Searching for exceptional gravitational-wave sources in the LIGO-Virgo-KAGRA data

Marek Szczepańczyk Department of Physics, University of Warsaw

Astronomical Observatory University of Warsaw, 14.01.2025

Return to Poland

- Ph.D., ~5 years: Embry-Riddle Aeronautical University (Arizona)
- Postdoc, ~5 years: University of Florida
- Assistant Professor, present: University of Warsaw (permanent position and a Polish Returns grant)

Homepage: <u>https://www.fuw.edu.pl/~mszczepanczyk/</u>

Prof. Jerzy Lewandowski was my Inviting Scientist for Polish Returns grant

2025.01.14

Outline

- Gravitational-Wave Astrophysics
 - \circ Introduction
 - Observing Run 4
- Searching for exceptional GW sources
 - Model-independent searches
- Core-Collapse Supernova
 - Properties, results
 - Announcement: LVK workshop on CCSNe, summer 2025

Gravitational-Wave Astrophysics

The Dynamic Universe

Quadrupole formula for GW production:

$$\mathbf{h}_{ij}^{TT}(t, \mathbf{x}) = \frac{1}{D} \ddot{Q}_{ij}(t - D/c, \mathbf{x})$$

We need aspherical mass-energy movement.

GW sources:

2025.01.14

- Standard, e.g. stellar-mass binary black holes
- Exceptional!

Image: NSF/LIGO/Sonoma/A. Simonnet

AURORE SIMONNET/LIGO/CALTECH/MIT/SONOMA STATE

Gravitational-Wave detectors

- GW detectors: interferometers (the longer the more sensitive)
- Preferably far away from human activities.
 But noise is inevitable...

Szczepanczyk, Searching for exceptional GW sources in LVK data

Detectors network

- GEO and KAGRA recently joined observations
- LIGO India under construction
- NEMO planned Australian high-frequency detector

Later: status of detectors

observing in O4

Observing Timeline

O4 and low-latency searches

- 24 months total, until June 2025
- GW candidates: 180 so far (3 per week)
- Searches:
 - Model-dependent
 - Model-independent
- Public alert for GW bursts:
 - False Alarm Rate, sky localization
 - \circ "Fluence" (~luminosity), peak frequency, duration
- <u>S200114f</u> a burst public alert in O3, later classified as noise
- No burst public alerts so far in O4

LIGO-Virgo binary neutron star inspiral range

2025.01.14

Szczepanczyk, Searching for exceptional GW sources in LVK data

Useful resources:

- <u>https://gracedb.ligo.org/superevents/public/O4/</u>
- <u>https://emfollow.docs.ligo.org/userguide/</u>
- https://wiki.gw-astronomy.org/OpenLVEM
- <u>https://gwosc.org/detector_status/</u>
- <u>https://observing.docs.ligo.org/plan/</u>
- <u>https://online.igwn.org/</u>

O4 and low-latency searches

2025.01.14

Einstein Telescope - 3G observatory

- 3rd Annual Meeting in Warsaw:
 - <u>https://indico.ego-gw.it/event/764/</u>
 - \circ 3 possible sites for ET
- Challenges:
 - \circ L vs triangular shape
 - Location

2025.01.14

Searches for exceptional GW sources

Szczepanczyk, Searching for exceptional GW sources in LVK data

2025.01.14

Exceptional GW sources

Exceptional astrophysical sources might play the key role in our endeavor of exploring the Universe.

- New GW source populations:
 - Compact binaries: binaries with eccentric orbits, hyperbolic encounters, head-on collisions, sub-solar mass binaries, extreme mass ratio
 - GW bursts: core-collapse supernovae, neutron star or pulsar glitches, cosmic strings
- Multi-messenger GW sources (electromagnetic waves, neutrinos, cosmic rays): BNS, NSBH, BNS post-merger
- GW sources with new phenomena (usually weaker effects):
 - GR: pre- and post-merger higher harmonics, GW cross-polarization, black hole kicks, GW memory, effects of precession, high spins, black hole formation etc.
 - Beyond GR: GW echo, beyond-quadrupolar GW polarizations,

Model-independent searches coherent WaveBurst

- **Coherent WaveBurst** (cWB, Klimenko+16) is a software designed to detect a wide range of burst transients without prior knowledge of the signal morphology
- cWB uses minimal assumptions, for example growing frequency over time in case of binaries
- Complementing matched filtering
- cWB has detected:
 - GW150914 the very first GW (PRL 116, 061102)
 - GW190521 an intermediate mass binary black hole (PRL 125, 101102)
 - several GWs together with template based searches
- The cWB is the most sensitive burst algorithm in O4

coherent WaveBurst (cWB)

2025.01.14

Model-independent searches classification

Compact binary searches (minimally modeled)

Generic searches (unmodeled)

Public alerts for multi-messenger observations: electromagnetic, cosmic rays, and neutrino

e.g. Chaudhary+24 (<u>2308.04545</u>)

Higher harmonics GW cross-polarization Deviations from GR

e.g. Vedovato+22 (<u>2108.13384</u>)

2025.01.14

Eccentric binaries

- Eccentric binaries: compact binaries elliptical orbits.
 - Dynamical formation
 - They could be the next LVK discovery
- Mishra et al (MS) 2024 (<u>2410.15191</u>)
 - O3 data reanalysis
 - 3 new GWs: consistent with stellar BHs, one event has large mass-ratio (possible dynamic formation)
- Bhaumik et al (MS) 2024 (<u>2410.15192</u>)
 - Comparison between waveform models

• Sensitivity studies

Core-Collapse Supernova

Core-Collapse Supernova (CCSN)

Nova on the sky! 1-2 per century in Milky Way (?)

- Burning of a star: $H \rightarrow He \rightarrow ... \rightarrow Fe$
- After exceeding Chandrasekhar mass of 1.4 Sun mass the iron core collapses.
- 99% of explosion energy escapes with neutrinos!

Explosion mechanism is still unknown

2025.01.14

CCSN - the next big GW discovery

"Welcome SN 202X! Long-awaited for 2025-2026" Fukuoka Temple, 2019.10.23

2025.01.14

Core-Collapse Supernova Properties Szczepanczyk et al 2021 (<u>2104.06462</u>)

2025.01.14

Szczepanczyk, Searching for exceptional GW sources in LVK data

How far are we from a discovery? (realistically: Galactic CCSN)

2025.01.14

Szczepanczyk, Searching for exceptional GW sources in LVK data

Optically Targeted searches

While waiting for the Galactic event, we search for GWs from extra-Galactic CCSNe (targets).

O1-O2 data (5 CCSN up to 20 Mpc, <u>1908.03584</u>):

• First constraints of CCSN engine

O3 data (9 CCSN up to 30 Mpc, <u>2305.16146</u>):

- First upper limits on GW power and ellipticity
- Continuation of constraining CCSN engine

2025.01.14

23

O3 Optically Targeted search (Szczepanczyk et al. 2023)

- Extensive constraints of the CCSN engine.
 - Assuming monochromatic Ο (narrowband) emission
- GW energy constraints
 - Isotropic emission Ο
 - Stringest: $1 \times 10^{-4} M_{\odot} c^2$ 0
- GW power (luminosity) constraints
 - First observational \bigcirc constraints
 - Stringest: $5 \times 10^{-4} M_{\odot} c^2/s$ Ο

2025.01.14

SN 2023ixf

- Special LVK paper: <u>2410.16565</u>
- GW energy emission: order of magnitude better constraints
- Core deformations upper limits: 2 orders of magnitude higher than for most energetic CCSN simulations.

Parameter Estimation

Recently a lot of efforts to extract physical parameters from CCSN. See review in Mezzacappa&Zanolin+24 (<u>2401.11635</u>), examples:

- Proto-neutron star (PNS) evolution: Casallas-Lagos+23 (<u>2304.11498</u>), Bizouard+21 (<u>2012.00846</u>),
- Equation of State: Edwards+21 (<u>2009.07367</u>),
- SN kicks (GW memory): Richardson+21 (<u>2109.01582</u>)
- Standing Accretion Shock Instability: Takeda+21 (<u>2107.05213</u>)
- PNS rotation: Chan+21 (<u>ADS</u>), Hayama+18 (<u>1802.03842</u>)
- Rotation properties: Pastor-Marcos+23 (<u>2308.03456</u>), Villegas+23 (<u>2304.01267</u>)

2025.01.14

LVK and CCSN Theory

• CCSNe are the most challenging astronomical events to model:

- All four fundamental forces are important
- Neutrino transport
- Computational challenges
- A joint workshop between LVK and CCSN modellers happened at Caltech in 2017
 - Supernova Multimessenger Consortium is created

Next LVK workshop: summer 2025 in Warsaw - stay tuned!

Example: Mezzacappa et al 2023

Summary

- Core-Collapse Supernova
 - "Supernova problem": why do the stars explode?
 - Gravitational Waves can bring an answer!
- GW burst searches
 - Optically targeted searches: constraining SN engine
 - Parameter Estimation a lot of effort
- LVK workshop with CCSN theorists: summer 2025 in Warsaw

Slides: <u>fuw.edu.pl/~mszczepanczyk/news.html</u>