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Abstract.  We review the dynamics after quantum quenches in integrable 
quantum spin chains. We give a pedagogical introduction to relaxation in 
isolated quantum systems, and discuss the description of the steady state by 
(generalized) Gibbs ensembles. We then turn to general features in the time 
evolution of local observables after the quench, using a simple model of free 
fermions as an example. In the second part we present an overview of recent 
progress in describing quench dynamics in two key paradigms for quantum 
integrable models, the transverse field Ising chain and the anisotropic spin-1/2 
Heisenberg chain.
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1.  Introduction

An isolated many-particle quantum system is characterized by the absence of any cou-
pling to its environment. According to the laws of quantum mechanics its time evol
ution is unitary and governed by the time dependent Schrödinger equation. In order to 
specify the state ( )⟩|Ψ t  of the system at a given time t, it is then sucient to know its 
Hamiltonian H and its state at an earlier time

( )⟩ ( )⟩|Ψ = |Ψ−t e 0 .Hti
� (1)

In spite of this purely unitary evolution, macroscopic systems are expected to even-
tually ‘relax’ in some way and be amenable to a description by quantum Statistical 
Mechanics [1]. For many-particle systems it is convenient to focus on the time evol
ution of the expectation values of particular observables of interest rather than the 
state itself, i.e. one considers

http://dx.doi.org/10.1088/1742-5468/2016/06/064002
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⟨ ( ) ( )⟩Ψ | |ΨOt t .� (2)
Historically, studies of many-particle quantum systems such as electronic degrees 
of freedom in solids mainly focussed on equilibrium properties at zero and finite 
temperature. This is because in the context of solids, the many-body system of 
interest is typically coupled to an ‘environment’, i.e. other degrees of freedom, 
the presence of which is felt after very short time scales. The situation changed 
dramatically about a decade ago, when it became possible to experimentally inves-
tigate the non-equilibrium dynamics of clouds of ultra-cold, trapped atoms [2–17] 
(see also the review by Langen, Gasenzer and Schmiedmayer in this volume [18]). 
These are by design almost isolated. Moreover the natural energy scale underlying 
the dynamics is incredibly small, so that there is a long time window (on the order 
of seconds) for conducting experiments. The main eect of the coupling to the 
environment is particle loss through heating. This eventually becomes significant, 
but over an intermediate time window the dynamics is to a good approximation 
unitary. It is important to note in view of the following discussion that finite size 
eects are often important in cold atom systems, and as a result of the trapping 
potential these systems are not translationally invariant. They are however highly 
tuneable both with regards to Hamiltonian parameters and their eective dimen-
sionality. This was exploited in the seminal Quantum Newton’s Cradle experiments 
by Kinoshita, Wenger and Weiss [3]. These investigated the non-equilibrium evol
ution of one, two and three dimensional Bose gases that were initially driven out 
of equilibrium. While the two and three dimensional systems were seen to relax 
very quickly towards an equilibrium state, the behaviour in the one dimensional 
case was very dierent. In [3] this was attributed to the presence of approximate 
conservation laws. Neglecting the trap, the Hamiltonian is well approximated by 
the Lieb–Liniger model [19]

( )∑ ∑ δ= −
∂
∂

+ −
= <

�
H

m x
c x x

2
.

j

N

j j k

j kLL

2

1

2

2� (3)

The Hamiltonian (3) is integrable and as a result has an infinite number of conservation 
laws In [20, 21] such that

[ ] [ ]= =H I I I, , 0.n n m� (4)

It is intuitively clear that conservation laws will aect the quantum dynamics, because 
they impose constraints of the form

⟨ ( ) ( )⟩Ψ | |Ψ =t I t const.n� (5)

The dierence in behaviours between the one and three dimensional Quantum Newton’s 
Cradle experiments suggested that the non-equilbirium dynamics of integrable models 
is unusual. This was one of the motivations for the recent intense theoretical eorts 
aimed at understanding the non-equilibrium dynamics of integrable quantum many-
particle systems. Integrable models come in a variety of guises, the two main classes 
being

http://dx.doi.org/10.1088/1742-5468/2016/06/064002
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	•	 Lattice models:

		 These include non-interacting fermion and boson theories [22–24], models that 

can be mapped to free fermions like the transverse-field Ising [25–43] and XY 

chains [44–52], spin models like the Heisenberg chain [53–72] and electronic theo-

ries like the Hubbard model [73–77].
	•	 Continuum models:
		 These include free field theories like the Klein–Gordon [78–80] and Luttinger 

models [53, 81–86] (see the review by Cazalilla and Chung [87] in this volume), 
conformal field theories [80, 89–93] (see the review by Calabrese and Cardy [88] 
in this volume), massive relativistic field theories like the sine-Gordon [94–96], 
sinh-Gordon [97–100] and nonlinear sigma models [101], and non-relativistic field 
theories like the Lieb–Liniger model [102–114]. In continuum models the spec-
trum of elementary excitations is unbounded, which leads to certain dierences 
as compared to lattice models.

In this review we focus on the equilibrium dynamics in integrable lattice models. 
We moreover restrict our discussion to a particular protocol for inducing out of equilib-
rium dynamics, the so-called quantum quench. We note that other protocols have been 
studied in the literature. One example are ramps [115, 116], which are of interest in 
relation to the Kibble–Zurek mechanism [117].

The outline of this review is as follows. In section 2 we define what we mean by a 
quantum quench. This is followed by a discussion in section 3, of how isolated many-
particle quantum systems relax, and of how to describe their late time behaviour. In sec-
tion 4 we provide a simple example that shows these ideas at work. Having established 
a framework for the late time behaviour after a quantum quench, section 5 turns to the 
discussion of general features of the evolution of observables at finite times, such as how 
correlations spread through the system. Section 6 is concerned with one of the key para-
digms of quantum quenches, the transverse field Ising chain (TFIC). This constitutes a 
non-trivial example, for which it is nevertheless possible to obtain exact results in closed 
form. From the point of view of quantum integrability the TFIC is quite special, because 
it can be mapped onto a non-interacting fermionic theory by means of a (nonlocal) 
Jordan–Wigner transformation. The case of fully interacting integrable models (defined 
as having scattering matrices that are dierent from  ±1) is discussed in section 7. We 
conclude with an outlook on some open problems of current interest in section 8.

Apart from the other contributions to this Special Issue, there have been several 
previous reviews [116, 118–121] on closely related topics. They dier considerably in 
perspective, focus, scope and style, and are therefore largely complementary to ours.

2. The essence of a global quantum quench

Our starting point is an isolated many-particle quantum system characterized by a 
time-independent, translationally invariant Hamiltonian H(h) with only short-range 
interactions. Here h is a system parameter such as a magnetic field, or an interaction 

http://dx.doi.org/10.1088/1742-5468/2016/06/064002


Quench dynamics and relaxation in isolated integrable quantum spin chains

6doi:10.1088/1742-5468/2016/06/064002

J. S
tat. M

ech. (2016) 064002

strength. An example we will return to frequently throughout this review is the trans-
verse field Ising chain (TFIC)

( ) ∑ σ σ σ= − +
=

+H h J h ,
j

L

j
x

j
x

j
z

1
1� (6)

where σαj  are Pauli matrices acting on a spin-1/2 on site j of a one dimensional ring, 
and σ σ≡α α

+L 1 1  (α = x y z, , ). The short-ranged nature of H(h) is an essential condition, 
and it is known that models with infinite range interactions such as the BCS problem 
[122] exhibit very dierent behaviours when driven out of equilibrium. Let us imagine 
that we somehow prepare our system in the ground state ( )⟩|Ψ 0  of H(h0). This state is 
highly non-generic in the sense that it has low entanglement [123–125]. At time t  =  0 
we then suddenly ‘quench’ the system parameter to a new value h, and then consider 
subsequent unitary time evolution with our new Hamiltonian H(h). As the change of 
Hamiltonian is assumed to be instantaneous, the system remains in state ( )⟩|Ψ 0  (‘sud-
den approximation’). At times t  >  0 the state of the system is found by solving the 
time-dependent Schrödinger equation

( )⟩ ( )⟩( )|Ψ = |Ψ−t e 0 .H h ti
� (7)

We are interested in the cases where in a large, finite volume the initial state ( )⟩|Ψ 0  
has non-zero overlaps with an exponentially large number of the eigenstates of H(h). 
The case where ( )⟩|Ψ 0  has non-zero overlaps with only a finite, system-size independent 
number of eigenstates is equivalent to the one discussed in undergraduate Quantum 
Mechanics courses. In terms of energy eigenstates

( ) ⟩ ⟩ ⩾| = |H h n E n E E, ,n n 0� (8)
we can express the state of the system at time t as

( )⟩ ⟨ ( )⟩  ⟩∑|Ψ = |Ψ |−t n n0 e .
n

E ti n

� (9)

Our objective is the description of expectation values of a certain class of operators O, 
that will be defined in detail later, in the state ( )⟩|Ψ t

⟨ ( ) ( )⟩ ⟨ ( ) ⟩ ⟨ ( )⟩ ⟨ ⟩ ( )∑Ψ | |Ψ = Ψ | |Ψ | | − −O Ot t n m n m0 0 e .
n m

E E t

,

i m n

� (10)

All the interesting phenomena after a quantum quench arise from the presence of the 
oscillatory factors ( )− −e E E ti m n , which induce quantum mechanical interference eects 
[126], in the double sum over exponentially (in system size) many terms. We note that 
focussing on expectation values is not as restrictive as it may first appear, as it still 
allows us to consider the full probability distributions of the observables we are inter-
ested in.

A crucial property of a global quantum quench is that energy is conserved at all 
t  >  0, and that the post-quench energy density is larger than the ground state energy 
per site

⟨ ( ) ( ) ( )⟩
→ →

= Ψ | |Ψ >
∞ ∞

e
L

t H h t
E

L
lim

1
lim .

L L

0
� (11)
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This means that through the quantum quench we explore a region of Hilbert space that 
is macroscopically dierent from the sector containing the ground state and low-lying 
excitations.

In practice one often considers more general ‘quench protocols’, where for example 
H(h) and/or ( )⟩|Ψ 0  are invariant only under translations by 2, 3, ... sites [51, 63, 127], 
and initial states that are not necessarily pure [78], but are described by a density 
matrix ( )ρ 0 . Considering ( )ρ 0  to be a thermal density matrix provides a simple way of 
varying the energy density e ‘injected’ into the system. It is essential for our purposes 
that the initial density matrix ( )ρ 0  has a cluster decomposition property [128]

[ ( ) ( ) ( )] [ ( ) ( )] [ ( ) ( )]
→

ρ ρ ρ=
| − | ∞

O O O Ox y x ylim Tr 0 Tr 0 Tr 0 ,
x y� (12)

and we elaborate on this point in appendix A. Invariance of the initial density matrix 
under translations is another key requirement. Inhomogeneous initial conditions have 
been considered by many authors in the literature, see e.g. [44, 54, 55, 106, 129–139, 
140–152], and the reviews by Bernard and Doyon [153] and by Vasseur and Moore 
[154] in this volume, but we will not consider them here.

3. Relaxation in isolated quantum systems

Given that we are considering an isolated quantum system, an obvious question is in 
what sense it may relax to a stationary state at late times after we have driven it out 
of equilibrium. In order to sharpen the following argument, let us revisit the case dis-
cussed in section 2, namely an isolated system initially prepared in a pure state ( )⟩|Ψ 0 , 
that is not an eigenstate of the (time independent) Hamiltonian H(h) describing the 
time evolution after our quantum quench. Let us now consider the following class of 
hermitian operators

j k k j .jk 〉 〉= | 〈 | + | 〈 |O� (13)

Their expectation values in the state ( )⟩|Ψ t  can be expressed using (9) as

⟨ ( ) ( )⟩ ⟨ ( ) ⟩⟨ ( )⟩( )Ψ | |Ψ = Ψ | |Ψ +−Ot t j ke 0 0 c.c.jk
E E ti j k� (14)

We see that generically the right hand side exhibits periodic oscillatory behaviour in 
time. Hence the observables Ojk typically do not relax at late times. A crucial point 
is that Ojk are generally very nonlocal in space. As locality is an important concept in 
quantum quenches it is useful to define what we mean by a local operator.

Definition 1.  Local Operators.

In lattice models an operator O is called local if in the thermodynamic limit O 
acts non-trivially only on a finite number of sites separated by a finite distance. For a 
quantum spin-1/2 chain with L sites examples of local operators are

 ∏σ σ σ σα α β α
+

=

k, , , fixed,j j j k
j

k

j
1

j

� (15)

http://dx.doi.org/10.1088/1742-5468/2016/06/064002
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where σαj  (α = x y z, , ) are Pauli matrices acting on site j. On the other hand operators 
such as

/

/

∏σ σ σα

=

,x
L
x

j

L

j1 2
1

2
j

� (16)

are nonlocal. Acting with a local operator on a state ⟩ψ|  does not change its macroscopic 
properties (e.g. its energy per volume in the thermodynamic limit).

Definition 2.  Range of a local operator.

The range of a local operator O is the size of the largest interval on which it acts 
non-trivially. For the examples above we have

( ) ( )
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟∏σ σ σ σ= = + =α α β α

+
=

k krange 1, range 1, range .j j j k
j

k

j
1

j
� (17)

3.1. Local relaxation

The previous argument shows that an isolated quantum system prepared in a pure 
state cannot relax in its entirety. However, it can and does relax locally in space [26, 28, 
126, 155–157]. To explain this concept let us consider the example of a one-dimensional 
spin system with Hamiltonian H with only short-range interactions. An example would 
be the TFIC (6). We partition the entire system into an arbitrary but finite subsystem 
B and its complement A. Eventually we will take the thermodynamic limit while keep-
ing B fixed. Let us prepare our spin system at time t  =  0 in some initial density matrix 
( )ρ 0  that is not an eigenstate of H. At later times the entire system is characterized by 

the density matrix

( ) ( )ρ ρ= −t e 0 e .Ht Hti i� (18)

The reduced density matrix of the subsystem B is obtained by tracing out the degrees 
of freedom in A

( ) ( )ρ ρ=t tTr .B A� (19)
It is instructive to give an explicit representation of the reduced density matrix for our 
spin chain example. An orthonormal basis of states is given by

, , , , 1,L
j

L

j j j1 2
1

〉 〉σ σ σ σ σ| … = ⊗ | = ±
=

� (20)

where ⟩σ| j j denote the two eigenstates of S j
z. Let us take our subsystem B to consist of 

sites … �1, 2,  for simplicity. The reduced density matrix is then

t t

t2 Tr ,

B
k

L

k k
n

L

n n

x y z

, , 1 1

, , 0, , ,
1 2 1 2

L1

1

1 2 1 2

( ) ( )( ) ( ) 〉

[ ( ) ]  

∑

∑

ρ σ ρ σ

ρ σ σ σ σ σ σ

= ⊗ 〈 | ⊗ |

= … …
σ σ

α α

α α α α α α
… = + = +

−

… =

+
� �

�
� �

�

�

� �
�

(21)
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where we have defined 1σ =j j
0 . Equation (21) shows that the matrix elements of ( )ρ tB  

are equal to particular correlation functions of local operators acting non-trivially only 
on B, and that ( )ρ tB  in fact encodes all such correlators.

Definition 3.  Local Relaxation.

We say that our system relaxes locally if the limit

( ) ( )
→ →

ρ ρ= ∞
∞ ∞

tlim lim
t L

B B� (22)

exists for any finite subsystem B (see figure 1).

Definition 4.  Stationary State.

Consider a system that relaxes locally in the sense just defined. Then its stationary 

state is defined as a time-independent density matrix ρSS for the full system such that 
for any finite subsystem B

( ) ( )
→

ρ ρ= ∞
∞

lim Tr ,
L

A B
SS

� (23)

where A is the complement of B. We stress that this equivalence applies only at the 
level of finite subsystems in the thermodynamic limit and not for the density matrices 
of the full system.

Definition 5.  Local equivalence of ensembles.

Let ρ1 and ρ2 be two density matrices. We call the corresponding two ensembles 
locally equivalent, if in the thermodynamic limit the reduced density matrices for any 
finite subsystem B coincide, i.e.

( ) ( )
→ →

ρ ρ=
| | ∞ | | ∞
lim Tr lim Tr .

A
A

A
A1 2� (24)

Here A is the complement of B and | |A  denotes its volume. We denote local equivalence 
by

ρ ρ= .1 loc 2� (25)

A key problem in the field of non-equilibrium dynamics is the determination of 
the stationary state density matrix. A crucial role is played by symmetries of the 

Figure 1.  Local relaxation in an isolated many-particle quantum system: we partition 
the entire system into an arbitrary finite subsystem B and its complement A.  
We then take the thermodynamic limit while keeping B fixed. Expectation values 
of all operators that act non-trivially only in B will relax to stationary values at 
late times.

B AA
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Hamiltonian. In translationally invariant systems there are essentially two para-
digms for local relaxation, and we turn to their respective descriptions next. Before 
doing so an important comment is in order. By design our focus is on local opera-
tors, which in turn leads us to define local relaxation in the sense formulated above. 
In practice one might be interested in observables that are formally not captured 
by our framework, and yet might relax to stationary values. An example would be 
expectation values of the momentum distribution function, which is the Fourier 
transform of the single particle Green’s function [24, 158]. The relaxational proper-
ties of such quantities are at present not understood in general, and further invest
igation is called for.

3.2. Thermalization

As we are dealing with an isolated system, energy is always a conserved quantity

( ( ) ) ( ( ) ) ( ( ) )ρ ρ ρ= = =−E t H H HTr Tr e 0 e Tr 0 .Ht Hti i� (26)

In absence of other conserved quantities isolated systems are believed to locally relax 
to thermal equilibrium. This is known as thermalization [1, 159, 160]. In the framework 
we have set up, this means that our stationary state is described by a Gibbs ensemble

( )
ρ ρ= =

β

β

−

−
e

Tr e
.

H

H
SS

loc
Gibbs

eff

eff
� (27)

Here the inverse eective temperature βeff is fixed by the initial value of the energy 
density

( ( ) ) ( )
→ →

ρ ρ≡ =
∞ ∞

e
L

H
L

Hlim
1

Tr 0 lim
1

Tr .
L L

Gibbs
� (28)

We once again stress that (27) implies only that in the thermodynamic limit the 
stationary state is locally indistinguishable from a Gibbs ensemble in the sense that 
expectation values of all operators that act non-trivially only in a finite subsystem are 
identical to the corresponding thermal expectation values. The physical picture under-
lying thermalization is that the infinitely large complement of our subsystem acts like 
a heat bath with an eective inverse temperature βeff.

We note that βeff defined in this way can be either positive or negative. The meaning 
of a negative temperature in this context is as follows. Let us consider a Hamiltonian 
with bounded spectrum (e.g. a quantum spin model). Then the average energy associ-
ated with H is

¯ ( )
→

=
∞

e
L

Hlim
1

Tr .
L

� (29)

Depending on our initial density matrix we now have two possibilities

¯
¯
β
β

< ⇒ >
> ⇒ <

e e

e e

0,

0.
eff

eff
� (30)

We note that negative temperature ensembles have been observed experimentally in 
[161].
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3.3. Generalized Gibbs ensembles (GGE)

We now turn to the case of systems with additional local conservation laws I(n). These 
are operators that commute with the Hamiltonian

[ ]( ) =H I, 0,n� (31)

and have the property that their densities are local operators. In most of the cases of 
interest these conservation laws also commute with one another

[ ]( ) ( ) =I I, 0,n m� (32)

and we will assume this to be the case in the following. We note that exceptions to (32) 
are known [51, 92, 93] (see also section 3.3.1). What we mean by local conservation laws 
is best explained by an example. The TFIC (6) has infinitely many local conservation 
laws in the thermodynamic limit [162]

( )
( ) ( )

( )

( )

( ) ( )

( ) ( )

∑ ∑

∑ ∑

=

= − + + + ≡

= − − ≡

+

+
+ + − + − + −

+

−
+ +

−

I

I

I H h

I J S S h S S

I J S S

,

,

,

n

j
j j n
xx

j j n
yy

j j n
xx

j j n
yy

j
j
n

n

j
j j n
xy

j j n
yx

j
j
n

1,

,
, , 2 , 1 , 1

,

,
, ,

,

�

(33)

where ⩾n 1 and we have defined

⎡

⎣
⎢

⎤

⎦
⎥∏σ σ σ σ= = −αβ α β

+
=

−

+ +�

�

�S S, .j j j
k

j k
z

j j j
yy

j
z

,
1

1

,� (34)

The conservation laws themselves are extensive, but their densities ( )±I j
n,  involve 

only finite numbers of neighbouring sites (n  +  1 sites for ( )±I n, ). As a consequence of 
(31), expectation values of the conservation laws as well as their densities are time 
independent

( ( ) ) ( ( ) ) ( ( ) )( ) ( ) ( )
( )

ρ ρ ρ= = ≡± ± ±
±

I
L

t I t
L

I
E

L

1
Tr Tr

1
Tr 0 ,n

j
n n

n
, , ,

,

� (35)

where in the first step we used translational invariance. An obvious question at this 
point is why we insist on conservation laws to be local. The answer lies in the simple 
fact that any Hamiltonian has at least as many nonlocal conservation laws as there are 
basis states in the Hilbert space. Let us consider one-dimensional projectors on energy 
eigenstates

⟩ ⟩ ⟩⟨| = | =| |H n E n P n n, .n n� (36)
Then we clearly have

[ ] [ ]= =P P P H, 0 , ,n m n� (37)
which imply that the expectation values of all Pn are time independent. Importantly, 
these conservation laws are not local, and as they exist for any Hamiltonian they are 
not expected to have any profound eect. In contrast, local conservation laws are 
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rather special and, as is clear from (35), have important consequences for local relax-
ation after quantum quenches.

An immediate consequence of (35) is that systems with local conservation laws can-
not thermalize after a quantum quench, because the system retains memory of the ini-
tial expectation values of all conserved quantities at all times. The maximum entropy 
principle [163] then suggests that the stationary state density matrix should be given 
by a GGE [164]

( )
( )

( )
ρ =

λ

λ

− ∑

− ∑

e

Tr e
.

I

I

GGE
n n

n

n n
n� (38)

Here λn are Lagrange multipliers that are fixed by the initial conditions (35), as we 
require that

( )
→

( )

→
( )ρ=

∞

±

∞

E

L L
Ilim lim

1
Tr .

L

n

L

n
,

GGE� (39)

3.3.1.  Local conservation laws versus mode occupation numbers  In free theories GGEs 
are often formulated using conserved mode occupation numbers [164]. This is usually 
equivalent to our formulation in terms of local conservation laws in these cases [28] as 
we now demonstrate for a simple example. Let us consider a fermionic tight binding 
model

{ }† † † †∑ ∑µ δ= − + − =+ +H J c c c c c c c c, , .
j

j j j j

j
j j j n j n1 1 ,� (40)

The Hamiltonian is easily diagonalized by going to momentum space

[ ( ) ] ( ) ( )†∑ µ= − −H J k c k c k2 cos .
k

� (41)

The mode occupation operators ( ) ( ) ( )†=n k c k c k  commute with the Hamiltonian and 
with one another. However, the n(k) are neither local nor extensive. An equivalent set 
of local, extensive conserved quantities is easily found

( )  ( ) ( )

( )  ( ) ( )

( ) † † †

( ) † † †

∑ ∑

∑ ∑

= = +

= = −

+
+ +

−
+ +

I J nk c k c k J c c c c

I J nk c k c k J c c c c

2 cos ,

2 sin i .

n

k j
j j n j n j

n

k j
j j n j n j

,

,�
(42)

The crucial point is that these conservation laws are linearly related to the mode 
occupation numbers. This implies that the GGE describing the stationary state after 
a quantum quench to the Hamiltonian H can be constructed either from the local con-
servation laws, or from the mode occupation numbers

( ) ( )

  ( )

  ( )

( ) ( )

( ) ( )
ρ = =

λ λ

λ λ

µ

µ

− ∑ +

− ∑ +

− ∑

− ∑

+
+

−
−

+
+

−
−

e

Tr e

e

Tr e
.

I I

I I

n k

n k
GGE

n n
n

n
n

n n
n

n
n

k k

k k

,
,

,
,

,
,

,
,� (43)
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At this point a word of caution is in order. There are cases in which local conservation 
laws exist that cannot be expressed in terms of mode occupation operators. In non-
interacting theories this occurs if the dispersion relation in the finite volume has addi-
tional symmetries. An example is provided by setting µ = 0 in our tight-binding model 
(40), in which case the dispersion has the symmetry ( ) ( )π= − −ε εp p . In this case the 
following operator commutes with the Hamiltonian

( ) [ ] ( ) ( ) ( )† †∑ ∑ π µ− − = − + =+ +
−c c c c c k c k1 e h.c. 0 ,

j

j
j j j j

k

k
1 1

i

� (44)

but is clearly neither expressible in terms of mode occupation operators, nor does it 
commute with the latter. In cases like this the stationary state is not always locally 
equivalent to a GGE of the form (43) since the constraints arising from the additional 
local charges must be imposed as well [51, 93, 165].

3.4. Generalized microcanonical ensemble (GMC)

In equilibrium Statistical Physics it is well known that in the thermodynamic limit 
the Gibbs ensemble becomes equivalent to the microcanonical ensemble. In the quench 
context analogous equivalences of ensembles hold, and we now turn to their discussion.

3.4.1. Generic systems  We have stated above that generic systems thermalize when 
their stationary state density matrix is equal to a Gibbs ensemble in the sense of (23) 
and (27), where the eective temperature is fixed by the energy density e given by (28). 
There is strong numerical evidence [160, 166–175] that an equivalent microcanonical 
ensemble can be constructed in the form

〉ρ = | 〈 |n n ,MC
� (45)

where ⟩|n  is any energy eigenstate (of the post-quench Hamiltonian) with energy den-
sity e. Importantly, no averaging over a microcanonical energy shell is required. This 
implies that in generic systems all energy eigenstates at a given energy density are 
locally indistinguishable and thermal. The microcanonical description for the station-
ary state of a thermalizing system is then

ρ ρ= .SS
loc

MC� (46)

3.4.2.  Systems with local conservation laws  If a system has local conservation laws 
other than energy the above construction needs to be modified. This was first discussed 
in the non-interacting case by Cassidy et al [22] and subsequently generalized to inter-
acting integrable models by Caux and Essler [176]. Let us recall that the ‘initial data’ 
for a (post quench) system with local conservation laws I (n) and Hamiltonian H  =  I (1) is

( ( ) )( )
→

( )ρ=
∞ L

Ie lim
1

Tr 0 .n

L

n
� (47)

The stationary state is then locally equivalent to the density matrix

,SS
loc

GMC 〉ρ ρ= = |Φ 〈Φ|� (48)

http://dx.doi.org/10.1088/1742-5468/2016/06/064002


Quench dynamics and relaxation in isolated integrable quantum spin chains

14doi:10.1088/1742-5468/2016/06/064002

J. S
tat. M

ech. (2016) 064002

where ⟩|Φ  is a simultaneous eigenstate of all local conservation laws such that

⟩
→

( ) ( )⎡
⎣⎢

⎤
⎦⎥− |Φ =

∞ L
Ilim

1
e 0.

L

n n
� (49)

Conditions (49) ensure that all I (n) have the correct expectation values (47) in the 
stationary state. An obvious question is how to construct ⟩|Φ  in practice. For non-
interacting lattice models this is often straightforward as we now discuss. In free theories 

the Hamiltonian is diagonalized in terms of mode occupation operators ( ) ( ) ( )†=n k c k c k

( ) ( ) [ ( ) ( )] [ ( ) ]∑= = =εH k n k n k n q n k H, , 0 , .
k

� (50)

As discussed above the n(k) are in one-to-one correspondence with local conservation 
laws and can therefore be used to construct GGEs. The initial conditions (47) therefore 
fix the densities ( )ρ k  of particles with momentum k

( ( ) ( )) ( )ρ ρ=n k kTr 0 .� (51)

In a large, finite volume L, the state ⟩|Φ  can then be taken as a Fock state

⟩ ( ) ⟩ ( ) ⟩†∏|Φ = | | =
=

c k c q0 , 0 0.
j

N

j

1
� (52)

The kj need to be chosen to reproduce the correct particle density ( )ρ k  in the thermody-
namic limit → ∞N L, , n  =  N/L fixed. Noting that ( )ρ∆ = ∆n k k we see that a possible 
choice is

( )ρ
= ++k k

L k

1
.j j

j
1� (53)

In practice we can determine ( )ρ k  from (51), construct the state ⟩|Φ  from (52) and (53), 
and then use it to form ρGMC. In interacting theories the construction is analogous but 
considerably more involved and will be discussed in section 7.

In contrast to the non-integrable case, energy eigenstates at a given energy density 
e are not all locally indistinguishable and thermal. While the typical state at a given e 
is thermal in this case as well, there exist other, non-thermal, macro-states at a given e.  
However, their entropies are smaller than the one of the thermal equilibrium state.  
A more detailed discussion is given in appendix B.

3.5. Time averaged relaxation and diagonal ensemble

In the literature a dierent definition of relaxation after quantum quenches in finite 
systems is widely used [118, 121]. Let us for simplicity consider a one-dimensional sys-
tem on a ring of length L, which is initially prepared in a state with density matrix ( )ρ 0 . 
The time average of an operator O is then defined as

¯   ( ( )  )
→ ∫ ρ=

∞
O O

T
t tlim

1
d Tr ,L

T

T

0
� (54)
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where we have introduced the subscript L to indicate that the system size is kept fixed 
at L, and where we assumed the limit → ∞T  to exist. The operator O is then said to 
relax if its expectation value is very close to its time average most of the time, i.e. if

[ ( ( )  ) ¯ ] ¯∫ ρ − �O O O
T

t t
1

d Tr .
T

L L
0

2 2
� (55)

Physically this way of thinking about relaxation is very dierent from ours. This is 
most easily understood for a non-interacting system, which by construction features 
stable particle and hole excitations. Let us denote their maximal group velocity by vmax. 
In time averaged relaxation one considers times t such that �v t Lmax , i.e. the stable 
excitations traverse the entire system many times. In contrast, our way of defining 
relaxation is based on taking the thermodynamic limit first, and then considering late 
times.

A natural question to ask is what statistical ensemble describes the averages Ō. To 
see this let us consider time evolution with a Hamiltonian H that has non-degenerate 
eigenvalues En. Expanding the density matrix in the basis of energy eigenstates gives

( ) ⟨ ( ) ⟩  ⟩⟨( )∑ρ ρ= | | | |− −t n m n m0 e .
n m

E E t

,

i n m

� (56)

Substituting this back into (54) and using that the energy eigenvalues are non-degen-
erate we arrive at

¯ ⟨ ( ) ⟩ ⟨ ⟩∑ ρ= | | | |O On n n n0 .L

n
� (57)

This shows that time averages involve only the diagonal elements (in the energy eigen-
basis) of the density matrix. The description (57) is known as diagonal ensemble. Is 
there a relation between the subsystem view of relaxation and the time-averaged one? 
It is believed that for local operators O the two viewpoints are in fact equivalent in the 
sense that

lim Tr .
L

L
SS¯ [ ]

→
ρ=

∞
O O� (58)

In the case of the TFIC this has been shown in appendix E of [26] and elaborated on 
in [30].

3.6. Symmetry restoration

An interesting question in the quantum quench context concerns problems where the 
Hamiltonian is invariant under a symmetry operation, but the initial state after the 
quench is not. If we denote the symmetry operation by U, then we have

[ ] ( )⟩ ( )⟩= |Ψ ≠ |ΨH U U, 0, 0 0 .� (59)

The question is then, whether or not the symmetry associated with U is restored in the 
stationary state

[ ]ρ =U, 0.SS ?� (60)
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The answer to this is quite straightforward for the stationary states we have considered 
here, which are described by (generalized) Gibbs ensembles

( )

ρ ρ= =
∑λ−

Z

1
e .

I
SS

loc GGE
GGE

n

n
n

� (61)

Clearly, if U is a symmetry of all local conservation laws

[ ]( ) = ∀I U n, 0, ,n� (62)

the symmetry associated with U will be restored in the stationary state. Conversely, 

if there is at least one conservation law for which [ ]( ) ≠I U, 0s , then the symmetry will 
remain broken in the stationary state. It is useful to consider some explicit examples.

3.6.1.  Spin-flip symmetry  The TFIC Hamiltonian (6) is invariant under rotations in 
spin space around the z-axis by 180 degrees

† †σ σ α σ σ= − = =α α
� � � �U U x y U U, , , .z z

� (63)

A quantum quench of the transverse field starting in the ordered phase h  <  1 leads to 
an initial state that breaks this symmetry. However, the local conservation laws (33) 
that characterize the stationary state are invariant with respect to spin reflection. As a 
result the spin flip symmetry is restored in the stationary state [28], as will be shown 
in section 6.

3.6.2. Parity symmetry  The Hamiltonian of the tight-binding model (40) is invariant 
under the parity transformation (reflection across a link)

† † †= −� �Uc U c .1� (64)

On the other hand, the set of charges I (n,−) in (42) is odd under U, and hence a quantum 
quench from a state that is not parity even does not generally result in a parity-
symmetric stationary state. As an example we may consider the time evolution of the 
ground state ( )⟩|Ψ 0  of the following Hamiltonian

( )† † † † †∑ µ= − − + ++ + + +
�

� � � � � � � � � �H c c c c c c c c c c
i

4
3 3 .0 1 1 1 1 0� (65)

For µ| | < 20 , ( )⟩|Ψ 0  is not parity-symmetric and the expectation value of I(n,−) is 
nonzero

I J
n

n
0 0

1 1

2

cos arcsin
0.n

n
, 2

0( ( ))
( ) ( )〉 ( )( )

π
〈Ψ | |Ψ =

− −
≠

µ

−

| |

� (66)

As I (n,−) are conserved we must have

(   ) ⟨ ( ) ( )⟩
→

( )
→

( )ρ = Ψ | |Ψ
∞

−

∞

−

L
I

L
Ilim

1
Tr lim

1
0 0 ,

L

n

L

nSS , ,
� (67)

and consequently the stationary state cannot be not symmetric under (64). We note 
that the above symmetry argument does not guarantee a non-zero value for the expec-
tation value in (66), as there could be other symmetries that force it to vanish.
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3.6.3. Translational symmetry  If we allow the initial state to partially break transla-
tional symmetry the situation can become significantly more complicated. An interest-
ing example is provided by the quantum XY model [177]

∑
γ
σ σ

γ
σ σ=

+
+

−

=
+ +

�
� � � �H J

1

4

1

4
,

L
x x y y

XY

1
1 1� (68)

where we take L to be even. As long as we consider quenches from translationally invari-
ant initial states, the stationary behaviour is described by a GGE constructed from 

local conservation laws ( )±Q n,  along the lines described above. The situation changes 
for initial states ( )⟩|Ψ 02  that are invariant only under translations by two sites. One 
might naively expect that translational symmetry gets restored in the stationary state, 
but this is in fact not the case [51]. This can be understood by noting that H has local 
conservation laws that are not translationally invariant, an example being

( ) [ ]
⎡

⎣
⎢

⎤

⎦
⎥∑

γ
σ σ

γ
σ σ= −

+
−

−
=+

=
+ +

+

�

�
� � � �J J H1

1

4

1

4
, , 0.

L
x x y y

1
1

1 1 1 XY� (69)

Generically one will have ⟨ ( ) ( )⟩Ψ | |Ψ ≠+J0 0 02 1 2 , and as +J1  is conserved, translational 
invariance must remain broken at all times. The construction of a GGE in this case 
is complicated by the fact that +J1  does not commute with all ( )±Q n, , and involves an 
initial state dependent selection of mutually commuting local conservation laws.

3.7. Truncating generalized Gibbs ensembles

As we have seen above, GGEs in integrable models involve infinite numbers of con-
servation laws in the thermodynamic limit. A natural question to ask is whether all 
of these are equally important for the description of the stationary state, or whether 
certain classes are more important than others. A general framework for investigat-
ing this question was developed in [28] and then applied to the specific example of 
quenches in the TFIC. The main findings are conjectured to apply much more generally 
to quenches in integrable models. A key measure of importance of a given conservation 
law is its degree of locality [28] Dloc. This is straightforward to quantify for conserva-
tion laws like (33), which have densities that act non-trivially only on a fixed number 
of n  +  1 neighbouring sites,

( ) ( )( ) ( ) ( ) ( )∑= = + ⇒ = +I II n D I n, range 1 1.n

j
j
n

j
n n

loc� (70)

The idea of [28] was to select various finite subsets { } { }( )⊂| = …J m y I1, ,m
n , and ask 

how well the density matrices

( )
( )

( )
ρ =

λ

λ

− ∑

− ∑

=

=

e

Tr e

y
J

J

pGGE,
n
y

n
y

n

n
y

n
y

n

1

1
� (71)

approximate the full GGE density matrix. Here the Lagrange multipliers ( )λn
y  are fixed 

by imposing the appropriate initial conditions
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⟨ ( ) ( )⟩
( )

→ →
ρ

Ψ | |Ψ
= = …

∞ ∞

J

L L
J n ylim

0 0
lim

1
Tr , 1, , .

L

n

L

y
n

pGGE,� (72)

A useful way of comparing the full ρGGE and partial ρ ypGGE,  GGEs is through a distance 

( )ρ ρ′� �D ,  on the space of reduced density matrices on an interval of length �. In order for 

ρ ypGGE,  to be a good approximation to ρGGE it should be possible to make the distance 
between their respective reduced density matrices arbitrarily small

( )ρ ρ < ∀ �� � εD , , .yGGE pGGE, !
� (73)

The findings of [28] show that if even a single conservation law with small degree of 
locality is excluded, the approximation (71) immediately becomes very poor, and the 
only way to achieve (73) is by retaining all conservation laws with the smallest degrees 
of locality (70), i.e. by considering ‘truncated GGEs’ of the form

( )
( ) ( )

( ) ( )
ρ =

λ

λ

− ∑

− ∑

=

=

e

Tr e
.

I

I

tGGE,y
n
y

n
y n

n
y

n
y n

1

1
� (74)

The value of y is then determined by the required degree of accuracy ε in (73). A con-
sequence of these findings is that the full GGE can in fact be defined as the limit of 
truncated GGEs

→
ρ ρ≡

∞
lim .
y

GGE tGGE,y
� (75)

The limiting procedure (75) was originally introduced in a non-interacting model (the 
transverse-field Ising) [28], and has since proved very useful for the construction of 
GGEs and the calculation of the stationary state values of local observables in interact-
ing integrable models [17, 58, 59, 64, 178].

To exhibit the above ideas more explicitly it is useful to consider the example of a 
transverse field quench in the disordered phase of the TFIC [28]. Figure 2 shows results 
for an appropriately defined distance between the reduced density matrices of the full 
and truncated GGEs as a function of the number y of conservation laws retained in 
(74). Ten dierent subsystem sized = …� 5, 10, , 50 are shown.

We see that for a given subsystem size � the distance ( )ρ ρ� �D ,GGE pGGE,y  starts decay-

ing exponentially in y above an �-dependent value. This means that conservation laws 

I (n) with ��n  play a negligible role in describing stationary state properties in a sub-
system of size �. The main message is then as follows:

The smaller the degree of locality of a conservation law is, the more important it is for 
describing the stationary properties of local observables.

3.8. Dynamical properties in the stationary state

It is clearly of interest to go beyond the equal time correlators we have discussed so 
far and consider dynamical (non equal time) correlations. In particular one can envis-
age using them to characterize the stationary state in the same way they are used in 
thermal equilibrium. An example would be the measurement of dynamical response 

http://dx.doi.org/10.1088/1742-5468/2016/06/064002


Quench dynamics and relaxation in isolated integrable quantum spin chains

19doi:10.1088/1742-5468/2016/06/064002

J. S
tat. M

ech. (2016) 064002

functions in the stationary state by e.g. photoemission spectroscopy [179]. For such 
purposes the objects of interest are of the form

⟨ ( ) ( ) ( ) ( )⟩ ( )
→

Ψ | |Ψ =
∞

−�O O O Ot t t t tlim , e e ,
t

n n j
Ht

j
Ht

1 1
i i

� (76)

where Oj are local observables. The problem one is faced with is that the descriptions 
of the stationary state by statistical ensembles (GGE, GMC) a priori hold only at the 
level of finite subsystems in the thermodynamic limit. On the other hand, time depen-
dent operators act by construction non-trivially on the entire system, which moves 
them beyond the remit of applicability of the framework set out above. This issue was 

addressed in [29], which established that the stationary state density matrix ρSS that 

describes the local relaxation in fact provides a correct description of dynamical cor-
relations as well, i.e.

⟨ ( ) ( ) ( ) ( )⟩ [ ( ) ( )]
→

ρΨ | |Ψ =
∞

� �O O O Ot t t t t tlim Tr .
t

n n n n1 1
SS

1 1� (77)

The proof of this statement is based on the Lieb–Robinson bound (see section 5.1) and 
more specifically on a theorem by Bravyi, Hastings, and Verstraete [180], who showed 
that time-evolving operators (in the Heisenberg picture) are well approximated by local 
operators with a range that increases linearly in time. We stress that (77) does not 
depend on which statistical ensemble describes the local relaxation in the stationary 

state, i.e. for generic systems ρSS would be a Gibbs or a microcanonical density matrix, 
while for integrable systems it would be that of a GGE or GMC.

The issue of whether or not a fluctuation dissipation relation (FDR) holds in the 
stationary state was investigated in [29, 38, 41, 181]. In thermal equilibrium, the FDR 

Figure 2.  Distance ( )( ) ρ ρ=∞ � �D D ,y GGE tGGE,y , as defined in (156), between the GGE 

and the truncated GGEs obtained by taking into account local conservation 
laws with densities involving at most y  +  1 consecutive sites. The quench is from 
h0  =  1.2 to h  =  3 and the subsystem size ranges from =� 5 to =� 50. Colors and 
sizes change gradually as a function of the size �. For > �y , the distance starts 
decaying exponentially in y, with an �-independent decay rate (Figure taken 
from [28].).
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connects the imaginary part of the linear response function ( )→χ ω ρ|q,AB  of two observ-
ables A, B to the corresponding spectral function ( )→ω ρ|S q,AB

  (   ( )) ( ) (   ( ))→ →

π
χ ω ρ β ω ρ β− | = − |βω−q S q

1
Im , 1 e , .AB AB

Gibbs Gibbs
� (78)

Here we have defined

q
L

t A t B

S q
L

t
A t B

,
i

d e Tr , ,

,
1 d

2
e Tr .

AB
j

t q r r
j

AB

j

t q r r
j

, 0

i i

,

i i

j

j

(   )   (  [ ( ) ])

(   )   (   ( ) )

( )

( )

→ → →

→ → →

→

→

∫

∫

∑

∑

χ ω ρ ρ

ω ρ
π

ρ

| = −

| =

ω

ω

∞
− ⋅ −

−∞

∞
− ⋅ −

�
�

�
�

�

�

�

(79)

In the derivation of (78) one uses that in thermal equilibrium the spectral function for 
negative and positive frequencies are related in a simple way

(   ( )) (   ( ))→ →ω ρ β ω ρ β− − | = |βω−S q S q, e , .BA AB
Gibbs Gibbs

� (80)

Let us now turn to FDRs in the steady state after quantum quenches. Clearly, if 
the system thermalizes (27), the equilibrium FDR (78) with inverse temperature βeff 
applies. If on the other hand the system locally relaxes to a GGE, the imaginary 
part of the linear response function ceases to be proportional to the spectral function  
[29, 38, 41]. This can be traced back to the absence of a simple relationship between 
the spectral functions at positive and negative frequencies. However, the basic form of 
the FDR still holds [29]

  (   ) (   ) (   )→ → →

π
χ ω ρ ω ρ ω ρ− | = | − − − |q S q S q

1
Im , , , .AB AB BA

GGE GGE GGE
� (81)

4. A simple example

In order to see the ideas presented above at work, we now consider the specific example 
of a one dimensional fermionic pairing model

( ) † † † † †∑ ∑ ∑µ µ∆ = − + − + ∆ +
=

+ +
= =

+ +H J c c c c c c c c c c, .
j

L

j j j j

j

L

j j

j

L

j j j j

1

1 1
1 1

1 1� (82)

Here †cj, cj are canonical fermion creation and annihilation operators at site j and 

{ }† δ=c c,j n j n, . In momentum space we have

( ) ( )  ( ) ( ) ( )( ( ) ( ) ( ) ( ))† † †∑µ∆ = − ∆ − − −εH k c k c k k c k c k c k c k, i sin ,
k

0� (83)

where we have defined ( ) ( ) µ= − −ε k J k2 cos0  and

( )∑= −c
L

c k
1

e .j

k

kji
� (84)
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The Hamiltonian (83) is diagonalized by a Bogoliubov transformation

⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟
⎛
⎝
⎜

⎞
⎠
⎟

k

k

c k

c k
k

cos 2 i sin 2

i sin 2 cos 2
, 0,k k

k k

( )
( )

( / ) ( / )
( / ) ( / )

( )
( )† †

α
α −

=
Θ − Θ

− Θ Θ −
≠� (85)

where

( ) ( ( ) ) ( ) ( ) ( )
( )

µ
µ

= + + ∆ =
− − + ∆Θε

ε
k J k k

J k k

k
2 cos 4 sin , e

2 cos 2i sin
.2 2 2 i k

�

(86)

Defining ( ) ( )†α = c0 0  we find

( ) ( )  ( ) ( )†∑µ α α∆ = +εH k k k, const.
k

� (87)

Let us now implement a quantum quench by initially preparing our system in the 
ground state of ( )µ∆H , , and at t  =  0 quenching the pairing amplitude from ∆ to zero. 
The initial state is the Bogoliubov fermion vacuum

( )〉 〉 ( ) 〉  α|Ψ = | | = ∀k k0 0 , 0 0 .� (88)
The time evolution of the fermion annihilation operators is obtained by solving the 

Heisenberg equations of motion ( ) [ ( ) ( )] ( ) ( )µ= = − εc k t H c k t k c k t, i 0, , , i ,
t

d

d 0 , which gives

( ) ( ) [ ( / )  ( ) ( / )  ( )]( ) ( ) †α α= = Θ − Θ −− −ε εc k t c k k k, e e cos 2 i sin 2 .k t k t
k k

i i0 0� (89)

The fermion two-point functions at t  >  0 are thus equal to

( ) ( ) ( ) ( )〉 ( ) ( ) 〉 ( / )

( ) ( ) ( ) ( )〉  

† †

( )

δ

δ

〈Ψ | |Ψ = 〈 | | = Θ

〈Ψ | |Ψ = Θ−
− ε

t c k c q t c k t c q t

t c k c q t

0 , , 0 sin 2 ,

i

2
sin e .

k q k

k q k
k t

,
2

,
2i 0

�
(90)

In position space we obtain

⟨ ( ) ( )⟩ ( / ) ( )

⟨ ( ) ( )⟩   ( )

†

( )

∑

∑

Ψ | |Ψ = Θ =

Ψ | |Ψ = Θ =

+

+
− −

�

�

�
�

�
� ε

t c c t
L

f

t c c t
L

g t

1
e sin 2 ,

1
e

i

2
sin e , .

j j

k

k
k L

j j

k

k
k

k t
L

i 2

i 2i 0

�

(91)

Importantly, multi-point correlation functions can be calculated by Wick’s theorem, 
e.g.

⟨ ( ) ( )⟩ ( ) ( ) ( ) ( ) ( ) ( )† †Ψ | |Ψ = − − − − − + − −∗t c c c c t g k j t g n m t f j n f k m f k n f j m, , .j k n m L L L L L L
�

(92)
In the limit → ∞L  we can turn the sums in (91) into integrals, which at late times can 
be evaluated by a stationary phase approximation. At infinite times we obtain

f
k

g t

lim
d

2
e sin 2 ,

lim lim , 0.
L

L
k

k

t L
L

0

2
i 2( )     ( / )

( )
→

→ →

∫ π
= Θ

=

π

∞

∞ ∞

�

�

�

�
(93)
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Importantly the ‘anomalous’ average ⟨ ( ) ( )⟩Ψ | |Ψ+�t c c tj j  vanishes in this limit. We can 
now immediately conclude that our system relaxes locally to some steady state: any 
operator O acting non-trivially only on a given, finite subsystem B can be expressed 
in terms of fermionic creation and annihilation operators acting only on sites in B. We 
then can use Wick’s theorem to express the expectation value of ⟨ ( ) ( )⟩Ψ | |ΨOt t  in terms 
of the functions ( )�fL  and ( )�g t,L . After taking the infinite volume limit → ∞L , the limit 
→ ∞t  of the resulting expression exists. This argument shows that the steady state 

is completely characterized by the two-point functions (93) and the fact that Wick’s 
theorem holds.

4.1. Generalized Gibbs ensemble

According to our previous discussion the steady state should be described by the GGE 
(43), where the Lagrange multipliers are fixed by

[ ( ) ( )] ⟨ ( ) ( ) ( ) ( )⟩ ( / )† †ρ =
+

= Ψ | |Ψ = Θµc k c k c k c kTr
1

1 e
0 0 sin 2 .k

GGE 2

k
� (94)

As the GGE density matrix is Gaussian a Wick’s theorem holds, and as a consequence 
of (94) the two-point functions in the GGE coincide with those of our steady state. As 
we have a Wick’s theorem in the steady state as well, the GGE correctly reproduces 
all multi-point correlation functions. This proves that the steady state in our example 
is locally equivalent to the GGE (43) and (94).

5. Spreading of correlations after a quantum quench

Let us now turn to the time dependence of the expectation values of local operators 
after a quantum quench. As an example we consider the connected correlation function 

of the fermionic density †=n c cj j j in our example of section 4

( ) ⟨ ( ) ( )⟩ ⟨ ( ) ( )⟩⟨ ( ) ( )⟩= Ψ | |Ψ − Ψ | |Ψ Ψ | |Ψ+ +� � �S t t n n t t n t t n t, .L j j j j� (95)

Application of Wick’s theorem gives

( ) ( ) ( )= | − | −| |� � �S t g t f, , .L L L
2 2

� (96)

It is convenient to isolate the time dependent part ( )| − |�g t,L
2, which is shown in figure 3 

for a quantum quench, where we start in the ground state of ( )µ∆ = = −H J J2 ,  and 
time evolve with ( )µ = −H J0, . At a fixed value of � the connected correlator is expo-
nentially small (in �) until a time

=
�

t
v2

,F
max

� (97)

where in our example =v J2max  is the maximal group velocity of elementary particle 
and hole excitations of our post-quench Hamiltonian ( )µ = −H J0, . At ≈t tF the con-
nected correlator increases substantially, goes through a maximum, and then decays 
in an oscillating fashion. A physical explanation for the light cone eect was provided 
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by Calabrese and Cardy [80, 89]. For a non-interacting, non-relativistic theory like the 
one in our example it goes as follows. We focus on connected correlation functions of 
local operators, e.g.

( ) ⟨ ( ) ( ) ( ) ( )⟩ ⟨ ( ) ( ) ( )⟩⟨ ( ) ( ) ( )⟩= Ψ | |Ψ − Ψ | |Ψ Ψ | |ΨO O O OOOG r r t t r r t t r t t r t, ; .1 2 1 2 1 2
�

(98)

This is the average of the simultaneous measurement of the observables ( )O rj  minus the 
product of the averages of separate measurements of Oj at time t after the quench. The 
initial state in our case is characterized by a finite correlation length ξ

( ) /= ∝ ξ−| − |
OOG r r t, ; 0 e ,r r

1 2
1 2� (99)

and is therefore extremely small at large spatial separations. At time t  =  0 the 
quantum quench generates a finite density of stable quasiparticle excitations through-
out the system. Their dispersion relation is ( )ε p0  as our post-quench Hamiltonian is 
simply ( ) ( ) ( )µ = ∑ εH k n k0, k 0 . The maximal group velocity of these free fermionic  
excitations is

( )
= =

ε
v

p

p
Jmax

d

d
2 .pmax

0
� (100)

At times t  >  0 the quasi-particles created by the quench propagate through the system. 
A measurement at rj will be influenced by quasi-particles from within the ‘backwards 
light cone’ [ ]− +r v t r v t,j jmax max . At all times t  >  0 this will aect the value of the 

1-point functions ⟨ ( ) ( ) ( )⟩Ψ | |ΨOt r tj , but the eect cancels in the connected two-point 

function. At time =∗ | − |
t

r r

v2

2 1

max
 the backwards light cones emanating from r1 and r2 touch, 

Figure 3.  (a) Time dependent part ( ) ( )+ | |∞ ∞� �S t f, 2 of the connected density-
density correlator after a quantum quench where the system is initialized in the 
ground state of ( )µ∆ = = −H J J2 , , and time evolved with ( )µ = −H J0, . A light 

cone eect is clearly visible. (b) ( ) ( ) ( )= = + | |∞ ∞�s t S t f20, 20 2 as a function of time.
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and the average of measurements at r1 and r2 becomes correlated. These connected cor-
relations are induced by quasi-particle pairs created at time t  =  0 and propagating with 
group velocities vmax in opposite directions.

Since the work of Calabrese and Cardy light cone eects after quantum quenches 
have been analyzed in a number of lattice models [25–27, 48, 182–185] and observed 
in experiments on systems of ultra-cold atomic gases [9, 10] and trapped ions [16, 17]. 
The experimental work raises the poignant theoretical issue of which velocity under-
lies the observed light cone eect in non-relativistic systems at finite energy densities. 
Here there is no unique velocity of light, and quasi-particles in interacting systems will 
generally have finite life times depending on the details of the initial density matrix. 
For the case of the spin-1/2 Heisenberg XXZ chain, an integrable model, it was shown 
in [56] that the light cone propagation velocity in general depends on the energy 
density of the initial state, and an explanation for this eect in terms of properties of 
stable excitations at finite energy densities was put forward. More recent theoretical 
works address the influence of long-range interactions on the spreading of correla-
tions [186–191]. Suciently long-range interactions lead to a destruction of light cone 
eects. Non-relativistic continuum models are also known to exhibit modifications to 
light cone behaviour [110].

It is useful to contrast the above discussion to the spreading of correlations in equi-
librium and after ‘local quantum quenches’ [192]. In the latter context one is concerned 
with the spreading of a local perturbation that has been imposed on an equilibrium 
state. Light cone eects are observed in such situations as well, but the spreading 
occurs at the maximum group velocity of elementary excitations over the equilibrium 
state that is being considered. In other words, unlike for global quantum quenches, 
there is no factor of two.

5.1. Relation to Lieb–Robinson bounds

As shown by Lieb and Robinson [193, 194], the velocity of information transfer in 
quantum spin chains is eectively bounded. More precisely, there exists a causal struc-
ture in commutators of local operators at dierent times

∥[ ( ) ( )]∥ ⩽   ( ) ∥ ∥ ∥ ∥ | | | | ξ
− −

O O O Ot c A B, 0 min , e .A B A B

L vt
� (101)

Here OA and OB are local operators acting non-trivially only in two subsystems A and 
B that are spatially separated by a distance L, ∥ ∥.  denotes the operator norm and | |A  
the number of sites in subsystem A. Finally, c, v and ξ are constants. More recently, 
the Lieb–Robinson bounds have been refined [195, 196] and extended to mixed state 
dynamics in open quantum systems [196, 197].

The Lieb–Robinson bound has important consequences for quantum quenches start-
ing in initial states with finite correlation lengths, and time evolving under a short-
ranged Hamiltonian. It was shown in [180] that (101) implies a bound on the connected 
two-point correlation functions after such quenches

( )   ( )〉 ¯( ) 〈Ψ | |Ψ < | | + | | χ− −
O Ot t c A B e .A B

L vt

conn

2
� (102)
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Here c̄, v and χ are constants. The bound (102) shows that connected two-point functions 
of local operators after quantum quenches in spin chains are exponentially small up to 
times t  =  L/2v (see figure 4). This tallies very nicely with the light cone eects discussed 
above. We note that the bound does not provide values for the velocity v or the length χ.

5.2. Finite-size eects

Throughout our discussion we have stressed that we are ultimately interested in tak-
ing the thermodynamic limit. In a large but finite system local observables can never 
truly relax. There always will be recurrences [198] such that the return amplitude 

( ) ( ) ( )〉= |〈Ψ |Ψ |F t t0  is arbitrarily close to 1

( )| − | < εF t1 .� (103)
However, in many-particle systems these typically occur only at astronomically late 
times. The exception to this rule are cases in which the spectrum of the post-quench 
Hamiltonian in a (large) finite volume for some reason has a highly commensurate 
structure. A very simple example are Hamiltonians with equidistant energy levels 

δ= +E E nn 0 , for which we have ( / )π δ =F j2 1.

Figure 4.  ‘Quasi-particle picture’ for the light cone eect [89]: (a) At time t  =  0 the 
quantum quench creates quasi-particle excitations throughout the system. (b) At 
time t quasi-particles from within the ‘backward light cone’ [ ]− +r v t r v t,j jmax max  
will aect a measurement at position rj. This leads to de-phasing of 1-point 

functions ⟨ ( ) ( ) ( )⟩Ψ | |ΨOt r tj . (c) At time =∗ | − |
t

r r

v2

2 1

max
 the backwards light cones touch, 

and measurements at r1 and r2 become correlated. (d) Connected correlations are 
induced by quasi-particle pairs created at time t  =  0 and propagating with group 
velocities vmax in opposite directions.
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A more relevant eect in practice are revivals, which refers to situations where 
( ) ( )=F Ot 1 . This again requires the finite size energy spectrum to have a certain regu-

larity, as is the case for example in conformal field theories [88, 91].
A dierent finite-size eect aects all observables and is related to the light cone 

repeatedly traversing the system [37, 50, 104, 106]. We refer to this eect as a traversal. 
As an example we consider the connected two point function (95) on a finite ring. A 
density plot is shown for a system of size L  =  100 in figure 5. We see that the light 
cone traverses the system and induces a signal in ( )�S t,L  at a time L v2 max( )/− | |�  after 
the light cone first reaches. Clearly at times t L v2 max( )/> − | |�  correlation functions of 
the finite system look very dierent from the ones in the thermodynamic limit. As is 
shown in figure 6, the traversal in not associated with any revival, because the return 
amplitude remains exponentially small in the system size.

6. Transverse-field Ising chain (TFIC)

We now turn our attention to a key paradigm for quantum quenches, the transverse-
field Ising chain

( ) ∑ σ σ σ= − +
=

+
�

� � �H h J h .
L

x x z

1
1� (104)

Here we impose periodic boundary conditions σ σ≡α α
+L 1 1 , L even, ⩾h 0 and J  >  0. We note 

that the signs of h and J can be reversed by unitary transformations with respectively

Figure 5.  (a) Same as figure  3 but for a finite system with L  =  100 sites and 
periodic boundary conditions. At times Jt  >  12.5 the light cone has traversed the 
system and eventually causes a revival of the connected correlation function at 
a given separation �. This is strictly a finite-size eect and has no analog in the 

thermodynamic limit. (b) s t S t f20, 20L L
2( ) ( ) ( )= = + | |�  for L  =  100 as a function 

of time.
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� �U U, .
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x
L

x y
1

1

2

1

2

2 1 2� (105)

The Hamiltonian (104) has a Z2 symmetry of rotations by π around the z-axis. The 
ground state phase diagram of the TFIC features a paramagnetic (for h  >  1) and a fer-
romagnetic (for h  <  1) phase, in which the Z2 symmetry is spontaneously broken. The 
two phases are separated by a quantum critical point at h  =  1, which is described by 
the Ising conformal field theory with central charge c  =  1/2, see [199].

It is well known that the TFIC admits a representation in terms of non-interacting 
fermions. However, the Jordan–Wigner transformation between spins and fermions is 
nonlocal. This renders the TFIC an ideal testing ground for relaxation ideas, in part
icular in relation to the crucial role played by locality.

The study of non-equilibrium dynamics in the TFIC was initiated in a seminal 
paper by Barouch, McCoy and Dresden in 1970 [45]. They analyzed the time evolution 

of the transverse magnetization ⟨ ( ) ( )⟩σΨ | |Ψ�t tz  and observed that it relaxes to a non-
thermal value at late times. The focus of research on the TFIC and its two-dimensional 
classical counterpart then shifted to the determination of equilibrium properties, and 
it took thirty years before the issue of relaxation after quantum quenches returned to 
centre stage [34, 35]. A combination of experimental advances in cold atom systems 
and the theoretical insights gained through the study of quantum quenches in confor-
mal field theories [80, 89, 90] revitalized the quest for obtaining a complete understand-
ing of the quench dynamics in the TFIC. Exact closed form expressions for the time 
evolution of the entanglement entropy after a global quench were obtained in [48]. 
By combining free-fermion techniques with numerical methods important insights on 
thermalization issues were gained [33], and finite-size eects like traversals were ana-
lyzed in detail [37]. Exact results for the time evolution of order parameter correlations 
were finally obtained in [25–27, 40], and it was demonstrated that the stationary state 
is described by a generalized Gibbs ensemble. The time evolution of reduced density 
matrices was studied in [28], and the question of which conservation laws are most 
important for characterizing the stationary state with a given accuracy was resolved. 

Figure 6.  The return probability for the same quench as in figure 3 with L  =  100 
sites and periodic boundary conditions. The overlap with the initial state remains 
negligible at any time t  >  0.
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References [39, 50] introduced a semi-classical approach to quantum quenches by gen-
eralizing a method developed by Sachdev in the context of equilibrium dynamics [199]. 
Dynamical (non-equal time) correlations were studied in [29, 39, 50] in relation to the 
question whether the stationary state fulfils a fluctuation-dissipation theorem. Progress 
on experimental studies of non-equilibrium evolution in TFICs has been more limited. 
Reference [11] reported results on quantum quenches in a cold atom system described 
by one dimensional Bose Hubbard chains, which map onto the TFIC in a particular 
limit. Reference [200] proposed a realization of the TFIC with a time-dependent magn
etic field in the framework of circuit QED.

6.1. Fermionic form of the Hamiltonian

Spin chains that can be mapped to free fermions dier in two important aspects from 
free fermion models like the one we considered in section 4:

	–	 two-point functions of spin operators map onto n-point correlation functions of 

fermions, where n is related to the distance between the two spins and can be 

arbitrarily large;

	–	 The ground state of the TFIC in the ordered phase is not a Fock state (as a result 
of spontaneous symmetry breaking).

The Hamiltonian (104) can be mapped to a fermionic theory by a Jordan–Wigner 
transformation

( ) ( )
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Here �a  are Majorana fermions satisfying the anti-commutation relations 

{ } δ=� �a a, 2n n. The usual spinless fermions are obtained by taking linear combinations  

( )/† = +−� � �c a ai 22 1 2 . It is now straightforward to see that spin–spin correlation func-
tions map onto expectation values of strings of fermions, e.g.

i a i a .x
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Application of the Jordan–Wigner transformation to the TFIC Hamiltonian (104) 
results in a fermion Hamiltonian of the form

[ ] [ ]/ ∑
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(108)

Here πNei  is the fermion parity operator with eigenvalues ±1
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( )∏ ∏σ= = − = −π π π

= =�
�

N N Ni a a ae , e e .
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j j j
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1 1

2
i i

� (109)

HR,NS commute with the fermion parity operator, and the full Hamiltonian (108) is 
therefore block-diagonal: HR (HNS) describes the action on states with an odd (even) 
number of fermions. We note that the free fermion Hamiltonians /HNS R are closely 
related to the pairing model (83) considered earlier

( )= − − − +H H J hJ JhL, 2 .R� (110)

6.1.1. Ground states  The Hamiltonians /HNS R can be diagonalized by Bogoliubov 
transformations to canonical momentum space fermion operators bp (details can be 
found in e.g. appendix A of [25])

( ) ( )  †⎜ ⎟
⎛
⎝

⎞
⎠∑ ε= − =

∈

H h p b b
1

2
, a R, NS,

p

h p pa

a
� (111)

where the single-particle energy is given by

( )ε = + −k J h h k2 1 2 cos .h
2� (112)

The dierence between R and NS sectors enters via the allowed values of the momenta, 

which are = π
p

n

L
, where n are even/odd integers for R and NS fermions respectively. 

The ground states of ( )H hR,NS  are the fermionic vacua

b GS p0 a, a R, NS.p a〉  | = ∀ ∈ =� (113)

These vacuum states are also eigenstates of the fermion parity operator

〉 〉 〉 ( ) 〉| = | | = − |π πN NGS GS GS h GSe , e sgn 1 .i
NS NS

i
R R� (114)

From (108) it follows that in the ferromagnetic phase h  <  1 both fermion vacua are 
eigenstates of the full Hamiltonian H. Their respective energies are exponentially (in 
system size) close, and they become degenerate in the thermodynamic limit. Spin-flip 
symmetry then gets spontaneously broken, and the ground state is either the symmet-
ric or the antisymmetric combination of the two vacuuum states. In the paramagnetic 
phase h  >  1 the ground state of H is given by the NS vacuum state. In summary, we 
have

GS

GS GS
h

GS h

2
1

1.

NS R

NS

〉
〉 〉

〉

⎧
⎨
⎪

⎩⎪
| =

| ±|
<

| >
� (115)

This shows that for h  <  1 the ground state of H is not a Fock state.

6.2. Quantum quench of the transverse field

We now consider the following quench protocol. We prepare the system in the ground 
state of H(h0), and at time t  =  0 quench the transverse field to a new value h. At times 
t  >  0 we time evolve with the new Hamiltonian H(h). All local operators in spin basis 
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can be classified according to their fermion parity, and this turns out to be very useful. 
We have

e e .e o e o
i i

/ /= ±π π−O ON N� (116)

6.2.1. Quenches originating in the paramagnetic phase  For a quench starting in the 
paramagnetic phase it follows from (115), (108) and (114) that the state of the system 
at times t  >  0 is given by

( )⟩ ⟩ ⟩|Ψ = | ≡ |− −t GS GSe e .Ht H ti i
NS

NS� (117)

This is even under fermion parity. Hence expectation values of odd operators must 
vanish

⟨ ( ) ( )⟩Ψ | |Ψ =t O t 0.o� (118)
By virtue of the simple form of both the time evolution operator HNS and the initial 

state ⟩|GS NS in (117), expectation values of even operators can be calculated by apply-
ing Wick’s theorem. This allows the reduction of expectation values of strings of fer-

mion operators to Pfaans involving only the two-point functions ⟨ ⟩a ai j  [46, 47, 177]. 
For example we have
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(119)
6.2.2. Quenches originating in the ferromagnetic phase  As a result of spontaneous 
symmetry breaking in the ground state, the situation for quenches originating in the 
ferromagnetic phase h0  <  1 is more complicated. The time evolved initial state is

( )〉
〉 〉

|Ψ =
| ± |− −

t
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2
.

H t H ti
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i
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The expectation values of even operators can be expressed in the form
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(121)

In the last line we have used that the expectation values in the R and NS sectors 
become equal in the thermodynamic limit. The last line in (121) can again be evaluated 
by application of Wick’s theorem.

In contrast, expectation of odd operators cannot be simplified in this way. Instead 
we have

〉 [ 〉 ]〈 | | = ± 〈 | |− −O OGS GS GS GSe e Re e e .Ht
o

Ht H t
o

H ti i
NS

i i
R

NS R� (122)

Wick’s theorem does not apply here, and in order to proceed one commonly resorts to 
one of the following methods [202]:
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	1.	 Using the cluster decomposition property we can obtain (122) from the expectation 
value of an even operator by considering the limit

GS GS GS r r d GSe e lim e e .Ht
o

Ht

d

H t
o o

H ti i
NS

i i
NS

NS NS〉 ( ) ( ) 〉
→

|〈 | | | = 〈 | + |−

∞

−O O O� (123)

	2.	 One imposes open boundary conditions on the spins (in that case the Hamiltonian 
is mapped into a purely quadratic form of fermions) and considers the expectation 
value of Oo asymptotically far away from the boundaries.

An alternative method that applies more generally to integrable models was developed 
in [25–27]. It is based on the observation that the initial state after the quench can be 
expressed in a squeezed state form, e.g.

K p b b GS0 exp i .
p

p p
0 NS

NS〈 ( ) ( ) 〉† †
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥∑Ψ =

< ∈
−� (124)

Here K( p ) is a function that depends on the quench (see (132)), †bp are the aforemen-

tioned momentum space Bogoliubov fermion operators. Two point correlation func-
tions can then be written in a Lehmann representation based on energy eigenstates. 
The matrix elements (‘form factors’) in the Lehmann representation are known [203], 
and it is possible to obtain explicit results in the framework of a low-density expansion. 
We refer the reader to [26, 27] for further details and the explicit calculations. Here we 
only review and discuss the main results.

6.3. Stationary state properties

Stationary state properties were analyzed in detail in [27]. An important simplification 
at late times is that expectation values of odd operators go to zero. As discussed above, 
for quenches originating in the paramagnetic phase they vanish identically because 
the Z2 symmetry remains unbroken. On the other hand, for quenches originating in 
ferromagnetic phase (h0  <  1) their expectation value is generally nonzero (see (122)). 
However, as shown in [28], expectation values of all odd local operators decay exponen-
tially in time to zero. This leaves us with expectation values for even operators, which 
can be analyzed by standard free fermion methods. The basic object is the fermion two-
point function, which in the thermodynamic limit can be written in the form (see (91))
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Here A(k) and B(k) are smooth functions (we are considering noncritical quenches) that 
depend on the quench details and ( )ε kh  is the dispersion relation (112). By the Riemann-
Lebesgue lemma, in the infinite time limit the fermion two-point functions approach 
stationary values

⟨ ⟩ ( )
→ ∫ π

=
π

π

∞ ≠ −
−�

�
�a a

k
A klim i

d

2
.

t
n

n
n� (126)
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Since the expectation value of any even local operator can always be written as a finite 
sum of finite products of fermion two-point functions (see (119)), the infinite time limit 
exists and is obtained by replacing (125) with (126). Courtesy of Wick’s theorem, the 
stationary properties of all other even operators can be expressed in terms of (126).

6.3.1. Description of the steady state by a GGE  Since expectation values of odd opera-
tors vanish at infinite times, the steady state can be constructed in complete analogy 
to our fermionic example considered in section 4. The appropriate GGE density matrix 
is of the form

( ) ( )

ρ =
λ λ− ∑ +=

∞ + + − −

Z

e
,

I I

GGE
GGE

j n
n

n
n

1
, ,

� (127)

where the conservation laws ( )±I n,  have been reported earlier in (33). The Lagrange 
multipliers for transverse field quenches were determined in [28]
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The local equivalence of the steady state density matrix to this GGE was demonstrated 
in [25, 28]

( )⟩⟨ ( )
→

ρ|Ψ Ψ |=
∞

t tlim .
t

loc GGE� (129)

The GGE can be interpreted as a Gibbs ensemble at inverse temperature β = −J 1 for 
an eective ‘GGE Hamiltonian’, defined as

∑ λ≡
=

∞
+ +H J I .

j
j jGGE

1
� (130)

By virtue of (128) this ‘Hamiltonian’ is long-ranged. It can be diagonalized by com-
bined Jordan–Wigner and Bogoliubov transformations [28], which for a quench from 
h0 to h results in
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where
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( ( ) ( )( ) ( ) ( ))ε ε

=
−

+ + − +−K p
p h h
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2
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2
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� (132)

The ‘dispersion relation’ ( )J K plog 2  diverges logarithmically at momenta zero and π. 
This is related to the fact that the mode occupation numbers at these momenta are 
independent of h, and ultimately produces the algebraic decay (128) of the Lagrange 
multipliers. These logarithmic singularities do not compromise the cluster decomposi-
tion properties of the steady state.

6.3.2. Connected spin–spin correlation functions  In the stationary state the connected 
two-point correlators decay exponentially with distance [26]
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( ) ⟨ ⟩ ⟨ ⟩⟨ ⟩ ( ) /ρ σ σ σ σ= −αα α α α α α ξ
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− α� � �� �
�C e .c j j j j� (133)

The correlation lengths are given by [26]
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where ( )θ xH  is the Heaviside step function and
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The prefactors ( )α �C  depend on the details of the quench and are listed in appendix C.

6.4. Time dependence

Having established the stationary behaviour of spin correlations, we now turn to their 
dynamics at late times. The first question of interest is how they relax towards their 
stationary values.

For even operators we can use Wick’s theorem to express spin–spin correlators in 
terms of the fermion two-point functions (125). At late times the resulting expression 
can be evaluated by a stationary phase approximation, which gives

〈 〉 〈 〉 ( )[ ]+ −�O O OO t .e e
n

GGE
/2e� (137)

Here the exponent [ ]On e  is an integer that depends on the particular even operator 
under consideration.

Expectation values of odd operators were argued in [28] to decay exponentially in 
time

⟨ ⟩ ( )/ [ ]τ−�O OO e ,o
t o� (138)

where [ ]τ Oo  denotes a relaxation time. Having established the gross structure of the late 
time dynamics, we now turn to a more quantitative description.

6.4.1. One-point functions

Longitudinal spin operator  The longitudinal spin operator ( )σ = − ∏−
=

−� �i aj
x

j j
1

1
2 1  is the 

simplest and most important example of an odd operator. Its expectation value is the 
order parameter in the ferromagnetic phase. As we are dealing with an odd operator, 
its expectation value is identically zero for quenches originating in the paramagnetic 
phase. For quenches from the ferromagnetic phase (h0  <  1) it was shown in [25, 26] that

⟨ ( ) ( )⟩ ( ) /σΨ | |Ψ <τ−�t t C t he , 1,j
x x t

0
x� (139)
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where the inverse decay time is given by
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Here the function K 2(k) has been previously defined in (132). The prefactor C x(t) was 
calculated in [26]
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The oscillatory behaviour for h  >  1 can be related to the presence of a gapless mode with 
momentum k0 in the GGE Hamiltonian (130) ( ( ) =K k 12

0 ). It was noted in [42] that the 
period of the oscillations in (141) coincides with cusps in the time evolution of the loga-

rithm of the return probability per unit length ( ) ⟨ ( ) ( )⟩→= − | Ψ | |Ψ |∞
−f t lim log 0 e 0L L

Ht1 i 2 

after quenches between the phases. The result (139) has been derived in the late time 
limit �Jt 1. However, it gives an excellent account of the full answer except at very 
short times. This can be shown by comparing (139) to a numerical solution based on 
free fermion methods [26]. The latter works directly in the thermodynamic limit and 
does not suer from finite-size eects. Figure 7 shows such comparisons for two dierent 
quenches within the ferromagnetic phase, and for two quenches from the ferromagnetic 
to the paramagnetic phase. The agreement is visibly excellent even at moderate times.

Figure 7.  Expectation value of the order parameter after two quenches within 
the ferromagnetic phase (left) and two quenches across the critical point (right). 
Numerical results obtained in the thermodynamic limit are compared with the 
asymptotic predictions (139) (labelled as ‘determinant’). In the left panel analytic 
results obtained by form factor methods [26] are shown as well (labelled as ‘form 
factor’). The agreement in all cases is excellent even at the short times depicted 
(Figures taken from [26].).

http://dx.doi.org/10.1088/1742-5468/2016/06/064002


Quench dynamics and relaxation in isolated integrable quantum spin chains

35doi:10.1088/1742-5468/2016/06/064002

J. S
tat. M

ech. (2016) 064002

At first sight the exponential decay (139) of the order parameter for quenches 
within the ferromagnetic phase may look surprising. Even a very small quench will 
lead to the eventual disappearance of the order parameter. A simple way of under-
standing this is to note that the ferromagnetic order persists only at zero temper
ature T  =  0, and melts for any T  >  0. By means of our quantum quench we deposit 
a finite energy density into the system, which is very similar to imposing a finite 
temperature. This consideration provides an intuitive explanation for why even 
small quenches wipe out the long range order present in the initial state. We note 
that this behaviour is specific to one dimensional systems, where discrete symme-
tries can be spontaneously broken only at T  =  0. In higher dimensional systems we 
expect order parameters to be generally stable when subjected to suciently small 
quantum quenches.

Finally we note that the expectation value ⟨ ( )⟩σ tj
y  can be obtained in a simple way 

by considering the Heisenberg equations of motion for σ j
x, and is given by
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Transverse spin operator  The spin operator σ = −a aij
z

j j2 2 1 is even and its expecta-
tion value can be straightforwardly calculated with free-fermion techniques [45, 47]. It 
decays like a t−3/2 power law in time towards its stationary value ⟨ ⟩⋅ GGE

t t

h h

hJt

J h t

h h

J h t

h h
O Jt

4 2

sin 4 1 4

1 1

sin 4 1 4

1 1
.

l
z

Jt l
z

1 GGE

0

3
2 0 0

5
2

( ) ( )〉 〉

( )

( / ) ( ( ) / )
( )

(( ) )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

σ σ

π

π π

〈Ψ | |Ψ | = 〈

+
− | − | +

| − | | − |
−

+ −
+ +

+ −

�
�

(143)

The relaxation to the stationary value is only algebraic, in agreement with (137).

6.4.2.  Spin–spin correlators in the ‘space-time scaling limit’  A particularly useful way 
of describing the time dependence of two-point functions after a quantum quench is  
by considering an asymptotic expansion around the so-called space-time scaling limit 
[25, 26]. The latter refers to the behaviour along a particular ray in space-time

→ κ∞ = =�
�

t
v t

, , fixed.max
� (144)

Here 
( )= ε

v maxk
k

kmax
d

d
h  is the maximal group velocity of elementary excitations of the 

post-quench Hamiltonian.

Transverse spin–spin correlator  In the space-time scaling limit, the asymptotic behav-

ior of ( )ρ � t,c
zz  can be evaluated by means of Wick’s theorem, followed by a stationary 

phase approximation. The leading behaviour is a t−1 power-law decay, and the sublead-
ing corrections are power laws as well [26]
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( ) ( )⎜ ⎟
⎛
⎝

⎞
⎠ρ

κ κ
= ∼ + −�

v t
t

D t

t
o t, .c

zz
z

max

2
1

� (145)

Here Dz(t) is the sum of a constant contribution and oscillatory terms with constant 
amplitudes.

Longitudinal spin–spin correlator  In the space-time scaling limit the order parameter 
two-point function ( )ρ � t,xx  takes the form

( ) ( ) ( )
( )

( ( ) )
⎡

⎣
⎢

⎤

⎦
⎥∫ρ

π
ε

−
+

′
π

� � � �Ct t
k K k

K k
k t, , exp

d
ln

1

1
min 2 , .xx x

h
0

2

2� (146)

The function ( )�C t,x  has been determined in [26].

	1.	 For quenches within the ferromagnetic phase, h0, h  <  1, ( )�C t,x  equals the constant 
denoted by Cx

FF in (C.3). For times smaller than the Fermi time

=
�

t
v2

,F
max

� (147)

		 equation (146) equals the square of the one-point function (139). Thus, in the 
space-time scaling limit, connected correlations vanish identically for times <t tF 
and begin to form only after the Fermi time. We stress that this does not imply 
that the connected correlations are exactly zero for <t tF: in any model, both on 
the lattice or in the continuum there are exponentially suppressed terms (in �), 
which however vanish in the scaling limit.

	2.	 For quenches from the ferromagnetic phase to the paramagnetic phase the pref-
actor is given by

( ) [ ( )( ( ( ) ) )]θ ε α= + − + + …�C Ct t t k t, 1 cos 2 ,x x
hFP H F 0� (148)

		  where Cx
FP is the constant defined in (C.4), while k0 and α are the constants 

appearing in the one-point function (141). For <t tF, (146) is simply the square of 
the corresponding one-point function, which ensures that connected correlations 
vanish for <t tF in the space-time scaling regime. We note that the expression for 
<t tF is a conjecture [26].

	3.	 For quenches within the paramagnetic phase one has

( ) ( ) ( ) ( ) ( )∫ π ε
ε+ − − + …

π

π

−
� � � �C Ct h J h

k K k
t k, 1 4

d
sin 2 ,x x

k
kPP

2 21
4� (149)

		  where ( )�Cx
PP  is the function defined in (C.6). Equation (149) constitutes the leading 

order in a low-density expansion computed within the form-factor formalism. The 
exact expression for a generic (not small) quench is not known.

	4.	 For quenches from the paramagnetic to the ferromagnetic phase, for >t tF, ( )�C t,x  
is independent of time and is given by ( )�Cx

PF  of (C.5). For <t tF the correlator is 
exponentially small and, to the best of our knowledge, there are no analytic predic-
tions for its behaviour.

http://dx.doi.org/10.1088/1742-5468/2016/06/064002


Quench dynamics and relaxation in isolated integrable quantum spin chains

37doi:10.1088/1742-5468/2016/06/064002

J. S
tat. M

ech. (2016) 064002

6.4.3.  Long time asymptotics of connected spin–spin correlators at a fixed separation   
The late time asymptotics of spin–spin correlation functions at a fixed separation � 
between the spin operators was analyzed in [26].

	1.	 In the late time regime at fixed, large �, ( )ρ � t,c
zz  decays in a power law fashion to 

its stationary value

( ) ( ) ( ) ( )
/ ˜

/
/ρ ρ∼ ∞ + +

ξ−
−� �

� �
t

E t

t
o t, ,

e
.c

zz
c
zz

z

3 2
3 2

z

� (150)

		 Here ( ) ( ( ) )ε ϕ= ∑ +π=E t A t qcos 2z
q q h q0,  and the steady state value is exponentially 

small in �, ( ) /ρ ∞ ∝ ξ−� �, ec
zz

z. Crucially one has (see (134))

˜ ( )ξ ξ= | | | | <
− −h hmin log , log .z z

1
0

1
� (151)

		 This implies that the time scale after which the stationary behaviour becomes 
apparent is in fact exponentially large in the separation �. This makes the sta-
tionary behaviour dicult to observe in practice.

	2.	 For quenches originating in the ferromagnetic phase, the stationary value of ( )ρ � t,xx  
emerges at a time scale

/τ ∼ − �v ,F
x

max
1 4 3� (152)

		  where vmax is the maximal velocity at which information propagates. This makes 
the approach to the steady state straightforward to observe.

	3.	 For quenches within the paramagnetic phase, ( )ρ � t,c
xx  exhibits an oscillatory power-

law decay in time towards its stationary value, which is exponentially small in �. 
Hence, in complete analogy to the case of the transverse two-point function, the time 
scale τPP

x  after which the stationary behavior reveals itself is exponentially large

/τ ∝ ξ�e ,PP
xx 2 3 x� (153)

		 and very dicult to observe in practice.

6.5. Reduced density matrices

As we have seen above, the quench dynamics of one and two point functions of quantum 
spins is rich and interesting. However, these are nonetheless very special observables. Ideally 
one would like to have access to the full reduced density matrix for a given subsystem size, 
as its matrix elements encode the evolution of all correlation functions, see (21). In practice 
this is only possible in very simple non-interacting examples, or for very small subsystem 
sizes. An example are quenches in the disordered phase of the TFIC [28, 176]. Here the 
reduced density matrix on the interval [ ]�1,  is given by

( )
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟∑ρ =�

�

t
Z

a W a
1

exp
1

4
,

n

l lm m

,
� (154)
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where a2n and a2n−1 are the Majorana fermion operators (106) and the factor Z ensures 
( ( ))ρ =� tTr 1. The matrix W is related to the two-point function of Majorana fermions 

by [123, 124, 204]

⟨ ( ) ( )⟩ δ= Γ Γ = Ψ | |Ψ − = −Γ
W

t a a ttanh
2

, ,jk k j j k kj,� (155)

where the time evolved initial state ( )⟩|Ψ t  is given by (117). The matrix elements of the 
correlation matrix are simple (single) integrals and can be found in [26].

As we have argued above, at late times after global quantum quenches isolated 

quantum systems relax locally towards some steady states ρSS. How quickly this relax-
ation occurs can be eciently measured by considering the distance of the time evolv-

ing reduced density matrix ( )ρ tB  from its steady state value ρB
SS, where B is a subsystem 

of a given size. This diagnostic can be implemented quite generally numerically as long 
as the subsystem size is small [205]. For models that can be mapped to non-interacting 
theories, it is possible to go considerably further. An example is the TFIC, which was 
considered in [28]. The first step is to introduce a measure of distance on the space of 
RDMs on a given subsystem. A convenient choice was introduced in [28]

( )
[( ) ]

[( ) ] [( ) ]
ρ ρ

ρ ρ
ρ ρ

=
−

+
D ,

Tr

Tr Tr
.1 2

1 2
2

1
2

1
2� (156)

Figure 8 shows results for the distance between the RMDs for the time-evolving and 
stationary states for quantum quenches within the disordered and ordered phases in 
the TFIC. Subsystems consisting of � neighbouring sites are considered, where � ranges 

Figure 8.  Normalized distance ( ( ) )( ) ρ ρ= � �D D t ,GGE GGE  after a quench within 

the paramagnetic (left) and ferromagnetic (right) phase for subsystem sizes 

= …� 10, 20, , 150. As � increases, the color changes from brown to green, the 

symbols become smaller and the curves narrower. At late times ( ( ) )( )ρ ρ� �D t , GGE  

tends to zero in a universal power-law fashion ( ) /∝ −Jt 3 2. For quenches in the 
ordered phase there is an intermediate time regime, in which the distance decays 
exponentially (inset). This stems from the non-vanishing spontaneous magnetization 
in the initial state for this quench (Figures taken from [28].).
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from 10 to 150. In both cases the distance is seen to eventually decay as a power law 
in time

( ( ) ) ( )ρ ρ ∝ −�� �D t Jt, .GGE 2
3
2� (157)

The power-law decay of the distance in time can be interpreted by relating it to expec-
tation values of local operators in the subsystem. Using (21) one can show that

( ) ( ( ) ) ( )
[( ) ]

[ ] [ ]
ρ ρ

ρ ρ

ρ ρ
= =

| − |

+
D O O

O

O O
R R, ,

Tr

Tr Tr
,1 2

2 1
2

1 2

1
2

2
2� (158)

where the bar denotes an average on the space of operators acting on the spins in the 
subsystem, taken with respect to the probability distribution

( )
[ ] [ ]

[ ] [ ]
ρ ρ
ρ ρ

=
+

∑ +′ ′′
O

O O

O OO

P
Tr Tr

Tr Tr
.1

2
2

2

1
2

2
2� (159)

Here the sum is over all operators σ σ σ…α α α
�
�

1 2
1 2 , where α = x y z0, , ,j  and where we have 

assumed for simplicity that the subsystem is the interval [ ]�1, . The contribution from 
a given operator O to the distance is weighted by the square of its expectation value. 
This shows that (158) measures a mean relative dierence between the expectation 
values of local operators in the two states.

As ( ) ⩽ ( ( ) ) ( ( ) )/ ρ ρ= � �O O DR R t ,2 1 2 GGE  we may use (158) to identify a time scale ∗trms 

associated with the relaxation of the ‘typical’ operator (with respect to the probability 
distribution (159))

∼∗ �Jt .Brms

4
3� (160)

The time scale ∗trms is very dierent from the ones governing the time evolution of the 
two-point functions of spin operators.

6.6. Entanglement entropy

The von Neumann entropy (also known as entanglement entropy) of a density matrix 
ρ is defined as

[ ] [ ]ρ ρ ρ= −S Tr log .vN� (161)

If ρ is a reduced density matrix in a system that is in a pure state, SvN measures the 
entanglement between the subsystem and its complement. Entanglement entropies 
have become a standard diagnostic for detecting and identifying quantum phase trans
itions. In the context of quantum quenches the time evolution of the von Neumann 
entropy and other entanglement measures provides very useful information about the 
spreading of correlations [16, 31, 48, 89, 109, 127, 182, 183, 206–209]. A key result 
obtained in [48] is that after quenches to conformal field theories the von Neumann 
entropy of a subsystem of length � increases linearly in time until it eventually satur
ates (see the review by Calabrese and Cardy [88] in this volume)
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[ ]
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⎨
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⎩
⎪⎪

ρ

π

π
∼

<
�

� �
ε

ε
�

S

cvt
vt

c
vt

6 2

12 2
.

vN� (162)

Here c is the central charge of the CFT, ε is a constant with dimensions of length that 
depends on the initial state and v is the speed of light. The two behaviours in (162) 
connect smoothly over a region | − | ∼� εvt

2
. A physical interpretation of the result (162) 

is provided by the Calabrese–Cardy quasi-particle picture [89] we already encountered 
in section 5. Its application to the time evolution of the entanglement entropy in inte-
grable models initialized in squeezed states with finite correlation lengths proceeds as 
follows. The idea is that in a squeezed state correlations spread via the propagation of 
pairs of quasi-particles with equal but opposite momenta. At time t  =  0 the quantum 
quench generates such quasi-particles pairs throughout the system. Correlations 
between quasi-particles produced at a distance larger than the correlation length in 
the initial state can be neglected. The entanglement between a given region B and its 
complement is generated by quasi-particle pairs. The entanglement entropy is inter-
preted as a measure of the number of correlated pairs such that, at a given time, one 
quasi-particle is inside B and one outside, see figure 9. Entanglement is initially gener-
ated at the boundaries of B, and the entangled region spreads outwards in the form of 
two light cones. This picture suggests the following semiclassical expression for the von 
Neumann entropy

[ ]   ( ) ( ( ) )∫ρ = | |�S k f k v k tsc d min , 2 .B BvN� (163)

Figure 9.  Space-time picture illustrating the semiclassical interpretation of 
entanglement entropy growth after a global quantum quench [89]. Quasi-particles 
moving at the maximal group velocity are indicated by thick black arrows, and 
are initially generated throughout the system by the quantum quench. Slower 
quasi-particles are shown only on the left (short dashed gray arrows). At time ta 
the entanglement entropy of B is still increasing linearly in time, as there are still 
trajectories such that maximum velocity quasi-particle pairs are incident inside B. 
At times t  =  tb the entanglement entropy starts saturating because any maximum 
velocity quasi-particle incident in B generates entanglement with the rest of the 
system.

B t

ta

tb
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Here v (k) is the semiclassical group velocity ( ) ( )= ε
v k

k

k

d

d
, ( )ε k  is the dispersion relation 

of the quasiparticles and f (k) is an unknown function that contains information on the 
initial state.

This behaviour has been observed in a variety of lattice and continuum models  
[31, 48, 89, 109, 127, 182, 183, 206, 209], including non-integrable cases [183], in which 
the quasi-particle picture does not apply by virtue of the finite quasi-particle life time. 
The semiclassical interpretation has been generalized to prethermalized regimes in 
models with weak integrability breaking [127].

The linear entanglement growth after quantum quenches has important ramifications. 
It is a crucial limiting factor for applying matrix-product state methods such as t-DRMG 
[210] and i iTEBD [211] algorithms to the computation of the dynamics after global 
quantum quenches. We note that translational invariance is essential for the quasi-
particle picture to hold, and the time evolution of the entanglement entropy in e.g. 
disordered models [206] is very dierent.

Exact results for the evolution of the entanglement entropy after quenches in the 
transverse field Ising chain [48] are in accordance with the structure (163) suggested by 
the quasi-particle picture. In the limit �� Jt1 , , the entanglement entropy of a block of 
� neighbouring spins is

S
k

w n k k t o
d

2
0 0 min , 2 ,BvN[ ]   (〈 ( ) ( ) ( )〉)   ( ( ) ) ( )∫ρ

π
εΨ | |Ψ | | +′

π

π
� � �� (164)

where ( ) ( ) ( )= − − − −w x x x x xlog 1 log 1  is the entropy per site (see appendix B), and 
⟨ ( ) ( ) ( )⟩Ψ | |Ψn k0 0  is the (conserved) density of elementary excitations of the post-quench 
Hamiltonian H with momentum k at times t  >  0. It is given by

⟨ ( ) ( ) ( )⟩ ( )
( )

Ψ | |Ψ =
+

n k
K k

K k
0 0

1
,

2

2� (165)

where K 2(k) was defined previously in (132). It follows from (164) that the entangle-
ment entropy increases linearly until the Fermi time (147), and then slowly approaches 
its stationary value set by the GGE. The latter equals the entropy per site of the GGE 
for the entire system [109]

  (⟨ ( ) ( ) ( )⟩) [ ]
→∫ π

ρΨ | |Ψ =
π

π

∞

k
w n k

L
S

d

2
0 0 lim

1
.

L
vN

GGE
� (166)

These observations persist for quantum quenches in the TFIC starting in excited states [31].
Interestingly, the stationary value of the entropy density in the diagonal ensemble 

diers from that in the GGE [30, 212]. This is not a problem, because the entropy per 
site is a global property of the system, while the equivalence between ensembles only 
holds for (finite) subsystems in the thermodynamic limit. A detailed explanation of the 
origin of this dierence for the case of the TFIC was provided in [30].

6.7. Dynamical spin–spin correlation functions

We now turn to dynamical correlation functions

( ) ⟨ ( ) ( ) ( ) ( )⟩ρ σ σ+ + = Ψ | |Ψαα α α
+� �t t t t t t t t, , .j j1 2 1 2� (167)

http://dx.doi.org/10.1088/1742-5468/2016/06/064002


Quench dynamics and relaxation in isolated integrable quantum spin chains

42doi:10.1088/1742-5468/2016/06/064002

J. S
tat. M

ech. (2016) 064002

The transverse correlator (α = z in (167)) can be calculated by elementary means [45], 
as σ j

z is quadratic in Jordan–Wigner fermions. The order parameter correlator (α = x in 
(167)) is much more dicult to evaluate. In [29] it was determined by means of a gen-
eralization of the form factor methods developed in [26], and by exploiting exact results 
in particular limits [27]. These methods are so far restricted to quenches within either 
the paramagnetic or the ferromagnetic phase, and lead to answers of the form [29]

⎡
⎣⎢

⎤
⎦⎥

t t t C t
k K k

K k
k k t, , , , exp

d
log

1

1
min max , , 2 .xx x

h h2
0

2

2
( ) ( ) ( )

( ) { [ ( ) ] ( )( )}∫ρ τ τ
π

ε τ ε τ+ +
−
+

+′ ′
π

� � � �

�

(168)
Here the functions ( )ε kh  and K 2(k) are given in (112) and (132) respectively, and h0 and 

h are the initial and final values of the transverse field. The function ( )( ) τ�C t, ,x  depends 
on the phase in which the quench is performed:

	1.	 In the ferromagnetic phase, h0, h  <  1, ( )τ�C t, ,x  equals the constant Cx
FF in (C.3).

	2.	 In the paramagnetic phase (h0, h  >  1) ( )τ�C t, ,x  is given (to leading order in the 
form factor expansion) by [29]

( )
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2
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h

4
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(169)

		 In the complementary regime ( )τ+ < �v t2max  the correlator is exponentially small 
and this expression no longer applies.

The form factor result gives an excellent approximation to the exact answer (which 
can be computed numerically using free fermion techniques) for ‘small’ quenches [29]. 
These are defined as being characterized by having low densities of excitations in the 
initial state.

It is possible to obtain some of these results in an alternative way by generalizing 
the semiclassical approach of [39] to the non-equal time case, and then elevating it 
using exact limiting results derived in [25, 26]. This method fails to reproduce the result 
for quenches in the disordered phase outside the light cone τ< �vmax , but is significantly 
simpler.

7. Relaxation in interacting integrable models

We now turn to interacting integrable models that are solvable by the Bethe Ansatz 
[20, 213, 214]. By ‘interacting’ we mean theories in which the scattering matrix is 
momentum dependent. Most of our discussion will focus on the example of the spin-1/2 
Heisenberg chain.
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7.1. The ‘initial state problem’

Integrability allows the construction of a basis of simultaneous eigenstates of the 
Hamiltonian and all its conservation laws. Unlike in the non-interacting case these states 
have a very complicated structure described by the Bethe Ansatz [20, 213, 214]. When 
we consider a quench between two integrable Hamiltonians ( ) → ( )H h H h0 , we are thus 
faced with the problem of how to translate between the eigenbases of the two integrable 
theories. This is a dicult undertaking [215, 216], and no general formalism for achiev-
ing it is currently known. Progress has however been made in cases where the initial 
state has a simpler structure, in particular for (matrix) product states in either position 
[58, 63, 65, 66, 68, 69] or momentum/rapidity space [95, 97, 105, 107, 111, 113, 114].  
There are two main methods for encoding the relevant information contained in the 
initial state.

	1.	 Let us denote the eigenstates of the post-quench Hamiltonian H(h) by ⟩|n . One way 
to implement the initial conditions is via the overlaps ⟨ ( )⟩|Ψn 0  [67]. If these are 
known, the initial state can be translated into the eigenbasis of the time evolution 
operator. This method is used in the quench action approach [176] (see the review 
by Caux [217] in this volume).

	2.	 Let us denote the local conservation laws of H(h) by {I (n)}. If the set {I (n)} is in 
some sense complete [112, 218, 219], then the initial conditions can be encoded in 
the constraints

⟨ ( ) ( )⟩ ( )
→

( )

→

( )ρΨ | |Ψ
=

∞ ∞

I

L

I

L
lim

0 0
lim

Tr
,

L

n

L

nSS

� (170)
		 where ρSS is one of the density matrices (GGE, GMC, diagonal ensemble) that 

describes the local properties of the stationary state.

In the following we will discuss implementations of the second approach.

7.2. On mode occupation operators

In free theories a convenient way for constructing the GGE is by exploiting the linear 
relation between the local conservation laws and the mode occupation operators, see 
(42). In interacting integrable models the situation is dierent. Like free theories they 
feature stable excitations. In the thermodynamic limit these can be described by cre-

ation and annihilation operators ( )† λZa , ( )λZa  (the index a labels dierent particle spe-
cies) fulfilling the Faddeev–Zamolodchikov algebra [220, 221]

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )† †
λ λ λ λ λ λ

λ λ πδ λ λ δ λ λ λ λ

=

= − +

Z Z S Z Z

Z Z S Z Z

, ,

2 , .

a b ab
cd

d c

a b a b bc
da

d c

1 2 1 2 2 1

1 2 1 2 , 2 1 2 1
� (171)

Here λ parametrizes the momenta ( )λpa  and ( )λ λS ,ab
cd

1 2  is the purely elastic two-particle 
S-matrix. The generalized mode occupation operators ( ) ( ) ( )†λ λ λ=N Z Za a a  then indeed 

provide a set of mutually commuting conserved charges. The problem is that, due to 
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the interacting nature of the stable excitations, there is no simple way of defining such 
operators in the finite volume [95], which is the standard way of making the theory 
well defined (working directly in the thermodynamic limit requires the regularization of 
very complicated singularities [40, 95, 222], which appears impractical in general). The 
problem lies in the nature of the quantization conditions in the finite volume, which on 
a ring of length L read

( )( ) ( ) ( )( )

∏ λ λ= −λ Se , .Lp

b k

ab j
a

k
bi

,

a j
a

� (172)

The solutions to this complicated system of coupled equations are such that the pos-

sible values of ( )λj
a , and hence ( )( )λpa j

a , depend in a very sensitive way on all the other 

particles present in a given excitation. This is fundamentally dierent from the non-
interacting case, where the momenta are simply given by

( )  ( )λ
π

= ×p
L

2
integer,a j

a
� (173)

and are independent of the particle content of a given excitation. This makes it clear 
that defining finite volume analogues of ( )λNa  is dicult.

7.3. The spin-1/2 Heisenberg model

Our paradigm for an interacting integrable model will be the spin-1/2 Heisenberg XXZ 
chain. Its Hamiltonian on a ring with L sites is

[ ]∑ σ σ σ σ σ σ= + + ∆ −
=

+ + +H
J

4
1 ,

j

L

j
x

j
x

j
y

j
y

j
z

j
z

XXZ

1
1 1 1� (174)

where we will assume for definiteness that

( ) ⩾η∆ = cosh 1.� (175)
From now on we set J  =  1.

7.3.1. Generalized microcanonical ensemble  For interacting integrable models the 
GMC is easier to work with than the GGE. It is based on working with macro-states 
obtained by taking the thermodynamic limit of eigenstates constructed from the Bethe 
Ansatz. This procedure is an essential ingredient of the Thermodyamic Bethe Ansatz 
and is reviewed in several monographs [213, 225]. A very brief summary is given in 
appendix B.2. The upshot is that macro-states in integrable models are characterized 

by an (infinite) set of densities { ( ) }ρ λ | = …n 1, 2,n p, , where n labels all distinct stable 
species of excitations in the model. A given macro-state corresponds to a set of micro-
states ⟩|Φ , called representative states in [176]. These are by construction simultaneous 
eigenstates of all local conservation laws. For the macro-state describing the stationary 
state after our quench, they satisfy the initial conditions

⟨ ⟩ ⟨ ( ) ( )⟩
→

( )

→

( )Φ | |Φ
=

Ψ | |Ψ
∞ ∞

I

L

I

L
lim lim

0 0
.

L

n

L

nSS SS

� (176)
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The GMC density matrix is then defined [176] in terms of a single such ‘representative’ 
micro-state ⟩|ΦSS

.GMC SS SS〉ρ = |Φ 〈Φ |� (177)

Here we have assumed that the stationary state is given in terms of a single macro-state 
constructed from the Bethe Ansatz. In principle it is possible that the steady state has 
a more complicated structure and requires a description in terms of a sum of several 
density matrices of the form (177).

7.3.2. Transfer matrix and ‘ultra-local’ conservation laws  According to our general 
discussion, local observables should relax to an appropriate GGE after quenches to the 
XXZ chain. In order to construct this GGE, we need to know the required set of local 
conservation laws of (174). One family of conservation laws has been known for a long 
time and is most conveniently constructed by exploiting the relation of the Heisenberg 
Hamiltonian to the transfer matrix of the six-vertex model [20, 223, 224]. The funda-
mental building block of the six-vertex model is the L-operator

( )
( )

( )( )

λ
η λ

η
λ

η η
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+ + +
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2
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2
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2
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2

sinh ,
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z

n
z
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�

(178)

which acts on the tensor product 2 2C C⊗  of ‘auxiliary’ and ‘quantum’ spaces through 
the Pauli matrices τα and σα respectively. Matrix elements in the auxiliary/quantum 
spaces are denotes by Roman/Greek letters respectively, e.g.

( ) ( )τ σ τ σ=αβ αβ
− + − + .n

ab
ab n� (179)

The vertex weights of the six-vertex model are obtained by taking matrix elements 

( )λ αβL ab  and have a graphical representation as shown in figure 10(a). The row-to-row 

transfer matrix is obtained as shown in figure 10(b)

( ) ( ( )) ( ( )) ( ( ))⎜ ⎟
⎛
⎝

⎞
⎠τ λ λ λ λ= …
α α

β β

α β α β α β
…

…

L L L .a a a a
L

a a
1
2

1 2

L

L

L L

L

1

1

1 1

1 2

2 2

2 3 1� (180)

Figure 10.  (a) Vertex with weight [ ( )]λ αβLn
ab . The horizontal and vertical lines are 

associated with the ‘auxiliary’ and ‘quantum’ spaces respectively. (b) Transfer 

matrix element ( )τ λ α α
β β

…
…

1
2

L

L

1

1 .
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The partition function of the 6-vertex model on an ×L M  rectangular lattice with peri-
odic boundary conditions is then

( )⎜ ⎟
⎡
⎣⎢
⎛
⎝

⎞
⎠

⎤
⎦⎥τ λ=−Z Tr ,

M

6 vertex 1
2

� (181)

where the trace is over the quantum space. As a consequence of the Yang–Baxter rela-
tion for the L-operators [20], the transfer matrices form a commuting family

[ ( ) ( )]τ λ τ µ =, 0.1
2

1
2� (182)

The Heisenberg Hamiltonian is related to the transfer matrix by taking a logarithmic 
derivative

( )
⎡
⎣⎢

⎤
⎦⎥

η
λ

τ λ= −
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∂ λ=

H i
sinh

2
ln .XXZ

0

1
2

� (183)

By virtue of the commutation relations (182) it is clear that a set of mutually commut-
ing operators can be obtained by taking higher derivatives, i.e.

( )( ) ⎜ ⎟
⎛
⎝

⎞
⎠
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⎣⎢

⎤
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η
λ

τ λ= −
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∂
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H i
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2
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1
2
,

0

1
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� (184)

Crucially, these conservation laws have the form

( ) ( )
∑= + … +H H ,k

j
j j j k

k1
2
,

, 1, ,

1
2
,

� (185)

where the densities 
( )

+ … +H j j j k
k

, 1, ,
,1

2  act non-trivially only on the k  +  1 consecutive sites 

+ … +j j j k, 1, , . These conservation laws are sometimes referred to as ultra-local. They 
have been studied extensively in the literature [20, 226–228]. We note that the above 
construction is not restricted to Heisenberg models, but works much more generally [20].

7.3.3.  ‘Ultra-local’ GGE  According to our general discussion, the GGE describing the 
steady state after a quench to the Heisenberg model should contain all of the conser-
vation laws (184). An important question is whether these conservation laws are also 
sucient. This was investigated in [58, 59, 63]. The basic idea is as follows. One con-
siders time evolution induced by the Hamiltonian (174) starting from an initial state 

( )⟩|Ψ 0 . The quantities of interest are the matrix elements of the reduced density matrix 
on a short interval in the steady state, see (21)

⟨ ( ) ( )⟩
→ →

σ σ σ= Ψ | … |Ψα α
α α α

…
∞ ∞

g t tlim lim .
t L

n, , 1 2n

n

1

1 2

� (186)

The question is whether these expectation values can be obtained, to a given accuracy, 
from a GGE density matrix of the form

( ) ( ) ( )
⎛

⎝
⎜⎜

⎞

⎠
⎟∑ρ λ= −

=Z
H

1
exp ,y

k

y

k
y k

ulGGE
ulGGE 1

, 1
2� (187)
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which takes into account the first y conservation laws in the series (184). The Lagrange 

multipliers ( )λk
y  are in principle fixed by the requirements

( ) ( )( ) ( )〉 ( )⎜ ⎟
⎛
⎝

⎞
⎠ρ〈Ψ | |Ψ = = …H H k y0 0 Tr , 1, , .k y k, 1

2
ulGGE

, 1
2� (188)

In practice it is very dicult to determine the Lagrange multipliers from these 
conditions, even for very simple initial states ( )⟩|Ψ 0 . A method to circumvent this 
problem was developed in [58]. The idea is to define a generating function for the 
initial values (188)
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(189)

For large L (and real λ) the inverse of the transfer matrix becomes

( )( ) ( ) ( )
( )
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η λ
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2

1
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Using the expression (180) of the transfer matrix as a product of L-operators, the gen-
erating function can thus be expressed in the form

( ) ⟨ ( ) ( ) ( ) ( )⟩( )
( )

→
λ λ λΩ =

∂
∂

Ψ | … |Ψ
λ

Ψ
∞ =L x

V x V xlim
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Sp 0 , , 0 ,
L

x

L0

1
2

1� (191)

where ( )λV x,n  are ×4 4 matrices with entries ( ( ))λV x,n cd
ab that are operators acting on 

the 2-dimensional quantum space at site n, and Sp denotes the usual trace for ×4 4 
matrices. The explicit expression is

[( ( )) ] ( )
( )

( ( )) ( ( ))∑λ
λ

η λ
λ η=

−
−

+α β
γ

α γ γ βV x L x L,
sinh i

sinh i
i .n cd

ab
n

ab
n

cd
n n

n

n n n n� (192)

The advantage of representation (191) is that it can be eciently evaluated for initial 
states ( )⟩|Ψ 0  of matrix product form [58, 63]. To understand the principle behind this 
let us consider a translationally invariant product state

( )⟩ ⟩ψ|Ψ = ⊗ |=0 .j
L

j1� (193)

In this case the generating function is obtained from the eigenvalues of the ×4 4 matrix 

( ) ( ) 〉λ ψ λ ψ= 〈 | |U x V x, ,1 1 1 as

( ) ( ( ) )( )
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An ecient algorithm for calculating ( )( )
( ) λΩΨ 0

1
2  for matrix-product states was given in 

[63]. Having encoded the ‘initial data’ of our quantum quench in the generating func-

tion ( )( )
( ) λΩΨ 0

1
2 , we now move on to the calculation of expectation values of local opera-

tors in the state given by (187). A very useful observation is that ( )ρ y
ulGGE can be viewed 

as a Gibbs ensemble for the ‘Hamiltonian’

 ( ) ( )∑ λ=
=

H H
k

y

k
y k

eff

1

, 1
2� (195)

at an eective inverse temperature β = 1. As all ( )H k, 1
2  commute and are obtained by 

taking logarithmic derivatives of the transfer matrix, finite temperature properties of 
(195) can be studied by standard methods [226, 229]. The Quantum Transfer Matrix 
approach (QTM) [230] is particularly useful in this regard, as it provides an ecient 
way to obtain explicit results for thermal averages of local operators [231, 232] (see also 
[233]). [58, 59, 63] employed the QTM approach to the calculation of steady state prop-
erties of the density matrix (187) for quenches from simple initial states. By employing 
the generating function (189), it is possible to take into account all ultra-local conserva-
tion laws, and arrive at explicit results for local observables without having to deter-

mine the Lagrange multipliers ( )λ ∞
k  [58]. In the QTM approach the stationary state 

is described in terms of the solution of a system of coupled, nonlinear integral equa-
tions. Remarkably, the information on the initial state enters this system only via the 

function ( )( )
( ) λΩΨ 0

1
2 . Results for spin correlators obtained in this way were compared to 

t-DMRG computations for quenches from a variety of initial states in [63], and found 
to be compatible within the limitations of the numerical analysis.

The subsequent application of the quench action approach [176] (reviewed by Caux 
[217] in this volume) to the same problem revealed that the ultra-local GGE in fact 
does not correctly describe the steady state for quenches to the spin-1/2 Heisenberg 
chain [65, 66, 68–70], although it does provide a very good approximation for e.g. 
quenches from the Néel state. This suggested the existence of hitherto unknown con-
servation laws in the Heisenberg chain, which need to be taken into account in the 
construction of the GGE.

7.3.4.  ‘Quasi-local’ GGE  The ‘missing’ conservation laws for the spin-1/2 Heisenberg 
XXZ chain were discovered in [64, 234, 237] (see the review by Ilievski, Medenjak, 
Prosen and Zadnik [235] in this volume). Their structure is quite dierent from that 
of the ultra-local conservation laws discussed above: their densities are not local in 
the sense that they act non-trivially only on a finite number of neighbouring sites, but 
quasi-local. Similar conservation laws had been identified earlier in relation to transport 
properties of the Heisenberg chain [236]. In order to define the concept of quasi-locality 
one introduces an inner product on the space of operators by

( ) ⟨ ⟩ ⟨ ⟩ ( )†= =∞ ∞A B A B A A, ,
1

2
Tr .

L
�

(196)
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Definition 6.  Quasi-local operators [234].

Let us consider an operator Q and expand it in terms of mutually orthogonal local 
operators qj,r of range r

∑∑=Q q .
j r

j r,� (197)

Q is called quasi-local if it fulfils the following three conditions:

( ) ( ⟨ ⟩ ⟨ ⟩ )

( ) ( )  

( ) ( )

→

→
/

− − =

< ξ

∞
∞ ∞

∞
−

L
Q Q Q Q

Q B

q q C

QL1 : lim
1

, const;

QL2 : lim , exists,

QL3 : , e ,
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� (198)

where Bk is any operator that acts non-trivially only on a fixed number of k sites, and 
ξ and C are positive constants.

In the anisotropic Heisenberg chain quasi-local charges can be constructed as fol-
lows [64, 234]. It is well known that the six-vertex model transfer matrix (180) is part 
of a much larger family, built from the L-operators
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(199)

which again acts on the tensor product of auxiliary and quantum spaces, but now the 
auxiliary space is 2S  +  1 dimensional. Here S is an arbitrary half integer. The operators 
αS  obey a q-deformed SU(2) algebra

[ ] [ ] [ ]= = ±+ − ± ±S S S S S S, 2 , , ,z
q

z
� (200)

where [ ] ( )/ ( )η η=x xsinh sinhq , and act on a q-deformed spin-S representation as

〉 〉 〉 [ ] [ ] 〉| = | | = + ± | ± = − …± ∓S Sk k k k S k S k k k S S, 1 1 , , , .z
q q

�
(201)

A family of row-to-row transfer matrices is then obtained as

( ( )) ( ( )) ( ( )) ( ( ))( ) ( ) ( )τ λ λ λ λ= …α α
β β

α β α β α β…
… L L L .S

S a a S a a
L
S a a

1 2L

L

L L
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1

1

1 1

1 2

2 2

2 3 1� (202)

All ( )τ λS  are operators on the same quantum space (a tensor product of L spin-1/2’s), 
and as a consequence of the Yang–Baxter relation form a commuting family

[ ( ) ( )]τ λ τ µ =′, 0.S S� (203)
By virtue of the commutation relations (182) it is clear that a set of mutually com-

muting operators can be obtained by taking higher derivatives, i.e.

H Ci ln ,S k
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S
,
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where CS are some normalization constants that can be conveniently chosen. As a con-
sequence of (203) we have

[ ]( ) ( ) =′ ′H H, 0.S k S k, ,� (205)

Apart from the special case S  =  1/2 these conservation laws are quasi-local. This means 
that (in the infinite volume) their general structure is
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α α
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where α = x y z0, , ,j , and the coecient functions ( )
α α…f k

k1
 decay suciently fast with k 

so that the conservation laws are extensive. As shown in [64], the initial data of the 
quantum quench can again be encoded in suitably chosen generating functions, which 
are generalizations of (189)
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(207)

The generating functionals ( )( )
( ) λΩΨ
S

0  can be evaluated for matrix product states by the 

same method discussed above (although the computational eort increases with the 
value of S ).

The most convenient description of the stationary state turns out to be in terms of 
the generalized microcanonical ensemble discussed above. The steady state is charac-

terized by the set { ( ) }ρ λ | = …n 1,n p,
SS  of particle densities or the equivalent set of hole 

densities { ( ) }ρ λ | = …n 1,n h,
SS . Ultimately this set must be determined by the initial con-

ditions, which are encoded in (207). We now use that ( ) ( ) ( )λ τ λ τ λ= ′ −XS S S
1  can be diago-

nalized by algebraic Bethe Ansatz [20, 238]. The eigenvalues of ( )λXS  for M-particle 
states with ∼M L are of the form
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( ) ( )

( )∑ν λ
η

λ λ η
=

+ −
+

=

S

S
o L

2 sinh 2

cos 2 2 cosh 2
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where the λk are solutions to the Bethe Ansatz equations [238]
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In the thermodynamic limit this can be simplified by following through the usual logic 
of the string hypothesis and the thermodynamic Bethe Ansatz [213, 214, 225]. Rather 
than with solutions to the Bethe equations (209) one then works with macro-states ⟩ρ| , 

which are described by sets { ( ) }ρ λ | = …n 1,n p,  of particle densities or the equivalent set 
of hole densities { ( ) }ρ λ | = …n 1,n h, . The eigenvalue equation (208) then becomes [64]
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For ⟩ ⟩ρ ρ| =| SS  the right hand side of (210) must agree with the initial values after the 
quench (207). This is achieved by setting [64]
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where ( )λa S2  is a function independent of the initial state that is defined in appen-
dix B.2. This shows that the initial data (207), which involves both ultra-local and 
quasi-local conservation laws, completely determines the macro-state that defines the 
generalized microcanonical ensemble. We note that the derivation did not invoke the 
maximum entropy principle. For the particular case of quenches from the Néel state 
(211) agrees with the one obtained by the quench action approach [65, 66, 68, 69].

The generalization of the approach discussed above for quenches to particular val-
ues of ∆ with − < ∆ <1 1 in the Heisenberg model (174) was achieved in [239].

8. Outlook

We have given an introduction to quantum quenches in many-particle systems and 
then reviewed recent developments, focussing in particular on the role played by con-
servation laws. In spite of the impressive progress of the last few years, many important 
questions remain largely open. Let us list a few of them in no particular order.

	1.	 In the spin-1/2 Heisenberg XXZ chain quasi-local conservation laws have been 
shown to play a prominent role in determining the stationary state. It is believed 
that this holds quite generally in interacting integrable models. The construction 
used in the XXZ case can in principle be generalized to the ( )|sl M N  family of 
integrable graded quantum ‘spin’ chains, see e.g. [240], and it would be interesting 
to investigate the role of quasi-local charges in such models. The Hubbard model 
is another very interesting case, but is like to be more dicult to handle due to its 
non standard structure [213].

	2.	 So far only particularly simple classes of initial states can be accommodated, see 
section 7.1. It would be highly desirable to have a more general method for cap-
turing the information on the initial state.

	3.	 In interacting theories the focus has so far been on stationary state properties. The 
study of the full time evolution of observables is much less developed [95, 113, 
241, 242]. A promising method for analyzing the time dependence of the expecta-
tion values of local operators after a quantum quench in an interacting integrable 
theory is the quench action approach [176]. So far it has been implemented only in 
a very small number of cases [95, 113], and further studies are sorely needed.
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	4.	 As we have seen, the non-equilibrium dynamics of integrable and non-integrable models 
is quite dierent. This poses the question of what happens, when one adds a small per-
turbation to an integrable model. This has been investigated in a number of theoretical 
works [51, 127, 243–263], and is of immediate experimental relevance [264, 265] (see also 
the review by Langen, Gasenzer and Schmiedmayer in this volume [18]). The generic 
eect of adding a small integrability breaking term appears to be the generation of an 
intermediate ‘prethermalization’ time scale, below which the system retains informa-
tion about being proximate in parameter space to an integrable model. At late times 
thermalization seems to set in [258]. So far the theoretical analyses are restricted to 
weak interactions and/or short times, and it is crucial to go beyond these limitations.
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Appendix A. Requirements on the initial state

A.1. Cluster decomposition

We have defined our quench protocol such that it results in initial states ( )⟩|Ψ 0  that 
have a cluster decomposition property (12). This requirement is often relaxed in both 
numerical and analytical investigations, and in some cases ( )⟩|Ψ 0  is taken to be a 
Schrödinger cat state, see e.g. [65, 66, 68, 69]. An example is provided by quenches 
where the system is initialized in a classical Néel state ⟩|↑↓↑↓ … . This breaks transla-
tional invariance and it can be calculationally convenient to work instead with a trans-
lationally invariant cat state

( 〉 〉)|↑↓↑↓↑ … + |↓↑↓↑↓ …
1

2
.� (A.1)

While for specific calculations such replacements can be useful, they significantly aect 
the steady state behaviour in general. This can be seen by considering a Z2 symmetric 
pre-quench Hamiltonian H0 with a ground state that spontaneously breaks the 2Z  sym-
metry. An example is provided by the transverse-field Ising chain (104) with h  <  1. In 
the thermodynamic limit H0 has two ground states 〉|Ψ± , both of which have a cluster 
decomposition property. We now consider a general linear combination

( )⟩ ⟩ ⟩θ θ|Ψ = |Ψ + |Ψφ
+ −0 cos e sin .i

� (A.2)

As 〉|Ψ±  are macroscopically distinct (as they lead to dierent order parameters), we 
conclude that expectation values of local operators O are given by
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⟨ ( ) ( )⟩ ⟨ ⟩ ⟨ ⟩θ θΨ | |Ψ = Ψ | |Ψ + Ψ | |Ψ+ + − −O O O0 0 cos sin .2 2
� (A.3)

As the Hamiltonian of our system is short ranged, this decomposition persists at all 
finite times, i.e.

⟨ ( ) ( )⟩ ⟨ ( ) ( )⟩ ⟨ ( ) ( )⟩θ θΨ | |Ψ = Ψ | |Ψ + Ψ | |Ψ+ + − −O O Ot t t t t tcos sin2 2
� (A.4)

To see this, we may use a result derived in [180] for the time evolution of local opera-

tors with short-ranged Hamiltonians: restricting ( ) = −O Ot e eHt Hti i  to a subsystem S 
of size | |S  gives an error that scales as ( )/ζ−| |e vt S2 , where ζ is a constant and v is the 
Lieb–Robinson velocity. This means that it is possible to approximate ( )O t  to a given 
accuracy by a local operator of a ‘size’ that scales as vt2 . This in turn implies that 
⟨ ( ) ⟩Ψ | |Ψ =+ −O t 0, because 〉|Ψ±  are macroscopically distinct.

On the other hand, our system relaxes locally by construction if we initialize it in 
( )〉|Ψ± 0 , i.e.

( )〉 ( )
→

ρ|Ψ 〈Ψ | =
∞

± ± ±t tlim .
t

loc
SS

� (A.5)

Putting everything together we conclude that

( )〉 ( )
→

ρ θρ θρ|Ψ 〈Ψ | = = +
∞ + −t tlim cos sin .

t
loc

SS 2 SS 2 SS
� (A.6)

The problem is that this form of the stationary state can be dierent from what one 
would expect on the basis of local relaxation to (generalized) Gibbs ensembles. To be 
specific, we consider the example of a quench to an anisotropic spin-1/2 Heisenberg 
chain

∑σ σ σ σ σ σ σ σ= + + ∆ ++ + + +
�

� � � � � � � �H
J

g
4

.y y z z x x x x
1 1 1 2� (A.7)

Imposing ∆ ≠g, 0 renders this model non-integrable, but is has one local conservation 
law

[ ]∑σ= =
�

�Q H Q, , 0.x

� (A.8)

Our initial state is of the form (A.2), where 0( )〉|Ψ±  are the two ground states of the 
TFIC in the thermodynamic limit at h  <  1. We note that the energy density e of (A.7) 
is the same in both ⟩|Ψ+  and ⟩|Ψ− . As these states have a cluster decomposition property, 
it follows from our general discussion that the respective stationary states are locally 
equivalent to grand canonical ensembles

( )〉 ( )
→

ρ|Ψ 〈Ψ | = =
β µ

∞
± ± ±

− −

±

± ±

t t
Z

lim
e

,
t

H Q

loc
GC

� (A.9)

where the values for β± and µ± are obtained by fixing the energy density e and charge 
density ±q  to agree with their initial values at time t  =  0. Equation (A.6) tells us that 
the correct stationary state in this example is then

ρ θρ θρ= ++ −cos sin .SS
loc

2 GC 2 GC
� (A.10)
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Crucially, while the density matrices ρ±
GC have the cluster decomposition property, ρSS 

does not. This can be seen as follows. The local conservation law distinguishes between 
the two states 〉|Ψ±

⟨ ⟩ ⟨ ⟩σ σ= Ψ | |Ψ ≠ Ψ | |Ψ =+ + + − − −� �q q .x x
� (A.11)

Using the cluster decomposition property of ρ±
GC we have

( )
→

ρ σ σ =
| − | ∞ ± ±
�

� qlim Tr ,
n

x
n
xGC 2

� (A.12)

which in turn establishes that ρSS does not have the cluster decomposition property

[ ( ) ( ) ( )] ( ) ( )
→

ρ σ σ ρ σ ρ σ θ− =
−

≠
| − | ∞

+ −

�
� �

q q
lim Tr Tr Tr

4
sin 2 0.

n

x
n
x x

n
xSS SS SS

2
2

� (A.13)

On the other hand, if we were to apply our formalism of local relaxation blindly to our 
Hamiltonian (A.7), we would conclude that the stationary state is locally equivalent to 
a grand canonical ensemble, which is expected to have a cluster decomposition prop-
erty [267].

Our discussion can be summarized as follows: If there exists at least one integral 
of motion that distinguishes ⟩|Ψ−  from ⟩|Ψ+ , the stationary state associated with the time 
evolution of the cat state (A.2) does not possess the cluster decomposition property (12) 
and hence is not described by a standard generalized Gibbs ensemble.

A.2. Probability distributions of energy and conservation laws

Let us consider a post-quench Hamiltonian H with a set of local conservation laws I (n), 
see (31) and (32). In our basic definition of a quantum quench we initialize the system 
in a pure state ( )⟩|Ψ 0 . Then the cluster decomposition property implies that the prob-
ability distribution of energy and all local conservation laws approach delta-functions 
in the thermodynamic limit, e.g.

( ) [ ( ) ( )] ( ) [ ( ) ]
→

( ) ( ) ( )
→

( )ρ δ δ ε ρ= − = − =
∞ ∞

ε εP
L

I L i i
L

Ilim
1

Tr 0 , lim
1

Tr 0 ,n
L

n n n

L

n

�
(A.14)

where ( ) ( )⟩⟨ ( )ρ =|Ψ Ψ |0 0 0 . As we have pointed out, it is sometimes desirable to consider 
initial density matrices ( )ρ 0  that are not pure states. When doing so one must ensure 
that (A.14) continues to hold. In cases where it does not it is clearly impossible for the 
system to locally relax to a GGE, because there the probability distributions of all con-
servation laws approach delta functions in the thermodynamic limit. Generalizations of 
GGE ideas to such cases have been explored in [266].

Appendix B.  ‘Atypical’ macro-states in integrable models

Integrable models have the unusual property of having atypical finite entropy eigen-
states at finite energy densities. This is well known for non-interacting theories and we 
discuss this case first.
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B.1. Free fermions

Let us consider a model of free fermions with Hamiltonian

( ) ( )∑= εH k n k ,
k

� (B.1)

where ( ) ( ) ( )†=n k c k c k . Imposing periodic boundary conditions quantizes the allowed 
momenta

π
= = − + …k

n

L
n

L L2
,

2
1, ,

2
.n� (B.2)

We now focus on a special class of Fock states ( ) ⟩†∏ |= c k 0j
N

j1 , for which the particle 

densities

( )
( )

ρ =
−+

k
L k k

1
p j

j j1
� (B.3)

approach smooth functions in the thermodynamic limit → ∞N L, , n  =  N/L fixed. For 
such states, the number of particles in the interval [ ]+ ∆k k k,n n  for large L is given by

( )ρ ∆k k.p n� (B.4)

It is convenient to define a hole density by ( ) ( )ρ ρ= −
π

k kh j p j
1

2
. In the thermodynamic 

limit many dierent choices of {kj} lead to the same macro-state described by a given 
particle density. To enumerate them we note that the number of dierent states in 
the interval [ ]+ ∆k k k, , that give rise to a given density in the thermodynamic limit, 

is obtained by distributing ( )ρ ∆k L kp  particles among ( ( ) ( ))ρ ρ+ ∆k k L kp h  vacancies. 
This follows a binomial distribution. For large L the latter may be approximated by 
Stirling’s formula, and in the thermodynamic limit one obtains the well-known expres-
sion for the entropy per site

[ ] [( ( ) ( )) ( ( ) ( )) ( ) ( ( )) ( ) ( ( ))]∫ρ ρ ρ ρ ρ ρ ρ ρ ρ= + + − −
π

π

−
s k k k k k k k k kd ln ln ln .p p h p h p p h h

�
(B.5)

Let us now investigate what kind of macro-states exist for a given energy density e. 
The most likely (maximum entropy) macro-state can be constructed using equilibrium 
statistical mechanics. Extremizing the free energy per site

[ ] ( ) ( ) [ ]∫ρ
π

ρ ρ= −
π

π

−
εf

k
k k Ts

d

2
p p p� (B.6)

with respect to the particle density ρp gives

( ) ( )/ρ
π

=
+ ε

k
1

2

1

1 e
.p k T

eq
� (B.7)

The ‘temperature’ T is related to the energy density e by

( )
( )/∫ π

=
+π

π

−

ε
ε

e
k kd

2 1 e
.

k T� (B.8)
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The entropy per site of this equilibrium state is

[ ] [ ]( )/∫ρ
π

=
∂

∂
+

π

π

−

−εs
T

T
kd

2
ln 1 e .p

k Teq
� (B.9)

By construction the macro-state (B.7) is the typical state at energy density (B.8): if 
we randomly pick an energy eigenstate with energy density e for a very large system  
size L, the probability for this state to have particle density (B.7) is exponentially close 
(in L) to one. On the other hand, there are atypical finite entropy macro-states charac-

terized by their respective particle densities ( )ρ kp . As a particular example we consider 
our tight-binding model (40) for µ = 0, which gives a dispersion ( ) ( )= −ε k J k2 cos . We 
fix the particle density to be 1/2 and the energy density to be = −e J0.405 838 , which 
corresponds to temperature T  =  J in (B.7), (B.8), i.e.

( ) ( )ρ
π

=
+ −

k
1

2

1

1 e
.p k

eq
2 cos� (B.10)

The entropy of the equilibrium state is =s 0.511 571eq . Let us now consider the family 
of macro-states described by the particle density

( )( )
( ) ( )ρ

π
=

+
λ

λ− −
k

1

2

1

1 e
.p k k4 cos cos 3� (B.11)

Fixing λ = 2.430 96... gives us the same particle and energy densities as for the equi-
librium state, i.e. n  =  1/2 and = −e J0.405 838 . The entropy density =s 0.396 781 is of 
course lower than that of the (maximum entropy) equilibrium state. This means that 
if we randomly select an energy eigenstate with particle density n  =  1/2 and energy 
density = −e J0.405 838  for a very large system size L, we are exponentially more likely 
by a factor ( )−eL s seq  to end up with a state described by (B.10) than one described by 
(B.11). Unsurprisingly, expectation values of local operators are generally dierent in 
the two macro-states. As an example, let us consider

† †= ++ +O c c c c .j j j j j3 3� (B.12)

Setting again λ = 2.430 96... and taking the thermodynamic limit we have

⟨ ( ) ( )⟩ ⟨ ( ) ( )⟩( ) ( )ρ ρ ρ ρ| | = − ≠ | | =λ λO Ok k k k0.027 1229 0.215 148.p j p p j p
eq eq

� (B.13)

Here the expectation values may be taken with regards to any micro-state that gives 
rise to the appropriate macro-state in the thermodynamic limit.

B.2.  Interacting theories: anisotropic spin-1/2 Heisenberg model

The situation in integrable models is analogous to what we just discussed for free fer-
mions. The main dierence arises from the more complicated structure and interacting 
nature of the elementary excitations in integrable models. For the sake of definiteness 
we consider the particular example of the spin-1/2 Heisenberg model (174) with ⩾∆ 1. 
Energy eigenstates ⟩λ λ| …, , M1  on a ring of length L are parametrized by M rapidity 
variables λj, which fulfil the quantization conditions [225]
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( )

( )
( )
( )

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ ∏

λ

λ
λ λ η
λ λ η

+

−
=

− +
− −

= …
η

η
≠ =

j M
sin i

sin i

sin i

sin i
, 1, , .

j

j

L

k j

M
j k

j k

2

2 1

� (B.14)

Each λj is associated with an elementary ‘magnon’ excitation over the ferromagnetic 
state with all spins up, and the total energy and momentum of the eigenstate are addi-

tive ( )λ= ∑ =E ej
M

j1 , ( )λ= ∑ =P pj
M

j1 . As a result of interactions, magnons form bound 

states. These correspond to ‘string solutions’ of the quantization conditions (B.14)

( )λ λ
η

δ= + + − + = …α α αn j j ni
2

1 2 i , 1, , ,n j n n j, ,
� (B.15)

where δα
n j,  are deviations from ‘ideal’ strings that become negligible when we take the 

thermodynamic limit at finite densities of magnons and bound states, see 6.2.A of 
[268]. As a consequence of integrability these bound states are stable excitations. The 
generalization of particle density description of macro-states in free theories to inter-
acting integrable models is then clear: macro-states are characterized by an (infinite) 
set of densities { ( ) }ρ λ | = …n 1, 2,n p,  for magnons (n  =  1) and bound states of all lengths 

( ⩾ )n 2 . Just as in the case of free fermions, we can define corresponding hole densities 

( )ρ λn h, . The relation between particle and hole densities is fixed by the quantization 
conditions (B.14)

( ) ( ) ( ) ( )   ( ) ( )∫∑ρ λ ρ λ ρ λ λ µ λ µ ρ µ≡ + = − −
π

π

=

∞

−
a Ad ,n t n p n h n

m

nm m p, , ,
1 2

2
,� (B.16)

where ( ) ( ) ( ) ( ) ( ) ( )λ δ λ λ λ λ= − + + + +| − | | − |+ + − +�A a a a a1 2 2nm n m n m n m n m n m, 2 2  and 

( ) ( )
( ) ( )

λ =
π

η
η λ−

an
n

n

1

2

2 sinh

cosh cos 2
. Equation  (B.16) allows one to express the hole densities in  

terms of the particle densities and vice versa, but in contrast to the non-interacting 
case the relationship is non-trivial. The energy and entropy per site of a macro-state 
are given by

[{ }] ( )   ( )  ( )

[{ }] [( ( )) ( ( )) ( ) ( ( )) ( ) ( ( ))]

∫

∫

∑

∑

ρ η λ ρ λ λ

ρ ρ λ ρ λ ρ λ ρ λ ρ λ ρ λ ρ λ

= −

= − −

π

π

π

π
=

∞

−

=

∞

−

e J a

s

sinh d ,

, d ln ln ln .

n p
n

n p n

n p n h
n

n t n t n p n p n h n h

,
1 2

2
,

, ,
1 2

2
, , , , , ,

�
(B.17)

The typical state at a given energy density is then obtained by extremizing the free 

energy per set [{ }] [{ }] [{ }]ρ ρ ρ ρ= −f e Ts ,n p n p n p n h, , , ,  with respect to particle and hole 
densities under the constraints (B.16). This results in the so-called Thermodynamic 
Bethe Ansatz equations [225]. By construction this state is thermal, i.e. corresponds to 
a standard Gibbs distribution.

Atypical finite entropy states can be constructed by specifying a set of particle 

densities { ( )}ρ λn p, . The corresponding hole densities are then obtained by solving 
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equations (B.16). The entropy per site of the resulting macro-state can be calculated 
from (B.17), and will by construction be smaller than that of the maximum entropy 
state.

Appendix C. Stationary state correlators in the TFIC

In this appendix we summarize results for the amplitudes C ( )α �  describing the sublead-
ing behaviour of stationary state spin–spin correlators in the TFIC, see equation (133).

C.1. Transverse spin correlator

Here the amplitude is of the form [26]

( ) ¯
  
   /

/   

⎧
⎨
⎪

⎩⎪
α= =

| | > | |
=

| | < | |

α−� �C C

h h

h h

h h

,

1 if ln ln ,

0 if 1 ,

1 2 if ln ln ,

z z z
0

0

0

z

� (C.1)

where the constant is known exactly

/
  

( / )    /

( / ) / ( )
( )

  
( ) /

⎧

⎨

⎪
⎪
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⎩

⎪
⎪
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π

π

π

=

| − | −
−

| | > | |

−
−

=

− | − | − −
−

| | < | |
| |

| | + | |

C

h h h h

hh
h h

h h
h h

h h h h h h

h

h h

h hh
h h

1

4 1
if ln ln ,

1

2
if 1 ,

1 1

8 1

e

sinh
if ln ln .

z

h h

h h

0 0 0

0
0

2

0

0 0 0 0

0 0

sgn ln ln 2

ln ln

2

0

0

0

� (C.2)

C.2. Longitudinal spin correlator

Here the large-� asymptotics of prefactor ( )�Cx  are as follows.

	1.	 Quench within the ferromagnetic phase (h0, h  <  1).

( )
( )( )

≡ =
− + − −

− −
� CC

hh h h

hh h

1 1 1

2 1 1
.x x

FF
0

2
0
2

0 0
24

� (C.3)

	2.	 Quench from the ferromagnetic to the paramagnetic phase (h0  <  1  <  h).

( ) ≡ =
−

+
� CC

h h

h h

1
.x x

FP
0
2

0

� (C.4)

	3.	 Quench from the paramagnetic to the ferromagnetic phase (h0  >  1  >  h).

( ) ( )   ( )( )⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟≡ =

−

−

− −

+
� � �CC

h h

h

h h

h h1
cos arctan

1 1

1
.x x

PF
0

0
2

2
0
2

0
� (C.5)
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	4.	 Quench within the paramagnetic phase (1  <  h0, h).
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⎧
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(C.6)
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