<Tab[i-1].v*alpha*norm-2*fabs(atangent*M*beta*norm)

↪→ <<"\n";

for (int c = 1; c < ilev + 1; c++) {

v1square +=

g * 2 * m * (Tab[nzcar[c - 1]].z - Tab[nzcar[c - 1]

↪→ + 1].z) / M;

}

v1 = sqrt(v1square);

}

double t1 = Tab[i - 1].t + norm / v1;

struct dataline d1 = {tau1, x1, y1, z1, s1, v1,

t1, an1, anvector[0], anvector[1],

↪→ anvector[2]};

Tab[i] = d1;

V[i] = v1;

TAU[i] = tau1;

T[i] = t1;

21

Team number 404

AN[i] = an1;

S[i] = s1;

X[i] = x1;

Y[i] = y1;

Z[i] = z1;

ANWITHG[i][0] = anvector[0];

ANWITHG[i][1] = anvector[1];

ANWITHG[i][2] = anvector[2];

ANGT[i] =

sqrt(ANWITHG[i][0] * ANWITHG[i][0] + ANWITHG[i][1] *

↪→ ANWITHG[i][1] +

ANWITHG[i][2] * ANWITHG[i][2]);

}

auto c1 = new TCanvas("c1", " ", 600, 600);

c1->cd();

auto *gr = new TGraph(N, T, ANGT);

gr->SetTitle();

gr->GetXaxis()->SetTitle("Time [s]");

gr->GetYaxis()->SetTitle("Normal acceleration [m/s^2]");

gr->SetMarkerSize(0.8);

gr->SetMarkerStyle(20);

gr->Draw("AP");

c1->Print("z1.png");

auto c2 = new TCanvas("c2", " ", 600, 600);

c2->cd();

auto *gr2 = new TGraph(N, T, V);

gr2->SetTitle();

gr2->GetXaxis()->SetTitle("T");

gr2->GetYaxis()->SetTitle("V");

gr2->SetMarkerSize(0.8);

gr2->SetMarkerStyle(20);

gr2->Draw("AP");

c2->Print("z2.png");

cout << "Send " << S[N - 1] << " Time end " << T[N - 1] <<

↪→ endl;

auto c3 = new TCanvas("c3", " ", 600, 600);

22

Team number 404

c3->cd();

auto *gr3 = new TGraph(N, X, Z);

gr3->SetTitle();

gr3->GetXaxis()->SetTitle("X");

gr3->GetYaxis()->SetTitle("Z");

gr3->SetMarkerSize(0.8);

gr3->SetMarkerStyle(20);

gr3->Draw("AP");

c3->Print("z3.png");

TGraph2D graph2(N, X, Y, Z);

graph2.Draw();

cout << Tab[N - 1].t;

}

23

Team number 404

Code for track

{

struct segment {

TF1 *X; // cartesian coordinates as functions

TF1 *Y;

TF1 *Z;

double taub; // begining curve parameter

double taue; // ending curve parameter

double deg;

};

const int Iranges = 20;

segment tabtor1[Iranges];

double pi = TMath::Pi();

TF1 sine("sine", "sin(x^2)");

TF1 cosi("cosi", "cos(x^2)");

//---

//---------START ------------------------------

//---

double limit = 0.88622;

TF1 start_z1("start_z1", "-50*sine.Integral(0,x)+30", 0,

↪→ limit);

TF1 start_x1("start_x1", "12*cosi.Integral(0,x)", 0, limit);

// cout << start_z1.Eval();

TF1 start_y("start_y", "0");

segment start_first_half = {&start_x1, &start_y, &start_z1,

↪→ 0, limit, 0};

TF1 start_z2("start_z2", "50*sine.Integral(0, 0.88622- x)",

↪→ 0, limit);

TF1 start_x2("start_x2", "12*-1*cosi.Integral(0,0.88622- x)",

↪→ 0, limit);

24

Team number 404

segment start_second_half = {&start_x2, &start_y, &start_z2,

↪→ 0, limit, 0};

tabtor1[0] = start_first_half;

tabtor1[1] = start_second_half;

//---

//---------loop ------------------------------

//---

double obrot = -0.218669 / 2.55;

limit = 2.5066283;

TF1 sinee("sine", "sin(x^2/2)");

TF1 cosii("cosi", "cos(x^2/2)");

TF1 loop_z1("loop_z1", "12*sinee.Integral(0,x)", 0, limit);

TF1 loop_x1("loop_x1", "12*cosii.Integral(0,x)", 0, limit);

TF1 loop_y("loop_y", "x*5/(2.5066283+ 2.5066283)");

TF1 loop_z2("loop_z2", "12*sinee.Integral(0, 2.5066283+

↪→ 2.5066283-x)",

limit, 2 * limit);

TF1 loop_x2("loop_x2",

"-12*cosii.Integral(0, 2.5066283+ 2.5066283-x) +

↪→ "

"2*loop_x1.Eval(loop_z1.GetMaximumX())",

limit, 2 * limit);

segment segment1_loop, segment2_loop;

segment1_loop = {&loop_x1, &loop_y, &loop_z1, 0., 2.5066283,

↪→ obrot};

segment2_loop = {

&loop_x2, &loop_y, &loop_z2, 2.5066283, 2.5066283 +

↪→ 2.5066283, obrot};

// segment tabtor1[2];

tabtor1[2] = segment1_loop;

tabtor1[3] = segment2_loop;

//---

25

Team number 404

//---------turn ------------------------------

//---

limit = 1.253314137;

TF1 curve_y1("curve_y1", "-13*sine.Integral(0,x)", 0, limit);

TF1 curve_x1("curve_x1", "10*cosi.Integral(0,x)", 0, limit);

// cout << curve_z1.Eval();

TF1 curve_z("curve_z", "0");

TF1 curve_y2("curve_y2",

"13*(sine.Integral(0, 1.253314137- (x -

↪→ 1.253314137)) + 2* "

"curve_y1.Eval(1.253314137))",

limit, 2 * limit);

TF1 curve_x2("curve_x2", "30*cosi.Integral(0,1.253314137-(x -

↪→ 1.253314137))",

limit, 2 * limit);

/*TF1 curve_z2("curve_z2", "sine.Integral(0, x)", limit, 2 *

↪→ limit);

TF1 curve_x2("curve_x2",

"-cosi.Integral(0, 2*0.88622-x) + "

"curve_x1.Eval(curve_z1.GetMaximumX())",

limit, 2 * limit);*/

segment segment1_curve, segment2_curve;

segment1_curve = {&curve_x1, &curve_y1, &curve_z, 0., limit,

↪→ 0};

segment2_curve = {&curve_x2, &curve_y2, &curve_z, limit, 2 *

↪→ limit, 0};

tabtor1[4] = segment1_curve;

tabtor1[5] = segment2_curve;

//---

//---------loop2 ------------------------------

//---

obrot = 0.218669 / 2.55;

26

Team number 404

limit = 2.5066283;

TF1 loop2_z1("loop2_z1", "14*sinee.Integral(0,x)", 0, limit);

TF1 loop2_x1("loop2_x1", "-14*cosii.Integral(0,x)", 0, limit)

↪→ ;

TF1 loop2_y("loop2_y", "x*5/(2.5066283+ 2.5066283)");

TF1 loop2_z2("loop2_z2", "14*sinee.Integral(0, 2.5066283+

↪→ 2.5066283-x)",

limit, 2 * limit);

TF1 loop2_x2("loop2_x2",

"14*cosii.Integral(0, 2.5066283+ 2.5066283-x) +

↪→ "

"2*loop2_x1.Eval(loop2_z1.GetMaximumX())",

limit, 2 * limit);

segment segment1_loop2, segment2_loop2;

segment1_loop2 = {&loop2_x1, &loop2_y, &loop2_z1, 0.,

↪→ 2.5066283, obrot};

segment2_loop2 = {

&loop2_x2, &loop2_y, &loop2_z2, 2.5066283, 2.5066283 +

↪→ 2.5066283,

obrot};

tabtor1[6] = segment1_loop2;

tabtor1[7] = segment2_loop2;

//---

//--------- ------------------------------

//---

limit = 0.88622;

TF1 start2_z1("start2_z1", "-10*sine.Integral(0,x)+30", 0,

↪→ limit);

TF1 start2_x1("start2_x1", "-20*cosi.Integral(0,x)", 0, limit

↪→);

// cout << start2_z1.Eval();

TF1 start2_y("start2_y", "0");

27

Team number 404

segment start2_first_half = {&start2_x1, &start2_y, &

↪→ start2_z1, 0, limit, 0};

TF1 start2_z2("start2_z2", "10*sine.Integral(0, 0.88622- x)",

↪→ 0, limit);

TF1 start2_x2("start2_x2", "-12*-1*cosi.Integral(0,0.88622- x

↪→)", 0, limit);

segment start2_second_half = {&start2_x2, &start2_y, &

↪→ start2_z2, 0, limit, 0};

tabtor1[8] = start2_first_half;

tabtor1[9] = start2_second_half;

//---

//---------loop3 ------------------------------

//---

obrot = 0.218669 / 2.55 / 2;

limit = 2.5066283;

TF1 loop3_z1("loop3_z1", "12*sine.Integral(0,x)", 0, limit);

TF1 loop3_x1("loop3_x1", "-24*cosi.Integral(0,x)", 0, limit);

TF1 loop3_y("loop3_y", "x*5/(2.5066283+ 2.5066283)");

TF1 loop3_z2("loop3_z2", "12*sine.Integral(0, 2.5066283+

↪→ 2.5066283-x)",

limit, 2 * limit);

TF1 loop3_x2("loop3_x2",

"24*cosi.Integral(0, 2.5066283+ 2.5066283-x) + "

"2*loop3_x1.Eval(loop3_z1.GetMaximumX())",

limit, 2 * limit);

segment segment1_loop3, segment2_loop3;

segment1_loop3 = {&loop3_x1, &loop3_y, &loop3_z1, 0.,

↪→ 2.5066283, obrot};

segment2_loop3 = {

&loop3_x2, &loop3_y, &loop3_z2, 2.5066283, 2.5066283 +

↪→ 2.5066283,

28

Team number 404

obrot};

tabtor1[10] = segment1_loop3;

tabtor1[11] = segment2_loop3;

//---

//---------hill ------------------------------

//---

limit = 0.88622;

TF1 hill1_z1("hill1_z1", "30*sine.Integral(0,x)+30", 0, limit

↪→);

TF1 hill1_x1("hill1_x1", "-12*cosi.Integral(0,x)", 0, limit);

// cout << hill1_z1.Eval();

TF1 hill1_y("hill1_y", "0");

segment hill1_first_half = {&hill1_x1, &hill1_y, &hill1_z1,

↪→ 0, limit, 0};

TF1 hill1_z2("hill1_z2", "-30*sine.Integral(0, 0.88622- x)",

↪→ 0, limit);

TF1 hill1_x2("hill1_x2", "12*cosi.Integral(0,0.88622- x)", 0,

↪→ limit);

segment hill1_second_half = {&hill1_x2, &hill1_y, &hill1_z2,

↪→ 0, limit, 0};

tabtor1[12] = hill1_first_half;

tabtor1[13] = hill1_second_half;

limit = 0.88622;

TF1 hill2_z1("hill2_z1", "-40*sine.Integral(0,x)+30", 0,

↪→ limit);

TF1 hill2_x1("hill2_x1", "-12*cosi.Integral(0,x)", 0, limit);

// cout << hill2_z1.Eval();

TF1 hill2_y("hill2_y", "0");

29

Team number 404

segment hill2_first_half = {&hill2_x1, &hill2_y, &hill2_z1,

↪→ 0, limit, 0};

TF1 hill2_z2("hill2_z2", "30*sine.Integral(0, 0.88622- x)",

↪→ 0, limit);

TF1 hill2_x2("hill2_x2", "12*1*cosi.Integral(0,0.88622- x)",

↪→ 0, limit);

segment hill2_second_half = {&hill2_x2, &hill2_y, &hill2_z2,

↪→ 0, limit, 0};

tabtor1[14] = hill2_first_half;

tabtor1[15] = hill2_second_half;

//---

//---------turn around ------------------------------

//---

limit = 1.253314137;

TF1 curve2_y1("curve2_y1", "3.6*sine.Integral(0,x)", 0, limit

↪→);

TF1 curve2_x1("curve2_x1", "-20*cosi.Integral(0,x)", 0, limit

↪→);

// cout << curve2_z1.Eval();

TF1 curve2_z("curve2_z", "0");

TF1 curve2_y2("curve2_y2",

"-4*(sine.Integral(0, 1.253314137- (x -

↪→ 1.253314137)) + 2* "

"curve2_y1.Eval(1.253314137))",

limit, 2 * limit);

TF1 curve2_x2("curve2_x2",

"-20*cosi.Integral(0,1.253314137-(x -

↪→ 1.253314137))", limit,

2 * limit);

segment segment1_curve2, segment2_curve2;

segment1_curve2 = {&curve2_x1, &curve2_y1, &curve2_z, 0.,

↪→ limit, 0};

30

Team number 404

segment2_curve2 = {&curve2_x2, &curve2_y2, &curve2_z, limit,

↪→ 2 * limit, 0};

tabtor1[16] = segment1_curve2;

tabtor1[17] = segment2_curve2;

//---

//---------straight ------------------------------

//---

limit = 80;

TF1 line_y1("line_y1", "0", 0, limit);

TF1 line_x1("line_x1", "x", 0, limit);

TF1 line_z("line_z", "0");

segment segment1_line;

segment1_line = {&line_x1, &line_y1, &line_z, 0., limit, 0};

tabtor1[18] = segment1_line;

limit = 14.5;

TF1 line2_y1("line2_y1", "0", 0, limit);

TF1 line2_x1("line2_x1", "x", 0, limit);

TF1 line2_z("line2_z", "30/13*x");

segment segment1_line2;

segment1_line2 = {&line2_x1, &line2_y1, &line2_z, 0., limit,

↪→ 0};

tabtor1[19] = segment1_line2;

}

31

	Introduction
	Measuring excitement, enjoyment and safeness of a ride
	Positive factors
	Negative factors

	Model of the physics of the roller coaster used
	Assumption made
	Dynamics of the motion

	Simulating roller coaster
	Track segments

	Track elements
	Loop
	Circular loop
	Clothoid loop

	Turn
	Hill

	Results

