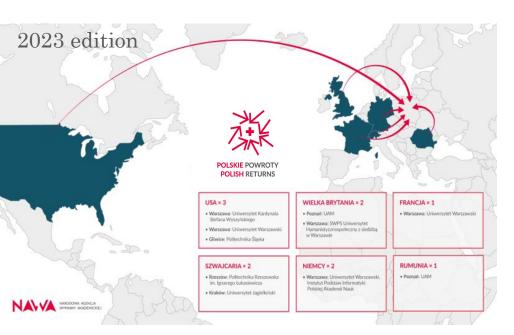


The Quest to Detect Gravitational Wave (GW) Bursts

Marek Szczepańczyk Department of Physics, University of Warsaw

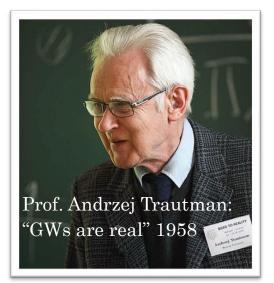
Slides:

fuw.edu.pl/~mszczepanczyk/news.html



International Training Workshop on Frontiers from Quanta to Cosmos Physics (FQCP2025) Beijing, 04.11.2025

Return to Poland


- B.A., M.Sc., University of Warsaw
- Ph.D., ~5 years: Embry-Riddle
 Aeronautical University (Arizona)
- Postdoc, ~5 years: University of Florida
- Assistant Professor, present: University of Warsaw

https://www.fuw.edu.pl/~mszczepanczyk/

Chair of Theory of Relativity and Gravitation

- Classical and Quantum Gravity
- Proof that GWs are real (prof. Andrzej Trautman, the story)
- Loop Quantum Gravity (prof. Lewandowski, prof. Ashtekar at Princeton)
- Isolated and Dynamic Horizons (prof. Lewandowski, prof. Ashtekar at Princeton)
- Einstein-Infeld-Hoffmann equations (prof. Infeld with Einstein)

Fun Facts

BIGGEST 25 ECONOMIES GDP CHANGE 1990-2020 (TOTAL %)

Outline

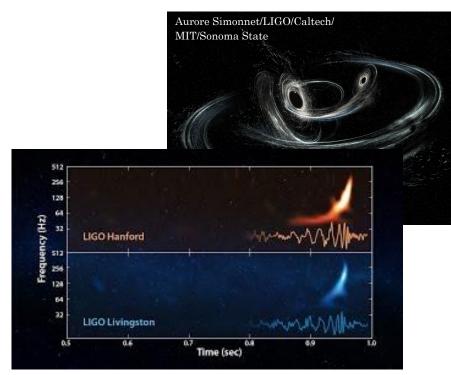
- Part I: Basics
 - Introduction to GW Astrophysics
 - o GW Burst Searches
- Part II: Future (Next 10 Years and Beyond)
 - Observing Run 4 (O4)
 - o Future discoveries
- Summary

Part I: Basics

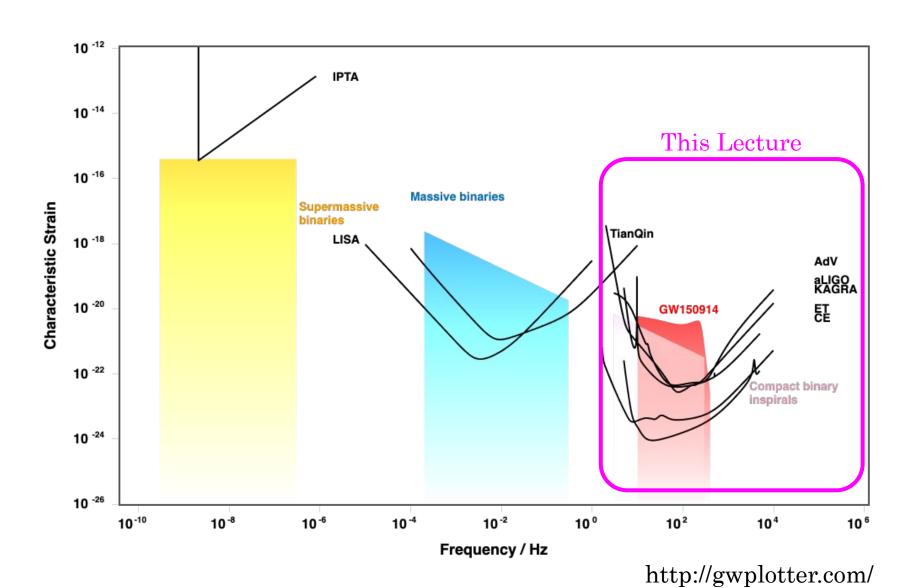
Introduction to GW Astrophysics

"Conventional" and "Gravitational-Wave" Astronomy

"Conventional" or time-domain Astronomy:

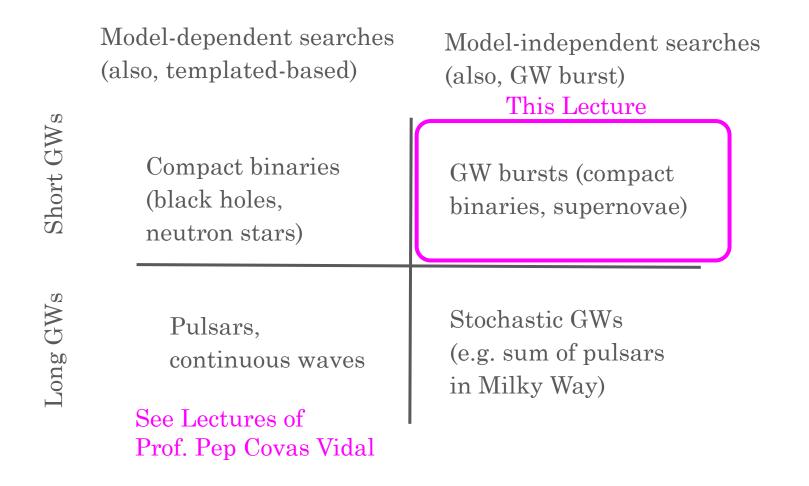

observing Universe using electromagnetic waves (e.g. visible light), cosmic rays or neutrinos.

Looking at the Universe



"Gravitational-Wave" Astronomy: observing Universe using gravitational-waves, the "ripples of spacetime".

Listening to the Universe



GW Spectrum

Szczepańczyk, The Quest to Detect GW Bursts

GW Sources and Searches

Einstein Equation and Experimental Gravitation

$$R_{\mu\nu} - \frac{1}{2} R g_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu}$$

- Space-time tells matter how to move; matter tells spacetime how to curve J. Wheeler
- Einstein Equation:
 - Solving it analytically/numerically, or
 - Let the Nature solve it for us
- An abundance of gravitational-wave sources are to discover, but only handful are precisely modelled.

The Dynamic Universe (The Loud Universe)

Quadrupole formula for GW production:

$$\mathbf{h}_{ij}^{TT}(t, \mathbf{x}) = \frac{1}{D} \ddot{Q}_{ij}(t - D/c, \mathbf{x})$$

We need aspherical mass-energy movement.

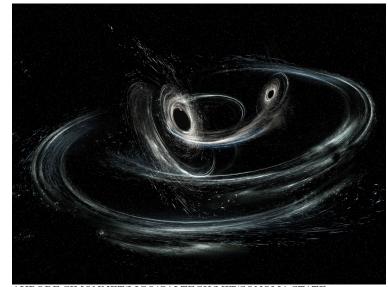
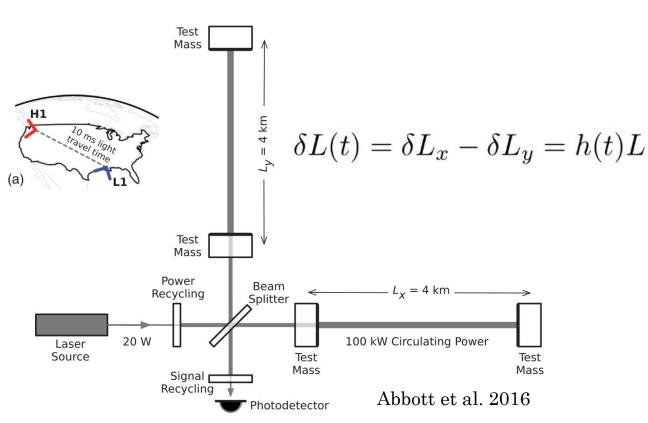



Image: NSF/LIGO/Sonoma/A. Simonnet

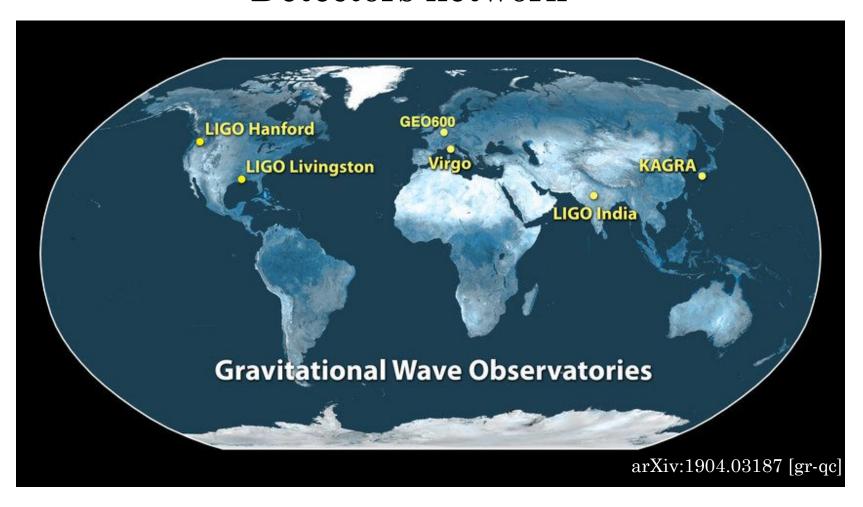
GW sources:

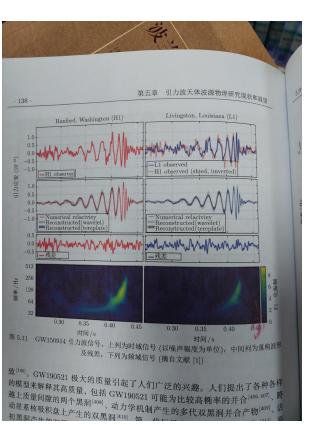

- Standard, e.g. stellar-mass
 binary black holes
 More examples
- Special, e. g. binaries in Part II with elliptical orbits, lensed events, core-collapse supernova

AURORE SIMONNET/LIGO/CALTECH/MIT/SONOMA STATE

Gravitational-Wave detectors

- GW detectors: interferometers (the longer the more sensitive)
- Preferably far away from human activities.
 But noise is inevitable...

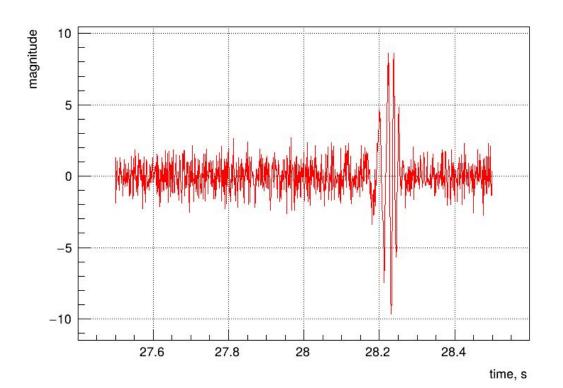



Szczepańczyk, The Quest to Detect GW Bursts

Detectors network

- KAGRA recently joined observations
- LIGO India under construction
- Planned Australian detector (e.g. NEMO)

GW Burst Searches

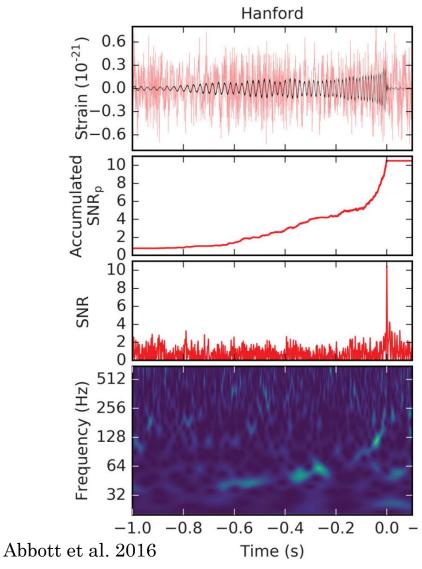


Psst!
Discovery of GWs was made
by the GW burst searches

GW Bursts

Bursts – short-duration transients. Examples:

- Electromagnetic: gamma ray burst, fast radio burst, optical, X-ray, etc.
- Neutrino bursts
- Cosmic rays
- GW Bursts ← how to search for them?

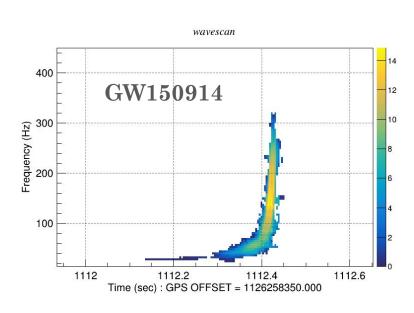


Example of binary black hole in the data, signal-to-noise ratio of around 30 (very strong)

Szczepańczyk, The Quest to Detect GW Bursts

Model-dependent searches (template based, matched-filtering)

- Template waveforms from compact binaries are derived from General Relativity.
- Template-based searches: cross-correlating data with the templates
- Mathematically an optimal method given:
 - (1) data is Gaussian
 - (2) we know a waveform accurately
- Missing parameter space or having an inaccurate model may result in missing a detection.
- How about when you cannot create a template?
 - Matched filtering is not useful to search for GW bursts



Model-independent searches

- Coherent WaveBurst (cWB, Klimenko+16) is a software designed to detect a wide range of burst transients without prior knowledge of the signal morphology
- cWB uses minimal assumptions, for example growing frequency over time in case of binaries
- Model-independent and template-based searches complement each other
- cWB has detected:
 - GW150914 the very first GW (PRL 116, 061102)
 - o **GW190521** an intermediate mass binary black hole, 150 Msun (PRL 125, 101102)
 - **GW231123** ~200 Msun BH (<u>2507.08219</u>)
 - It regularly detects GWs together with template-based searches
- The cWB contributes results to several LVK papers during each observing run.

https://gwburst.gitlab.io/

Data Transforms

• Fourier Transform:

$$\hat{X}(f) = \int_{-\infty}^{\infty} x(t) e^{-i2\pi f t} \ dt$$

• Short-Time Fourier Transform:

$$X(\tau,\omega) = \int_{-\infty}^{\infty} x(t)w(t-\tau)e^{-i\omega t} dt,$$

• Wavelet Transform:

$$X(a,b) = rac{1}{\sqrt{a}} \int_{-\infty}^{\infty} \overline{\Psi\left(rac{t-b}{a}
ight)} x(t) \, dt$$

Time-Frequency Transform

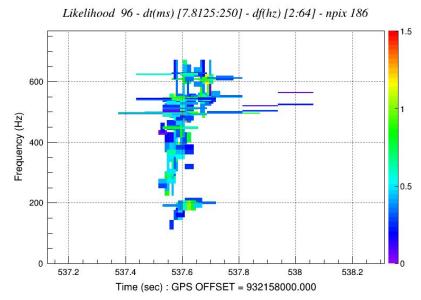
Time-Frequency Distribution $P(\omega, t) = |\hat{x}(t)|^2$

Short Time Fourier Transform:
$$\hat{x}(t,\omega)=\int_{-\infty}^{\infty}x(\tau)w(\tau-t)e^{-i\omega\tau}\;d\tau$$

Which window v(t) is optimal? – The answer depends of the type of the signal we try to resolve More general question: what is the optimal distribution $P(\omega, t)$ of the time-varying spectrum? 500 400 400 Frequency (Hz) Frequency (Hz) **BBH** SG chirp 100 100 T=0.064 sT=0.016 s30 32 31 33 30 32 33 Time (sec) Time (sec) 400 sin(\ot) Frequency (Hz) Frequency (Hz) linear chirp 100 100 T=0.256 s T=1 s 30 32 30 32 33 Time (sec) Time (sec)

S. Klimenko, APS, April 2022

3

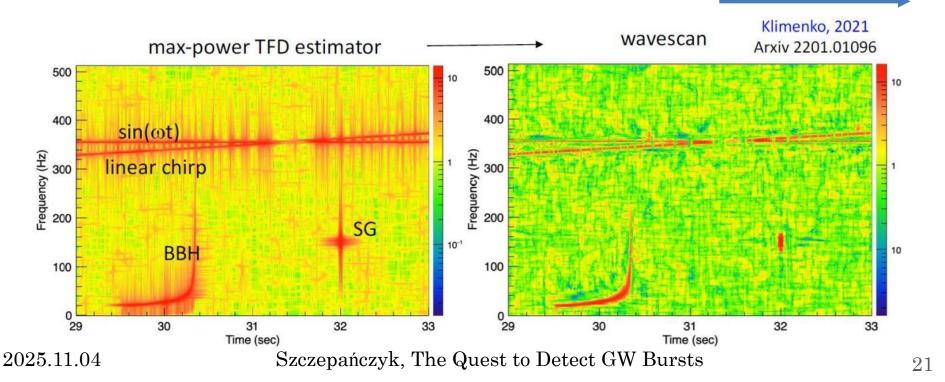

Multiresolution wavelet decomposition

• It is not possible to measure both frequency and time with at arbitrary resolution:

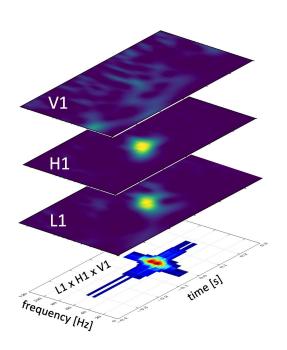
$$\sigma_t^2 \, \sigma_\omega^2 \ge \frac{1}{4}$$

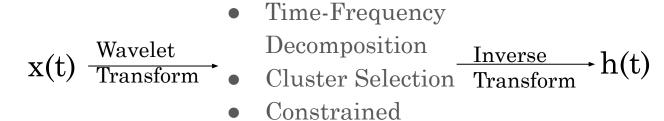
(Heisenberg rule for signal processing)

- Detectability of signals depends on setting up appropriately Δt and Δf .
- cWB uses 7 multiresolution decomposition layers

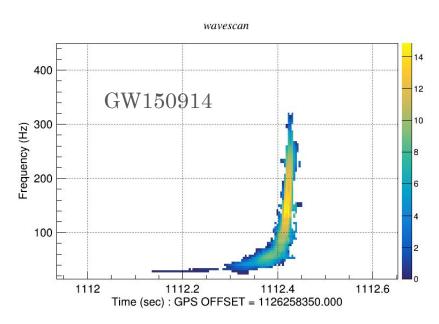

Szczepańczyk, The Quest to Detect GW Bursts

Wavescan

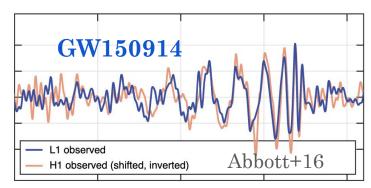

Wavelet stack

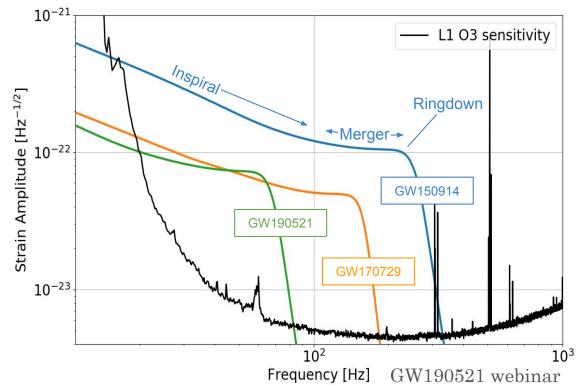

 $t=t_n$

- Wavescan (Klimenko+22, <u>2201.01096</u>): high-resolution time-frequency transform
- Heisenberg rule for signal processing: $\sigma_t^2 \sigma_\omega^2 \ge \frac{1}{4}$
 - Multiresolution analysis and wavelet stack
- Wavescan transform combines the maps from different resolution into a single time-frequency map
 - Spectral and temporal leakage is minimized.



coherent WaveBurst (cWB)

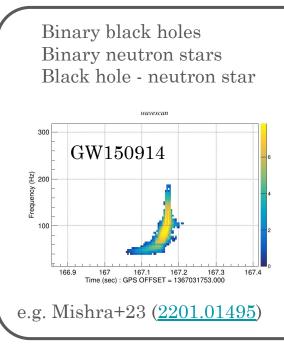

Likelihood

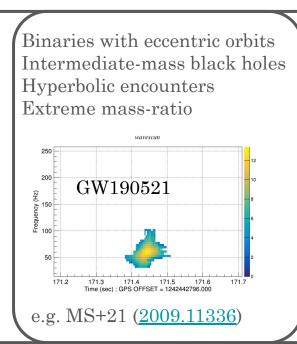


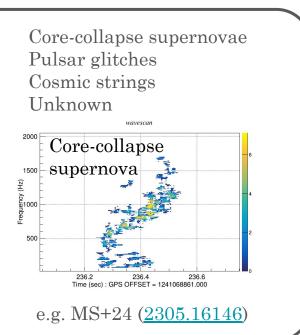
Frequency evolution of binary black holes

- Phases of inspiral:
 Inspiral, Merger, Ringdown
- The heavier binary the smaller peak frequency:

$$f_{peak} \propto 1/M_{tot}$$






Model-independent searches classification

Compact binary searches (minimally modeled)

Generic searches (unmodeled)

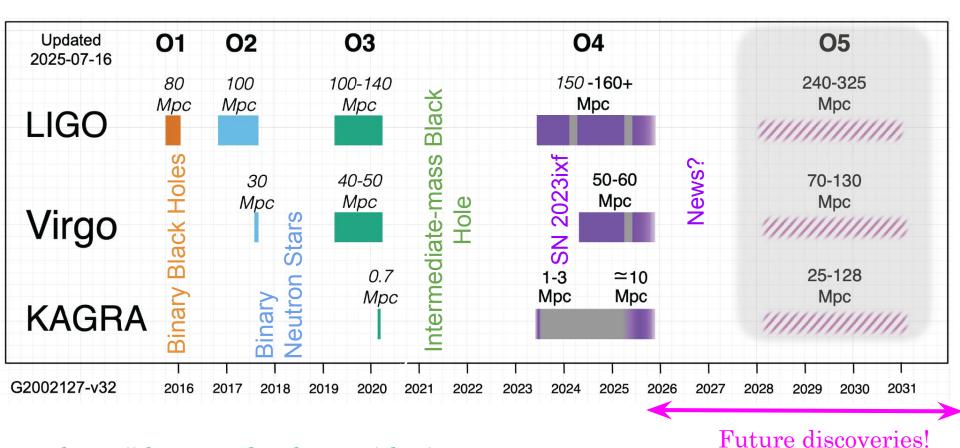


Low-latency searches

Public alerts for multi-messenger observations: electromagnetic, cosmic rays, and neutrino

e.g. Chaudhary+24 (2308.04545)

Searches for new phenomena



Higher harmonics GW cross-polarization Deviations from GR

e.g. Vedovato+22 (<u>2108.13384</u>)

Part II: Future (Next 10 Years and Beyond)

Observing Timeline

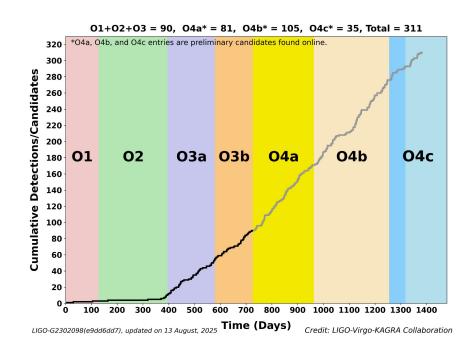
- https://observing.docs.ligo.org/plan/
- O4: 24 months total, until 18 Nov 2025
- LIGO: up to 180 Mpc, currently 160 Mpc
- Virgo: around 55 Mpc
- KAGRA: reached 7.5 Mpc, observed briefly

- Also: GEO600, a few Mpc
- LIGO-India under construction
- Australian detector

Observing Run 4 (What we have discovered)

Observing Run 4

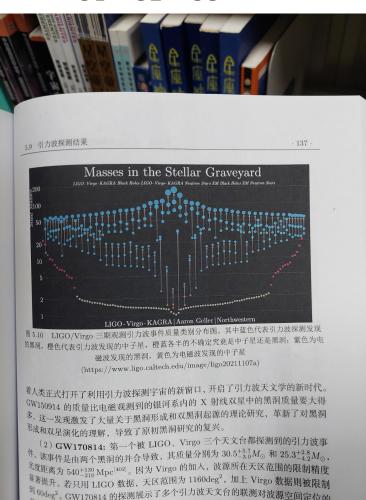
双黑洞


- Low-latency searches are crucial for astronomical observations, resources:
 - https://gracedb.ligo.org
 - <u>https://emfollow.docs.ligo.org/userguide/</u>
- Published results:
 - 21 papers and counting!
 - GWTC-4, O4a catalog (<u>2508.18082</u>)
 - Introduction (<u>2508.18080</u>)
 - Methods (<u>2508.18081</u>)
 - Populations (<u>2508.18083</u>)

GW candidates so far (3 per week):

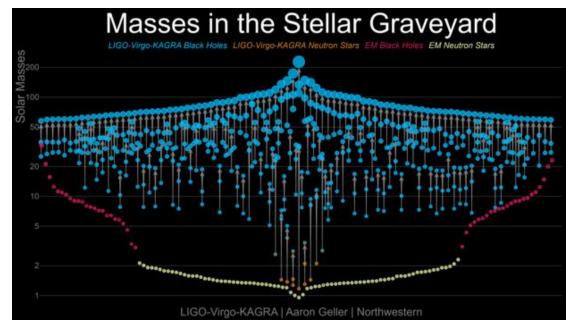
O4a: 128 GWs

O4b: 105 GW candidates


O4c: 61 GW candidates

Rapidly evolving field

GW Catalog:


$$O1 + O2 + O3$$

Books are getting outdated quickly...

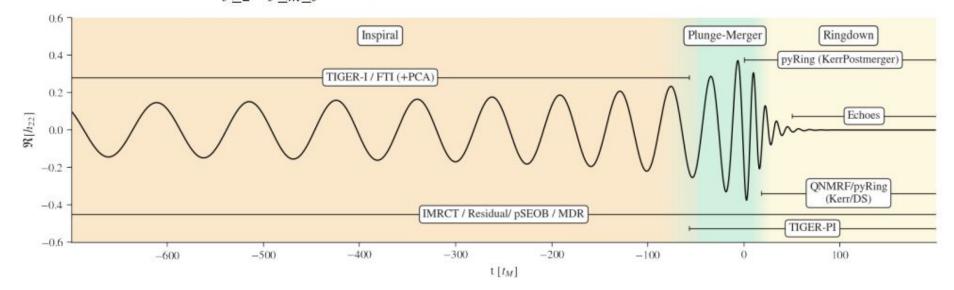
GW Catalog:

$$O1 + O2 + O3 + O4a$$

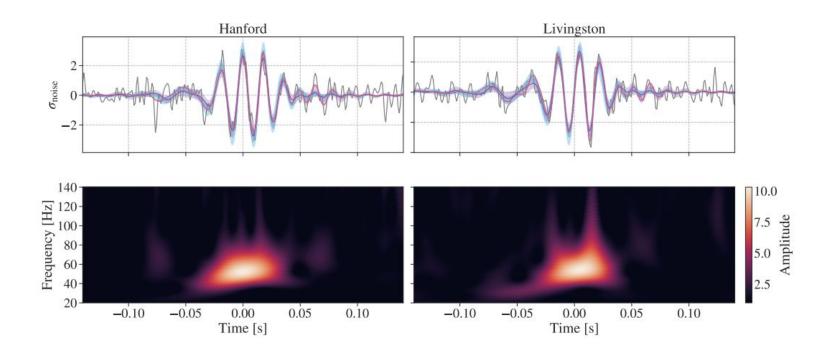
Latest News

- The field is evolving quickly, where to get the latest news summaries?
- All LVK papers: https://pnp.ligo.org/ppcomm/Papers.html
- Recommendation: Science Summaries

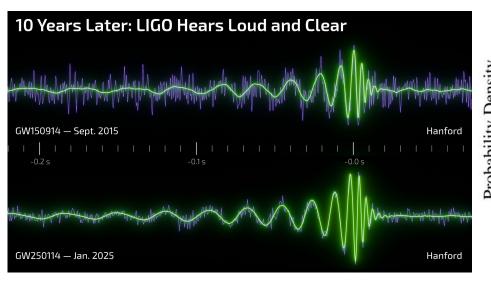
LIGO-Virgo-KAGRA Publications

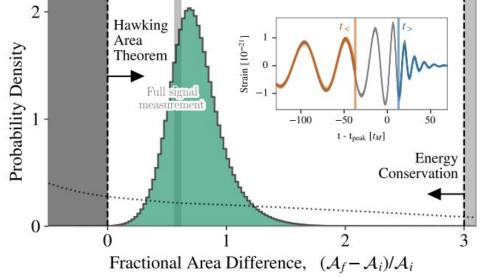


The LIGO Scientific Collaboration and Virgo collaboration have been co-authoring observational result papers since 2010. Beginning in 2021, the KAGRA Collaboration too is co-authoring observational results from the full O3 run. See here for additional information.

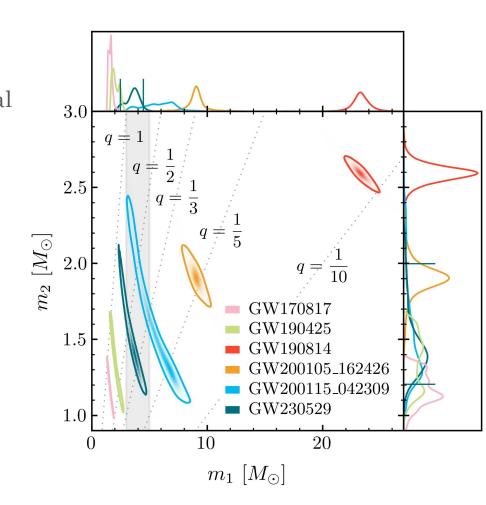

Release Date	Title	Keywords (clear filter)	Science Summary	ournal citation	arXiv Preprint	Public Report
Oct 28, 2025 *Recent*	GW241011 and GW241110: Exploring Binary Formation and Fundamental Physics with Asymmetric, High-spin Black Hole Coalescences (by LSC, Virgo and KAGRA)	O4 CBC LVI	<u>summary</u>	strophys. J. Lett. 993 , 21 (2025)	<u>2510.26931</u>	P2500402
Oct 20, 2025 *Recent*	Directional search for persistent gravitational waves: Results from the first part of LIGO, Virgo, and KAGRA's fourth Observing Run (by LSC, Virgo and KAGRA)	O4 Stochastic LVK	<u>summary</u>	Submitted to PRD	<u>2510.17487</u>	P2500380
Sep 10, 2025 *Recent*	GW250114: Testing Hawking's area law and the Kerr nature of black holes (by LSC, Virgo and KAGRA)	<u>O4 CBC</u> <u>GW250114</u> <u>LVK</u>	<u>summary</u>	hys. Rev. Lett. 135 , 11405 (2025)	2509.08054	P2500421
Sep 10, 2025 *Recent*	Black Hole Spectroscopy and Tests of General Relativity with GW250114 (by LSC, Virgo and KAGRA)	<u>O4 CBC</u> <u>GW250114</u> <u>TGR LVK</u>	<u>summary</u>	Submitted to PRL	2509.08099	P2500461
Sep 9, 2025 *Recent*	GW230814: investigation of a loud gravitational-wave signal observed with a single detector (by A. G. Abac et al. (LSC, Virgo and KAGRA))	<u>O4</u> <u>GW230814</u> <u>LVK</u>	<u>summary</u>	Submitted to ApJL	2509.07348	P230814
Sep 9, 2025 *Recent*	Directed searches for gravitational waves from ultralight vector boson clouds around merger remnant and galactic black holes during the first part of the fourth LIGO-Virgo-KAGRA observing run (by LSC, Virgo and KAGRA)	O4 CW LVK	<u>summary</u>	Submitted to PRD	<u>2509.07352</u>	P2500256
Sep 4, 2025 *Recent*	GWTC-4.0: constraints on the cosmic expansion rate and modified gravitational-wave propagation (by LSC, Virgo and KAGRA)	O4 CBC LVI	<u>summary</u>	Submitted to ApJL	2509.04348	P2400152
	Upper Limits on the Isotropic Gravitational-Wave Background from	04				

- GW230814: investigation of a loud gravitational-wave signal observed with a single detector
 - High signal-to-noise ratio of 42, single detector
 - New post-merger higher harmonic detected: (l,m,n) = (4,4,0)

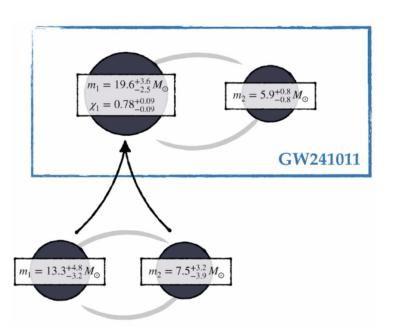

$$h_{+} - ih_{\times} = \sum_{\ell \geq 2} \sum_{-\ell \leq m \leq \ell} \frac{h_{\ell m}(t, \lambda)}{D_{\mathrm{L}}} {}_{-2}Y_{\ell m}(\theta, \phi)$$

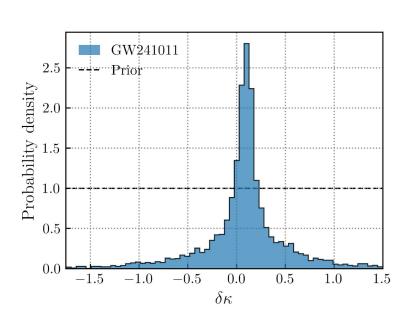


- GW231123: a Binary Black Hole Merger with Total Mass 190-265 Mo (<u>2507.08219</u>)
 - The heaviest confident black hole detection
 - New post-merger higher harmonic detected: (2,2,1)



- GW250114: testing Hawking's area law and the Kerr nature of black holes
 - Highest so far signal-to-noise ratio of 80
 - Precise test on Hawking area theorem: an area of a black hole can only grow

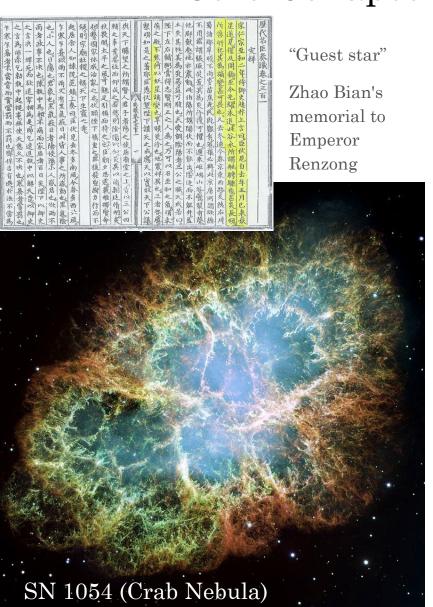

- GW230529: Observation of Gravitational Waves from the Coalescence of a 2.5-4.5
 Mo Compact Object and a Neutron Star
 - A light binary, in a lower mass gap
 - Neutron Star Black Hole rate increases



Observing Run 4: GW241011 and GW241110

- GW241011 and GW241110: Exploring Binary Formation and Fundamental Physics with Asymmetric, High-spin Black Hole Coalescences
 - Hierarchical mergers
 - Testing GR's spin-induced quadrupole moment: Einstein was right (again)

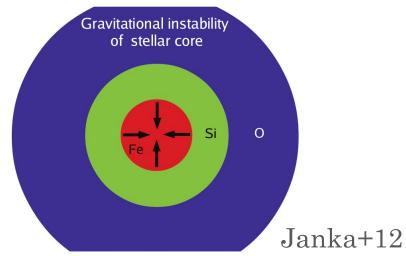
$$Q = -\kappa S^2/(mc^2)$$


Future (What we will, hopefully, discover)

What's next? The next 10 years and Beyond

Special astrophysical sources might play an important role in our endeavor of exploring the Universe.

- New GW source populations:
 - Compact binaries: binaries with eccentric orbits, hyperbolic encounters, head-on collisions, extreme mass ratio, sub-solar mass binaries, lensed binaries
 - GW bursts: core-collapse supernovae, neutron star or pulsar glitches, cosmic strings
- Multi-messenger GW sources (electromagnetic waves, neutrinos, cosmic rays): BNS, NSBH, BNS post-merger
- GW sources with new phenomena (usually weaker effects):
 - GR: pre- and post-merger higher harmonics, GW cross-polarization, black hole kicks, GW memory, effects of precession, high spins, black hole formation
 - Beyond GR: GW echo, beyond-quadrupolar GW polarizations,


Core-Collapse Supernova (CCSN)

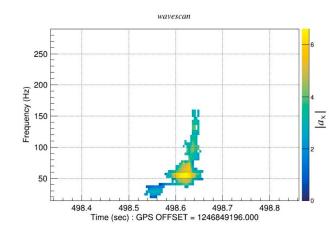
Nova on the sky!
1-2 per century in Milky Way (?)

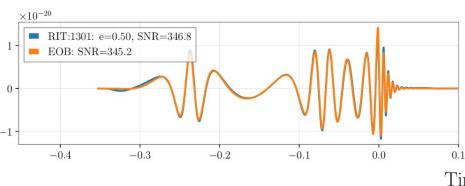
- Burning of a star: $H \rightarrow He \rightarrow ... \rightarrow Fe$
- After exceeding Chandrasekhar mass of $1.4~{\rm M}_{\odot}$ the iron core collapses.
- 99% of explosion energy escapes with neutrinos!

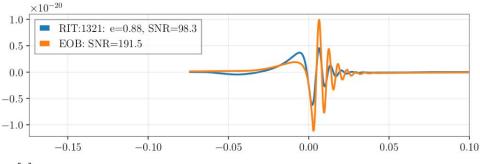
Explosion mechanism(s) is still unknown

When will we discover GWs? (realistically: Galactic CCSN)

O1-O2 run: SN 2017eaw (6.7 Mpc) 10^{-1} 10^{53} O3 run: SN 2019ejj (15.7 Mpc) O4 run: SN 2023ixf (6.7 Mpc) O5 run: 1 Mpc Ou et al 2004 10^{-3} O5 run: 100 kpc 10^{51} 0 O5 run: 10 kpc Shibagaki et al 1200 $E_{
m GW} \ [M_{\odot} c^2]$ -20 Numerical models: 2020 $\frac{1}{\log_{10}(h_{\rm char})}$ bar-modes 800 600 400 200 10^{-7} $0 - 10^{47}$ 150 200 00 $t_{\rm pb} \, [{\rm ms}]$ 900 10^{-9} Numerical models: 10^{45} realistic O 0 10^{-11} 100 1000 Image: Michael Frequency [Hz] Sandoval, ORNL

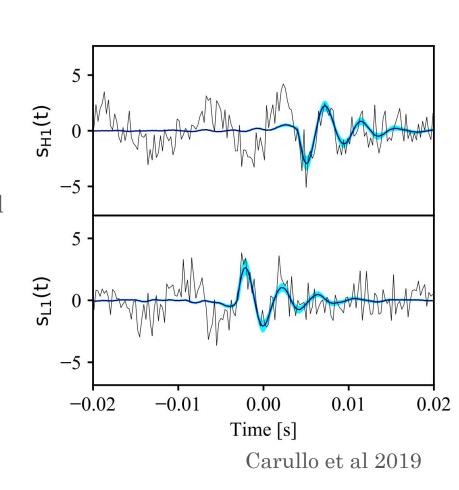

SN2025gw: IGWN Symposium on CCSNe


- IGWN International Gravitational-Wave Network
- Symposium webpage: https://indico2.fuw.edu.pl/event/17/overview
- CCSNe are the most challenging astronomical events to model
 - Theory, Gravitational Wave Detection and Parameter Estimation,
 Neutrino Detection, CCSN across the Electromagnetic Spectrum, CCSNe
 over the Next Ten Years
- Youtube: <u>playlist</u>
- Classical and Quantum Gravity focus issue proceedings and White Paper (in progress): https://iopscience.iop.org/collections/cqg-250513-841
- Large attendance of the Symposium: Galactic CCSN the next big thing?



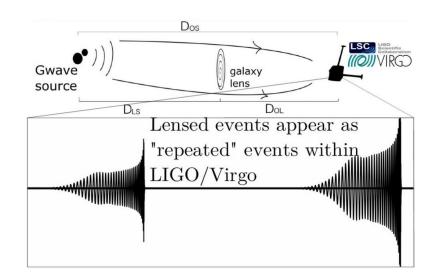
Eccentric binaries

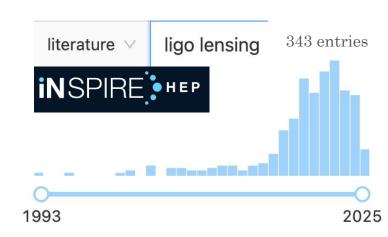
- **Eccentric binaries**: compact binaries elliptical orbits.
 - Dynamical formation
- Bhaumik et al (MS) 2024 (<u>2410.15192</u>)
 - Comparison between waveform models
 - Sensitivity studies and recommendations
- Mishra et al (MS) 2024 (<u>2410.15191</u>)
 - O3 data reanalysis
 - o 3 new GWs: consistent with stellar BHs, one event has large mass-ratio (possible dynamic formation)



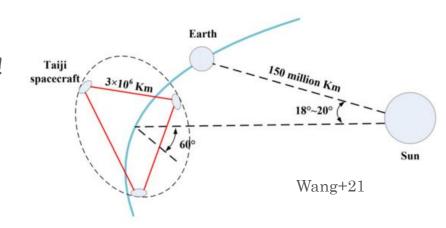
Time [s]

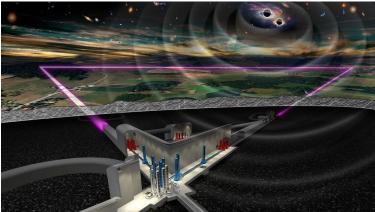
Black Hole Spectroscopy


- Black holes are very simple objects!
 According to the no-hair theorem black hole geometry depends only on:
 - o mass, spin, electric charge
- Black hole spectroscopy: measuring black hole oscillations
- Quasi-normal modes (QNM) dumped perturbations of BH resonances.
 - Intuitively: waves traveling around BH.
 - Precise measurements of the BH mass and spin and testing GR.
- Systematically we will be discovering more higher harmonics


$$h_{+} - ih_{\times} = \sum_{\ell \geq 2} \sum_{-\ell \leq m \leq \ell} \frac{h_{\ell m}(t, \lambda)}{D_{L}} {}_{-2}Y_{\ell m}(\theta, \phi)$$

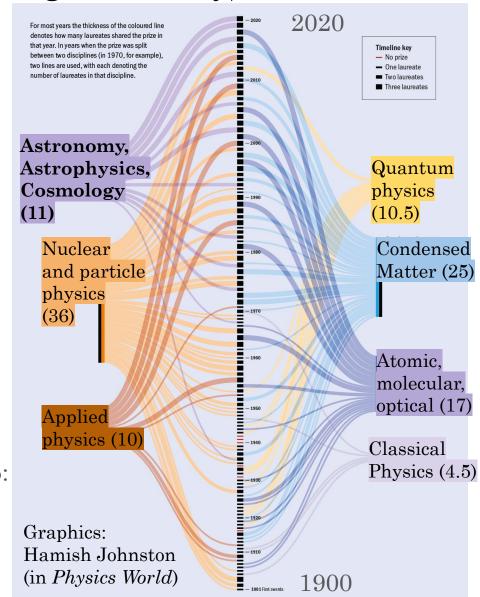
GW lensing


- GW lensing: bending of GW propagation path near a massive object
- Potential next GW discovery (even in the next couple of years)
- Comparison with electromagnetic wave lensing:
 - Similar to light, GWs can be gravitationally lensed
 - But, very different methodology and science case
- New studies of astrophysics, cosmology and fundamental physics.
- GW lensing: magnification, multiple images, frequency-dependent deformation
- Growing interest in GW lensing



The future of observations

- The third generation (3G) detectors will be 10x more sensitive: thousands of detections!
 - Cosmic Explorer (US)
 - Einstein Telescope (Europe)
- LISA and Taiji: space-based detector

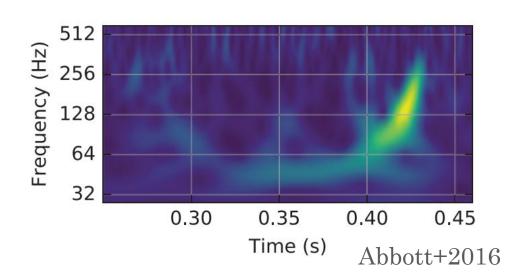


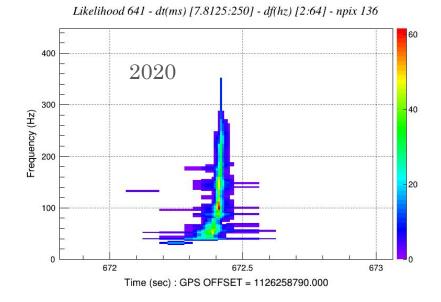
Extraordinary period of discovery in Astrophysics (It's worth looking at the sky)

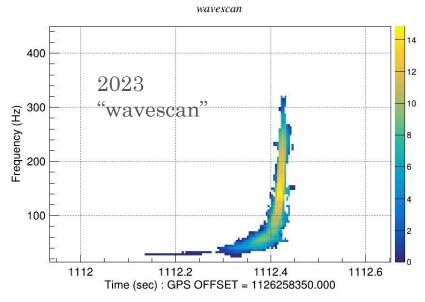
- The role of Astronomy,
 Astrophysics & Cosmology in
 discovery has grown greatly in
 the recent years.
- Since 1900: around 15 Nobel Prizes
- Last decade: 7 Nobel Prizes
 - 4 are directly linked to General Relativity (2017: gravitational waves, 2019: theoretical cosmology, 2020: supermassive BH, 2020: BHs are consequence of GR)
 - 3 use astronomical data (2011: expansion of the Universe, 2015: neutrino oscillations, 2019: exoplanets)

Summary

引力波:黃金時代 (gravitational waves: golden age)


- Part I: Basics
 - GW observations
 - Model-independent methods are suitable for discoveries
- Part II: Future
 - O4: ~400 GWs and GW candidates, several high profile results
 - Much is still waiting to be discovered
 - Future discoveries: core-collapse supernova,
 - Future is "loud"!
- Slides: <u>fuw.edu.pl/~mszczepanczyk/news.html</u>


Extras


Time-frequency maps (GW150914 example)

- Challenges:
 - Temporal leakage (time domain)
 - Spectral leakage (frequency domain)
 - Combining resolutions
- Latest developments on high-resolution time-frequency transform and minimizing leakage:

Klimenko+22 "wavescan" (2201.01096)

Astronomy and Astrophysics for the 2020s

Astronomy and Astrophysics for the 2020s is a Decadal Survey by the American National Science Foundation.

New Messengers and New Physics:

most energetic processes in the Universe, nature of dark matter, dark energy, and cosmological inflation.

Worlds and Suns in

Context:

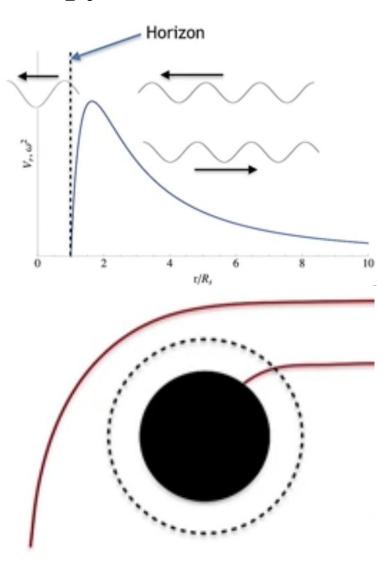
exoplanets and stars, their formation, evolution, characterize other solar systems, potentially habitable analogs to our own.

Cosmic Ecosystems:

link observations and modeling of the stars, galaxies, and the gas and energetic processes that couple their formation, evolution.

Priority Area: "New
Windows on the Dynamic
Universe"

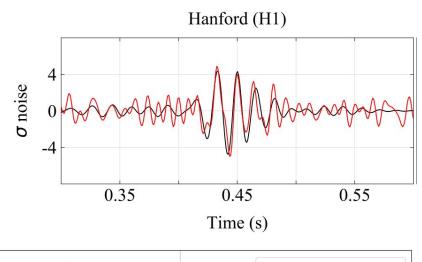
Priority Area: "Pathways to Habitable Worlds"

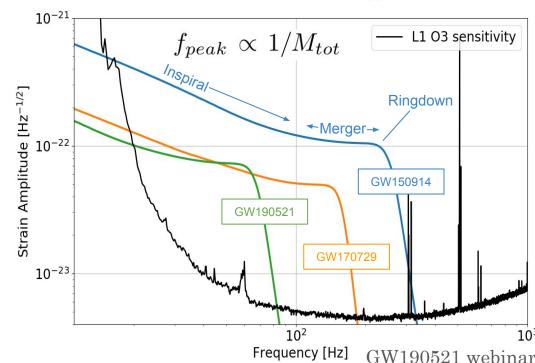

Priority Area: "Unveiling the Drivers of Galaxy Growth"

Black Hole spectroscopy

- BH perturbation theory predicts the BH resonances, quasi-normal modes (QNM), intuition:
 - waves traveling around the BH (similarly to Earth's free modes of oscillation, Berti+09)
 - light rays scattered (like in quantum mechanics) around BH spacetime potential and slowly leaking out (Goebel+72)
- The same equations need to be solved as for hydrogen atom in quantum mechanics. Scalar wave equation in Schwarzild:

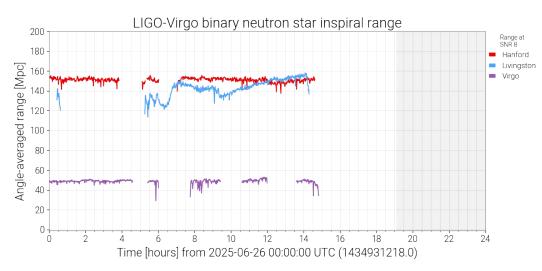
$$\Box_g \psi = 0$$

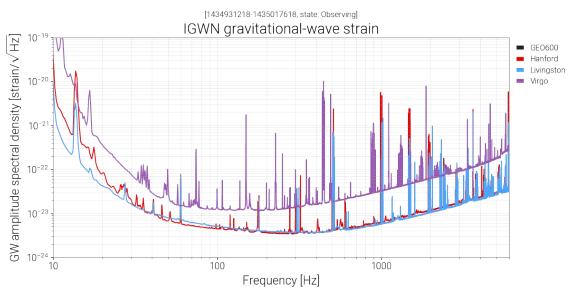

• Future strong GW detections will allow measuring BH oscillations

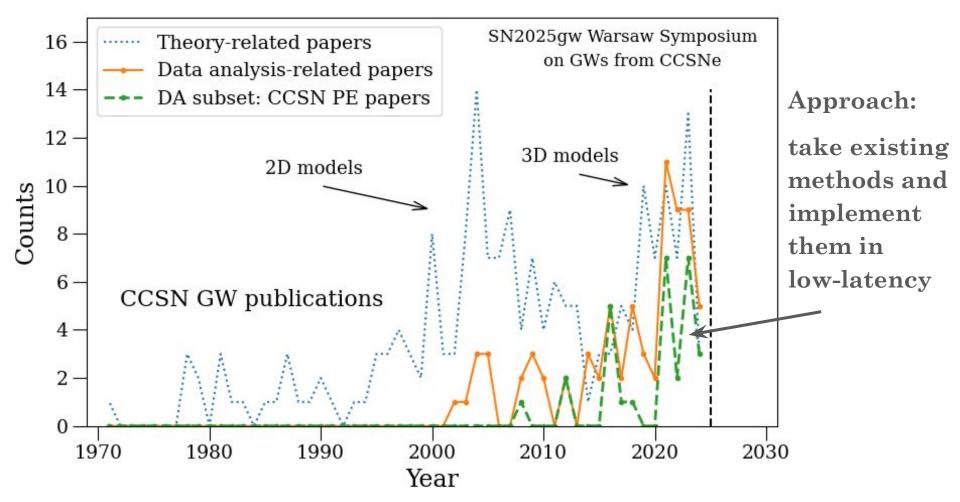


Figures: A. Zimmerman

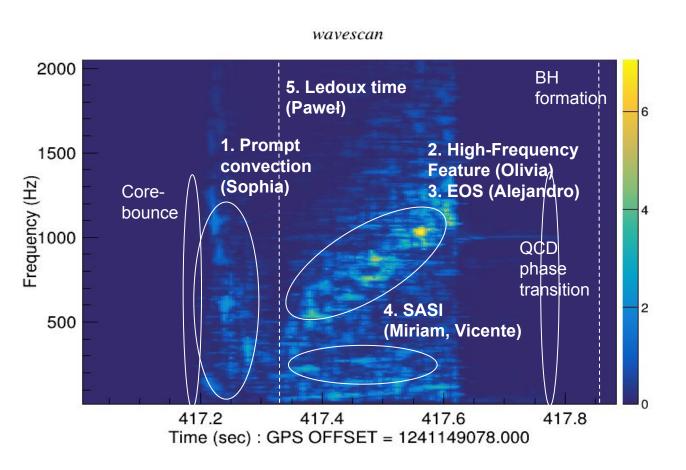
GW190521


- Intermediate-mass black holes (IMBHs) between stellar mass (100 ${\rm M}_{\odot}$) and supermassive (10⁵ ${\rm M}_{\odot}$). The origin is not yet well understood.
 - Probing pair-instability mass gap
 (Stars with He mass in (64 M_o, 135 M_o)
 - Formation channels
 - Most distant GW sources
- GW190521 first conclusive evidence of an IMBH.
- No chirping structure
- Detection significance (see MS+21, 2009.11336):
 - Online: 1 per 28 years
 - Offline: 1 per 4900 years (established by cWB)
 - o Challenges: scatter noise, blips




Observing Run 4

- Live detector status: https://online.igwn.org/
- Daily detector status:
 https://gwosc.org/detector-status/
- Public data release is 18 months after data collection


SN2025gw: IGWN Symposium on CCSNe FUW contribution

CCSN GW Literature, by Ewald Mueller:

https://wwwmpa.mpa-garching.mpg.de/rel hydro/GWlit catalog.shtml

SN2025gw: IGWN Symposium on CCSNe FUW contribution

- 6. Emission Regions (Brajesh)
- 7. GW energy (Sreeta)
- 8. Source Orientation (Pratul)
- 9. CCSN Sound (Jan)
- 10. GW Representation (Stanisław)

Sound of gravitational waves from CCSNe:

https://www.fuw.edu.pl/~mszczepanczyk/gwsound.html

SN2025gw: IGWN Symposium on CCSNe

Some lessons learned (work in progress on a White Paper):

- A multimessenger (GW+nu+EM) detection program for CCSNe is underway.

 Detailed discussion/decisions needed on the conditions for declaring a detection with a CCSN candidate (statistical significance, morphological constraints).
- A multimessenger (GW+nu+EM) parameter estimation program for CCSNe is underway. More areas can be expanded further like multi feature. There are indications that GW memory could be detected as well (thanks also to current hardware improvements).
- The interaction between EM, nu and GW communities could be improved, for example what will we do explicitly if we have a Galactic CCSNe?
- While there is a consensus on predicted GWs, it is still not known what waveform amplitudes we may expect.
- Many uncertainties (**progenitor structure**...) and hidden assumptions (**transport treatment**...) are baked into the multi-physics supernova problem.
- Important to consider how supernova modelling needs to **evolve technically and organisationally** to make further progress and aid gravitational wave and multi-messenger astronomy.