
1. GENERAL DESCRIPTION OF THE SCREAM PROPOSAL

1.1. Introduction. This project is concerned with Differential Geometry, which during the last 150 years had
been mainly identified with the areas of Riemannian geometry, or its specializations such as Kähler geometry,
sometimes considered in other than Riemannian signatures. While research focussed on these areas has led
to spectacular successes, there are many other geometries, even starting from two dimensions, which although
noticed and well motivated (for example in alternative theories of gravity) were not sufficiently studied.

Recently, there has been a growing interest in reviving these other than Riemanian geometries, due to their
emergence in various applications, ranging from areas of pure mathematics, such as geometric analysis (Ricci
solitons) and complex analysis (uniformly Levi-degenerate surfaces), through physics: classical field theories,
general relativity, string theory (near horizon geometry), to geometric control theory and robotics (rolling balls
[1], simple nonholonomic systems).

In particular, in promoting the revival of these more general geometries, the Principal Investigator (PI) of
this proposal, together with Michael Eastwood from Australian National University, Wojciech Kryński from
Institute of Mathematics of the Polish Academy of Sciences (IMPAN), and Benjamin Warhurst from the Uni-
versity of Warsaw, organized a ‘Simon’s Semester’, a new mathematical initiative of the Simons Foundation,
https://www.simonsfoundation.org, entitled ‘Symmetry and Geometric Structures’. This event, held at
IMPAN in Warsaw between 1.09-30.11.2017, gathered together about 100 mathematicians from 15 countries,
and posed many questions which are the main topics in this proposal.

Earlier this year, the Norwegian Principal Investigator (Prof. Boris Kruglikov) organized together with Den-
nis The (Tromsø), José Figueroa-O’Farrill (Edinburgh), Sigbjørn Hervik (Stavanger), Irina Markina (Bergen),
Jan Slovák (Brno), and Bent Ørsted (Aarhus), the Abel Symposium 2019, https://abelsymposium.no/2019,
entitled ‘Geometry, Lie Theory and Applications’. The Abel Symposium is a prestigious annual event estab-
lished by the Niels Henrik Abel Memorial Fund and the Norwegian Mathematical Society. This event again
gathered about 50 mathematicians from the entire world with broad expertise in the realm of general geometries,
not limited to the (pseudo)Riemannian paradigm.

Before passing to the detailed description of the proposal and its goals, we show an excerpt from the PI’s
application for the 2017 Simons Semester ‘Symmetry and Geometric Structures’, which expresses our belief
that now is the time for the revival of this kind of geometries. It also gives a brief idea of what these ‘other-
than-Riemannian geometries’ are, and how they appear in the lowest dimensions:

When speaking of differential geometry, it is Riemannian geometry that first springs
to mind. But there are many other notions of geometry even in two dimensions. They are
equally well motivated but are often overlooked in differential geometry, despite their
historical pedigree and intrinsic interest. In higher dimensions, alternative geometric
structures abound. There is an international resurgence of interest in this area and we
believe a Simons Semester would be most timely, both in stimulating new developments
and in disseminating our current knowledge to the next generation.

A key principle and unifying theme is one of symmetry. To justify its study from
this viewpoint, a geometry should have a most symmetrical incarnation with an abun-
dance of symmetries. So it will be a homogeneous space, often referred to as the flat
model, many characteristics of which will persist in the curved setting. Even in two di-
mensions this principle leads to interesting geometries. The round two-sphere, amongst
two-dimensional Riemannian manifolds, is one of the most symmetrical: its symme-
try group SO(3) is of maximal dimension (although not usually considered as flat, the
round sphere is just as good as Euclidean space from the standpoint of symmetry). But
SL(3,R) also acts transitively on the two-sphere, an action that preserves its geodesics,
the great circles. This observation is crucial in mapping the Earth in a manner suitable
for navigation (as is Mercator’s projection, which is conformal, i.e. angle-preserving).
The Lorentz transformations SO(3,1) act conformally on the two-sphere (as the celes-
tial sphere). As a symplectic manifold, the two-sphere enjoys an infinite-dimensional
family of symmetries. Again this is tied to cartography with area-preserving mappings
of the Earth often used in geography.
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On the three-sphere, the principle of symmetry leads to a host of fascinating geome-
tries, e.g. the following groups and their associated structures.

SO(4) SL(4,R) SO(4,1) Sp(4,R) SU(2,1)

Riemannian projective conformal contact-projective CR
In each case, the listed group acts naturally on the 3-sphere preserving the listed

structure. Not only that, but the group in question is characterised as the transforma-
tions that preserve the given structure (e.g. SO(4) comprises the orientation-preserving
isometries of the round 3-sphere). Finally, there are curved versions of these flat models
(e.g. CR geometry in 3 dimensions is an intrinsic structure inherited on real smooth
hypersurfaces in 2-dimensional complex manifolds). Apart from Riemannian geometry,
these are examples of parabolic geometries, recently developed by various researchers in
Central Europe, including Andreas Čap (Vienna) and Jan Slovák (Brno). It has also been
noticed that many key elements of Riemannian geometry (e.g. Killing fields) are, in fact,
projectively invariant. Thus, many familiar (and in higher dimensions not-so-familiar)
differential geometries are captured by the new parabolic theory. In five-dimensions,
life becomes very interesting indeed! In particular, Élie Cartan’s seminal five variables
geometry, often regarded as a real tour-de-force of ingenuity, is now subsumed by the
general theory. That is not to say everything is done: far from it! Working out and
appreciating the implications of the general theory in any particular case can be a very
involved task. Moreover, there is evidence for a theory beyond the parabolic realm, cur-
rently supported only by some fascinating examples. All-in-all, this is a thriving field
with ill-defined boundaries that should be pushed to their limits.

1.2. Why SCREAM?.

1.2.1. Symmetry. One of the leading themes of the proposal is that of a symmetry. In the context of differential
geometry it is realized as follows.

Consider a pair (M,S) of an n-dimensional manifold M equipped with a geometric structure S on it. Typically
the structure S may be given by a tensor field on M (e.g. a pseudo-Riemannian metric g), a class of such tensor
fields on M (e.g. a conformal structure [g]), a field of k-planes D on M (a rank k distribution), or a distribution
with additional algebraic structure in D (e.g. a class of tensor fields on D, a split of D in a direct sum/tensor
product of l-planes of various ranks, etc.).

A finite symmetry of the geometry associated with a pair (M,S) is a diffeomorphisms φ : M→M preserving
the structure S. The set of all such φ is the group G of symmetries. In the important cases, which we are going
to study, this group G is in fact a Lie group.

An infinitesimal symmetry is a vector field X on M that preserves S, LX S= 0. The totality of all infinitesimal
symmetries form the Lie algebra of symmetries of (M,S). Again, under reasonable assumptions that we adopt,
this Lie algebra corresponds to the above Lie group: g = Lie(G). As a rule, it is easier to compute g, because
the defining relation is an overdetermined system of linear PDEs. A typical example is the system of Killing
equations LX g = 0 for the metric g.

1.2.2. Curvature Reduction. Another approach to geometric structures (M,S) on manifolds and their symme-
tries is by defining them in terms of a flat model, i.e. in terms of a homogeneous space M0 = G/H, where G
is a Lie group and H is its closed Lie subgroup. Suppose the Lie group G is the full group of symmetries of
an invariant geometric structure S on M0. We then refer to the geometric structure S as the geometric structure
typical for the pair of Lie groups (G,H). Given M0 = G/H, together with the geometric structure S typical for
the pair (G,H), one then considers pairs (M,S) of manifolds M of the same dimension as M0 and S sharing all
the properties of the geometric structure in the model M0 = G/H. In such a case one says that the geometric
structure (M,S) is modeled on the homogeneous space M0 = G/H, or is of the type (G,H).

For a vast number of geometric structures (M,S) of type (G,H) there exists a unique principal bundle H→
G →M, with a canonical g-valued 1-form ω on G , called a Cartan connection, such that

(i) at every point x ∈ G the map ω : TxG → g= Lie(G) is an isomorphism,
(ii) for every fundamental vector field ξX , corresponding to an element X in the Lie algebra h of H, ω(ξX) = X ,

(iii) ω is H-equivariant, i.e. the right translation R∗h(ω) of ω by the group H coincides with the adjoint action of
H in g, namely R∗h(ω) = hωh−1 for all h ∈ H.
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The curvature of a Cartan connection ω is defined to be the g-valued 2-form Ω on G such that

Ω(X ,Y ) = dω(X ,Y )+ 1
2 [ω(X),ω(Y )];

here X ,Y are vector fields on G .

A geometric structure (M,S) of type (G,H) admitting a canonical Cartan connection ω is called a Cartan
geometry of type (G,H). The model M0 = G/H of such a geometry is characterized by the condition that the
curvature of its Cartan connection vanishes. Thus the curvature of the Cartan connection ‘measures’ how much
a particular Cartan geometry of type (G,H) differs from the homogeneous model M0 = G/H. In this sense the
model M0 = G/H is flat.

If the Cartan geometry is non-flat, i.e. if it has nonvanishing curvature Ω, its curvature may be used to reduce
the Cartan bundle H → G →M to a bundle over M modeled on a homogeneous space M1 = G1/H1, with Lie
groups H1 ⊂G1 quite different than G and H. This curvature reduction procedure, called the Cartan reduction,
leads algorithmically to the explicit construction of all, not only flat(!), homogeneous models of geometries of
type (G,H).

1.2.3. EquivAlence Methods. The central problem in Differential Geometry is to determine if two geometric
structures (M1,S1) and (M2,S2) are locally or globally equivalent. A solution to the local equivalence problem
is needed for purely utilitarian reasons: it happened many times in the history that a geometric object was
discovered in some coordinate system and then it was rediscovered as a ‘new’ object in a different coordinate
system. Here the prime examples are discoveries of a’priori different solutions to the Einstein field equations
of General Relativity, which turned out to be the same after some clever transformation of coordinates.

If one wants to compare two geometric structures of the same kind, and if it happens that their Lie algebras
of all local symmetries are nonisomorphic, then they are not locally equivalent. So the knowledge of the full
algebra of symmetries helps in solving local equivalence problems. Another case that is tractable for solving
equivalence problems occurs when the two geometric structures in question are Cartan geometries. In this case,
the curvature of the Cartan connection provides the system of all local diffeomorphism invariants, which should
match for the equivalent structures.

Typically however, a geometric structure (M,S) modeled on a homogeneous space M0 = G/H does not
admit a Cartan connection; it is not a Cartan geometry. This happens for example during the Cartan reduction
when passing from the Cartan geometry of type (G,H) to the reduced geometric structure modeled on the
homogeneous space M1 = G1/H1. It turns out that during this procedure, sometimes one obtains geometries of
type (G1,H1) that admit a Cartan connection, and sometimes geometries that do not.

Élie Cartan developed an algorithm for finding all local diffeomorphism invariants for a vast class of geomet-
ric structures (M,S) of type (G,H) beyond the class of Cartan geometries of type (G,H). Suppose the structure
S can be described on M in terms of a system of a coframes (ω i) on M, perhaps subject to a differential re-
lation, so that a (local) equivalence of structures S1 and S2 corresponds to a linear change of their coframes
(ω i

1) and (ω i
2). Then, under some regularity assumptions on the class of the structures in question, the Cartan

equivalence method produces all local diffeomorphisms invariants on a derived bundle G over M, enabling to
effectively determine if the two structures S1 and S2 are equivalent or not.

It has to be noted that Cartan equivalence method, although conceptually known and successfully applied
to interesting examples of geometric structures from the beginning of the XX century, is quite tricky and
computationally involved, even in low dimensions. Due to this computational complexity, the method was not
widely used during more than 100 years of its life. Recently, however, because of growing computing power of
electronic machines, it enjoys a renaissance of its usefulness in geometry. The main researchers in this proposal
have contributed to this development (see e.g. [46, 47, 51, 30, 25, 24, 28]).

We point out that the method of Cartan is restricted by the requirement that the structure S has to be of the
same pointwise type (which allows to seek for connections preserving this type), and is not easily applicable to
such classes of geometric objects as cubic fields, differential operators or non-degenerate almost complex struc-
tures. A more general method consists in computing differential invariants of pseudogroup actions associated
to the geometry. This has origin in the works of Sophus Lie, Arthur Tresse and was further developed by Lev
Ovsiannikov, Donald Spencer, Antonio Kumpera, Peter Olver and others. Recently the fundamental theorem of
the theory was proved by Boris Kruglikov and Valentin Lychagin. It states that the algebra of scalar differential
invariants is rational and is finitely generated by invariant derivations [35]. This gives another approach to the
equivalence problem, via signature of the structures (used in image recognition and shape theory).

Interplay between the two methods should be tested in practice, in particular in the case of parabolic ge-
ometries and more general geometries considered in this project.
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1.3. Nonholonomic mechanics and vector distributions. Our proposal is motivated by the fact that there
exists a rich reservoir of interesting geometric structures of a simple mechanical origin, and that the framework
one builds in order to investigate them has far-reaching applications both in differential geometry and beyond.

These structures arise in a most elementary way from the kinematics of systems with non-holonomic con-
straints: that is, mechanical systems whose admissible velocities (i.e. tangent directions to trajectories) are
restricted, at each point of the configuration space, to a linear subspace, but do not force the configuration to
stay on a lower-dimensional submanifold. Systems of that kind are abundant in the field of robotics, where a
non-holonomic constraint may arise for example from the presence of a wheel, assumed to roll on a surface
without slipping or skidding. Their study – in both kinematical and dynamical aspects – is a central task of
control theory, thus immediately indicating an important applied point of reference.

The geometric object encoding the constraints is a vector distribution D on the configuration space M:
the choice of a linear subspace Dx ⊂ TxM in each tangent space, varying smoothly from point to point (in
practice, one may take M to be a dense open subset of the actual configuration space, removing certain ‘singular’
configurations). Trajectories of the system correspond to curves in M tangent to D at all points: the integral
curves of D . We are interested in the case where any two points of M can be connected by an integral curve
of D : one then says that D is maximally non-holonomic, or bracket-generating, or that the corresponding
mechanical system is controllable.

We note that this is in general very different from the two kinds of distributions most familiar to the typical
geometer, namely integrable and contact ones. The latter two can be, by a suitable choice of local coordinates,
transformed to a normal form, and thus carry no interesting local information.

General bracket-generating distributions do, on the contrary, possess non-trivial local invariants [57, 16]!

In fact, the fundamental mathematical problem associated with such distributions may be stated as follows:
given two bracket-generating distributions (U,D) and (U ′,D ′) on some open subsets of Rn, describe the set of
local diffeomorphisms ϕ : U→U ′ such that D ′ = ϕ∗D . The question whether this set is inhabited is classically
that of equivalence. On the other hand, in the particular case of U = U ′, D = D ′, describing the above set
is, classically, finding the symmetries of the distribution D . It turns out that approaching this problem one
discovers a wealth of geometric structure that springs naturally from the seemingly austere datum of a vector
distribution.

This naturally places the theme of ‘nonholonomic mechanics and vector distributions’ in the framework of
the SCREAM proposal. Nonholonomic mechanical systems with linear velocity constraints define bracket-
generating distributions on the configuration space manifold, and generically bracket-generating distributions
have local invariants, curvature, and may have symmetries. Thus one is tempted to look for those among
these systems whose kinematics, namely the configuration space M and the velocity distribution D , is very
symmetric, or is a flat model for some Cartan geometry, or is an example of a homogeneous model for a
geometric structure (M,D) of type (G,H), etc. In particular, finding nonholonomic systems whose kinematics
(M,D) is a flat model for a parabolic geometry is very interesting (see below). If any such system, parabolic, or
Cartan geometric in nature, is found (the Polish and the Norwegian PI’s encountered examples of such systems
in their research [17, 18, 4]), it would associate ‘hidden’ algebraic objects, such as the symmetry, or more
generally the pair of Lie groups (G,H), to the mechanical system. Their significance for the physics of the
system should be further explored.

1.4. Tanaka prolongation. It is now useful to recall an important concept:
A nilpotent Lie algebra n is said to admit a k-step stratification if n = n−k⊕ n−k+1⊕ ·· · ⊕ n−1 such that

n−s−1 = [n−1,n−s] for all s = 1,2, . . . ,k−1 and n−k is contained in the centre of n. We will refer to nilpotent
Lie algebras with a chosen stratification as nilpotent Lie algebras with a stratification.

The crucial fact is that the basic information of any vector distribution D is encoded, at any point x of the
manifold M, in a certain point dependent nilpotent Lie algebra nx with a stratification, called the symbol of D
at x. From now on, we will only consider strongly regular bracket-generating distributions, i.e. distributions D
whose symbols are the same (in the stratified Lie algebraic sense) at all points of M.

The symbol of a strongly regular bracket-generating distribution D is a diffeomorphism invariant of the
structure (M,D). This divides the set of all such structures into equivalence classes (M,D ,n) of strongly
regular bracket-generating distributions D with a given symbol n. It follows that within each class (M,D ,n),
there are typically still plenty of locally non-equivalent distributions. The question of what is the simplest
among them, or equivalently the question of what is the model for each class, is answered by performing a
purely algebraic procedure on the symbol n. This procedure is called the Tanaka prolongation.
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The Tanaka prolongation is defined for any nilpotent Lie algebra with a k-step stratification; thus, in par-
ticular, it is well defined for symbols of strongly regular distributions. Given a nilpotent Lie algebra with a
stratification n = n−k⊕ n−k+1⊕ ·· ·⊕ n−1, one introduces a notation g− = n, g−s = n−s, and defines Tanaka
prolongation of g− in terms of a sequence g−, g0 = g−⊕ g0, g1 = g−⊕ g0⊕ g1, g2 = g−⊕ g0⊕ g1⊕ g2,...,
gs = g−⊕g0⊕g1⊕g2 · · ·⊕gs, etc, where g0 is the Lie algebra of derivations of g− preserving the stratification
in it; the vector spaces gs with s > 0, each of finite dimension, are similarly defined in an algorithmic and purely
algebraic fashion, see e.g. [56]. The obtained sequence gs is graded in the sense that [g`,g`′ ] ⊂ g`+`′ for all
−k ≤ `,`′ ≤ s, whenever −k ≤ `+ `′ ≤ s, and [g`,g`′ ] = {0} otherwise.

The Tanaka prolongation procedure can have two outcomes: either the sequence g0, g1, g2, ... is infinite, or it
terminates at step K, i.e. the procedure results in gK+1 = {0}. In the following we will concentrate only on the
later case when K < ∞, i.e. when the Tanaka prolongation procedure uniquely associates a finite dimensional
graded Lie algebra gK to the nilpotent Lie algebra with a stratification n. This ultimate Lie algebra gK is called
the Tanaka prolongation of n. We will denote it as g(n). We have the following, crucial, theorem.

Theorem. Among all structures (M,D ,n) of strongly regular bracket generating distributions D on a manifold
M, with symbol n, whose Tanaka prolongation is finite, the model, or what is the same, the structure with
maximal symmetry, is given by M0 = G(N)/P, where G(N) is a Lie group with the Lie algebra isomorphic to
the Tanaka prolongation g(n) of n, and P is its Lie subgroup having Lie algebra p= g0⊕g+. Since the tangent
space to M0 at every point is isomorphic to the symbol n of D , the maximally symmetric distribution D0 on M0
is defined as a span of vector fields which, at each point x ∈M0, are tangent to the vector subspace n−1 ⊂ TxM0.
The symmetry group of the structure (M0,D0) is G(N).

Note that this theorem provides a vast reservoir of geometric structures associated with bracket-generating
distributions, which are modeled on homogeneous spaces G/H: to fix a class of geometries of type (M,D ,n),
it is enough to choose a nilpotent Lie algebra n with a stratification, whose Tanaka prolongation is finite. Then,
by choosing G = G(N) and H = P, we have a distribution D0 on M0 = G(N)/P, which is the most symmetric
among all distributions having constant symbol n. Studying deformations of these kind of distributions, and
their relations to the nonholonomic mechanics, will be yet another objective of this proposal.

1.5. Parabolic geometries. As we said before, not all geometric structures (M,S) of type (G,H) admit a
Cartan connection, and even if they do, it is not easy, in general, to determine it. Parabolic geometries form a
large class of structures for which this problem does not exist: the algebraic properties of parabolic geometries
guarantee existence and uniqueness of a Cartan connection, making all of them Cartan geometries.

One of the simplest ways of defining parabolic geometries, is to say that these are, roughly, geometries
(M,D ,n) from the previous sections for which the Tanaka prolongation g(n) of n is finite and semisimple.

More precisely, general parabolic geometries, in addition to the distribution D in TM, have more structure
in D . Algebraically, this corresponds to having an additional structure s in n. The structure s can be a tensor
in n, or a property that n is composed from specific algebraic objects, such as subalgebras, vector subspaces,
etc. There also exists a procedure of Tanaka prolongation of k-step nilpotent Lie algebras with such additional
structures. It is almost the same as for the bare nilpotent Lie algebras, with the only difference that now g0
must preserve not only the strata of n, but also the structure s in n. This being said, we define parabolic
geometries more precisely as structures (M,D ,n,s) for which the Tanaka prolongation preserving the structure
s in n is semisimple1. Even if we restrict to the case when the Tanaka prolongation preserving s in n is simple,
there is a vast ZOO of such structures, known before a concept of parabolic geometry was abstracted. These
classical parabolic geometries include conformal and projective geometries, Cauchy-Riemann geometries, the
geometry of (2,3,5) distributions, the geometry of 3rd order ODEs considered modulo contact transformations
of variables and the geometry of 2nd order ODEs considered modulo point transformations of variables, etc.
But there are many other parabolic geometries:

It follows that, any choice of a parabolic subalgebra p in a noncompact real form of a simple Lie algebra g de-
fines a parabolic geometry, which is a geometric structure (M,S) of type (G,P), where G is a real (semi)simple
Lie group with Lie algebra g and P is a parabolic subgroup in G with Lie algebra p. The crucial fact about
these geometries is that the algebraic structure of g and p (semisimplicity of g and parabolicity of p) naturally
equips all such geometries with a unique Cartan connection. Thus parabolic geometries are always Cartan

1Our definition of parabolic geometries is a rough one, devised for simplicity of exposition of this proposal. It excludes some of the
known parabolic geometries, e.g. the projective and the contact projective ones, but this is not crucial here.
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geometries. The semisimple Lie group G and a choice of parabolic subgroup P, which models any such geom-
etry as G/P, is usually incorporated to the name: to specify which parabolic geometry from their vast ZOO is
considered, we will use the term parabolic geometry of type (G,P).

Disclaimer. In the subsequent sections describing preliminary work we will often refer to two particular
parabolic geometries in dimension five, namely to the G2 geometry of (2,3,5) distributions and the, quite
different, G2 contact geometry in dimension five. Although they on their own create a number of objectives that
we will be studying in this proposal, it should be understood that the objectives associated with them have their
analogs in other parabolic geometries, which are equally important and will be studied on the same footing.

1.6. Preliminary work. The PI and the Norwegian partner have been among the leading researchers in a
community that contributed to the revival of the study of geometric structures such as Cartan geometries, and
particularly parabolic geometries, in recent years.

The PI was among the first who at the turn of the XXth and XXIst centuries were revitalizing the subject of
Cartan geometries. This included work on CR geometry [53, 42, 52, 27], conformal and projective geometries
[23, 31], geometry of differential equations [45, 50], and geometry of (2,3,5) distributions [48]. Apart from
these predominantly parabolic geometries, he also contributed to studies of more exotic Cartan geometries such
as [2, 21, 30, 51]. The main research partner is the author of influential work on differential invariants of geo-
metric structures, geometries of differential equations, integrability and symmetry analysis, and Tanaka theory.
A potential Norwegian co-investigator, Dennis The, is a colleague and frequent collaborator of Kruglikov, and
he has made significant contributions to the general theory of parabolic geometries and the geometric theory of
differential equations. Of particular importance in the context of the project is recent work [37, 36, 38, 14, 15] of
the Norwegian research partners on symmetry gaps and classification techniques for homogeneous geometries.

In the following we will outline preliminary work that is directly related to the objectives of the project.

1.6.1. G2 geometries, differential equations and mechanics. Particular work has been done in the field of rela-
tions between Cartan geometries and nonholonomic mechanics. Here the best known example is the association
between the kinematics of surfaces (such as spheres) rolling on each other without slipping or twisting and the
parabolic geometry of (2,3,5) distributions [6, 3, 1].

All the three named team members of the proposal have worked on the development of this subject. In
particular in [1] new surfaces were found, such that the distribution encoding the nonslipping and nontwisting
constraints had the simple Lie group G2 as the group of all local symmetries. This work was based on the
original observation that there is always a (2,3,5) distribution, i.e. a parabolic G2 geometry in dimension 5,
associated with a conformally non flat split signature structure [g] on an oriented 4-dimensional manifold M.
The (2,3,5) distribution is defined on a circle bundle S1→ T(M)→M, called the circle twistor bundle T(M),
of all real totally null planes of a given selfduality over M [1]. This embeds the nonflat parabolic geometries of
conformal 4-dimensional split signature structures into the space of G2 parabolic geometries in dimension five
describing (2,3,5) distributions. The paper [1] created a number of questions, which during the last few years
were investigated by Michael Eastwood, Dennis The (a potential Norwegian co-investigator), Katja Sagerschnig
(a potential Polish co-investigator) and Paweł Nurowski (PI). These questions are centered around the problem
of characterization of (2,3,5) distributions, with specific subproblems 1), 2) and 3) in our list from Section ??.
The preliminary results of Eastwood/The/Sagerschnig/Nurowski indicate that there are curvature obstructions
for (2,3,5) distributions to be twistor distributions of the conformal split signature structures in dimension 4.

Another set of problems related to the paper [1] is to find possibly all 4-dimensional conformal split signa-
ture manifolds, whose twistor distribution has precisely G2 symmetry. Preliminary results here are included
in the papers of Paweł Nurowski and Gil Bor [4], as well as in the paper of Nurowski and Daniel An (arX-
ives:1302.1910).

A vital source of such geometries are nondegenerate second order PDEs F(x,u,∂u,∂ 2u) = 0 on one function
u(x1, . . . ,xd) of d = 4 variables, as investigated by Boris Kruglikov (Norwegian PI). Indeed, it was explained
in [19] that for both d = 3,4 any solution u of the PDE carries a canonical conformal structure cF read off the
symbol of the equation. Assuming neutral signature, by [7] there is an associated rank 2 distribution Π̂ on the
twistor bundle T(Mu) over the base-manifold lifted to the space of jets, which is projected to the canonical α-
null congruence of 2-planes Π. If the PDE possesses a nontrivial dispersionless Lax pair, then Π̂ is integrable,
but otherwise it has a generic growth and gives rise to a (2,3,5) distribution. For instance, the dispersionless
Kadomtsev-Petviashvilli (dKP) equation (d = 3)

F : utx−ux uxx−uyy = 0, cF = [4ux dt2−dy2 +4dt dx],
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is integrable (by the Lax pair ∂y−λ∂x+uxx∂λ , ∂t−(λ 2+ux)∂x+(λuxx+uxy)∂λ ), while its higher-dimensional
analog (d = 4), the Khokhlov–Zabolotskaya equation

F : utx−ux uxx−uyy +uzz = 0, cF = [4ux dt2−dy2 +dz2 +4dt dx],

is not. Thus symmetry reductions and curvature constraints will lead to special solutions of these PDEs.
Another important G2 structure is based on contact geometry in dimension 5. This geometry was investigated

by Paweł Nurowski (PI), Dennis The and Michael Eastwood. In particular, Eastwood and Nurowski in [17, 18]
have shown that the configuration space M of a mechanical system in three dimensions consisting of a disk
whose velocity is constrained to be tangent to the plane of a disk, a flying saucer as it is called in [17, 18], may
be equipped with a flat G2 contact parabolic geometry. It was shown in [17, 18] that such a ‘flying saucer’ can
be also defined in a curved 3-dimensional space, in terms of a rather esoteric geometric structure in there. It
then raised a problem similar to the one discussed for the twistor distribution and the corresponding 4-manifold:
what one has to assume about curvatures of this ‘esoteric’ 3D geometry for the configuration space of the flying
saucer to be equipped with a flat G2 contact geometry, i.e. one with G2 symmetry.

1.6.2. Normalizations of geometries with infinite type symbol. There is a large class of bracket-generating dis-
tributions for which the Tanaka prolongation never terminates. Examples are contact distributions. Also an En-
gel distribution in dimension 4, i.e. a rank 2 distribution D such that rank([D ,D ]) = 3 and rank([D , [D ,D ]]) =
4, has this property.

It is well known that a contact distribution in dimension three is naturally defined on the configuration space
M of a skate on the plane. It is a little less known, that viewing the physical system of a skate on the plane
properly, one can associate to it a Cartan geometry, which turns out to be even a parabolic geometry. It is
clear that the dimension of M is three, as one needs to have three numbers to determine a position of the skate
in the plane and its orientation. The contact distribution D on M is defined by means of one constraint on
velocities which prevents the skate from skidding. Although the symbol n of this distribution D has infinite
Tanaka prolongation, this leads to a nontrivial parabolic geometry, because the skate enables for two, physically
quite different, movements which are compatible with the nonskidding condition. These movements are: the
sliding along the skate blade and the evolution named as a pirouette. These two movements define two lines
in D at every point of M, equipping the configuration space M of the skate with the split of D into rank one
subdistributions, D = D1⊕D2. This is reflected in the symbol n of the skate distribution, which has a split
n−1 = n−1,1⊕ n−1,2. This ‘chops’ the Tanaka prolongation of the symbol of D . For the fully understood
configuration space of the skate, the Tanaka prolongation procedure has to preserve not only the stratified n, but
also n−1,1 and n−1,2. It results in a finite Tanaka prolongation algebra g(n) isomorphic to the simple Lie algebra
sl(3,R). This leads to the conclusion that the configuration space of a skate is a flat model for a parabolic
geometry of type (SL(3,R),P), with the parabolic subgroup P being the Borel subgroup in SL(3,R).

There are more contact parabolic geometries with similar properties. For example, as it is shown in a recent
paper of Nurowski and Hill [29], the configuration space of a car on the plane defines a flat model for a
parabolic geometry of type (SO(2,3),P), with P being the Borel subgroup in SO(2,3). Here the nonholonomic
distribution, defined by the wheels preventing the car from skidding, is an Engel distribution. It has infinite
Tanaka prolongation. But similarly to the skate, this distribution has a split, which results in the configuration
space of a car to be equipped with a Cartan, actually parabolic, geometry. Also the G2 contact geometry in
dimension five associated with a flying saucer mentioned above is parabolic, due to an additional structure
(twisted cubic, enabling a complicated flying saucer’s manoeuver) in the contact distribution.

We would like to study more of such examples in the proposal, possibly obtaining an understanding of them
at some unifying level.

The above reductions are obtained by additional tensorial constraints on the geometry/kinematics. Another
source of constraints is of the curvature type. This is central in Cartan’s equivalence method, under the title of
normalization, and it was also used in the study of the symmetry gap problem [37]. However, as mentioned
above, this does not necessary lead to a Cartan geometry. For instance, almost complex structures have infinite
type as G-structures, yet imposing a non-degeneracy for the Nijenhuis tensor yields a finite type, in particular
the symmetry group is always a Lie group. In fact, the largest possible symmetry is G2 [33], yet in this case
it cannot serve as a model space. We will study more reductions of geometries in the project and will aim at
understanding the mechanism at a unifying level.

1.6.3. Snakes and planar robots. Some years ago, the PI of this project started to generalize the concept of
trailers, which appeared in control theory based on Goursat flags in multi-dimensions (an example of which is
the Engel distribution in dimension four), to the concept of snakes or more general planar robots – a term coined
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by Gil Bor and Paweł Nurowski. These are much simpler, and in low dimensions correspond to interesting
parabolic geometries.

A planar robot is made out of E edges, joined by V vertices, forming a planar graph with F faces. There are
also W wheels, attached to some of the edges; each wheel is aligned parallel to its edge (like the back wheel of
a bicycle). During the motion of such a robot, the length of each edge is fixed, but the angles between adjacent
edges are allowed to vary. Here are some examples:

Inevitably, some of the robots are nicknamed

Each wheel has the effect of preventing the edge to which it is attached from skidding sideways. In other
words, the wheel imposes a restriction on the movement of the edge to which it is attached. It is a non-holonomic
constraint, so that the point on the edge where the wheel is attached can move only in the direction of the edge.

In the physical realization of such a robot, one controls only the direction of the edges by placing controls
(motors or muscles) at the vertices joining adjacent edges. (There are no motors at the wheels themselves.)
Remarkably, such a robot is typically able to move along the plane quite efficiently by virtue of such controls.

The mathematics of such robots is quite intriguing. For example, the PI and Gil Bor have established a
simple result about them, which helps in the following problem.

The wheels of the robot introduce linear constraints on its velocity. Hence, similarly to the case of a skate
or a car, the configuration space M of the robot is equipped with a vector distribution D of possible velocities.
It follows that for example the trident snake from the above figures has M of dimension n = 6, and the rank
r of its velocity distribution D is equal to r = 3. We will say that the type of the velocity distribution D of
the trident snake is (r,n) = (3,6). It turns out however, that there is another quite different snake, namely the
benzen snake (see the figure above), which also has the velocity distribution of type (r,n) = (3,6). A similar
example is obtained by taking the bodyless trident snake, and the 3-edge snake with the same number of edges
and wheels as the bodyless trident snake, but with a different topology, in which its three edges e1,e2,e3, are
arranged such that e2 is attached to e1 on its one end, and it is attached to e3 on its second end, whereas e1 and
e3 are connected with e2 only. Both of these snakes have velocity distribution D of the same type (r,n) = (2,5).

In this project we would like to find planar robots whose velocity distribution has a simple Lie algebra as
its algebra of symmetries. Hopefully we would like to find all planar robots which are flat models for parabolic
geometries associated with distributions of a given rank r on manifolds of a given dimension n. We would first
need to select all topologies of snakes whose velocity distribution is of type (r,n). Here is the place for the
preliminary, very simple result, which we quote from the unpublished paper of Bor and Nurowski:

Proposition. A velocity distribution of type (r,n) of a planar robot with F faces, V vertices, E edges and W
wheels, satisfies (under the independence assumption on the E holonomic and W anholonomic constraints)

E = n+2F−2, V = n+F−1, W = n− r.

This proposition tells us how to relate the fundamental dimensions, n of the configuration space manifold
M and r of the velocity distribution D of the robot, to the number of its faces F , edges E, vertices V and
wheels W . We plan to inspect the list of the distributions of rank r in dimension n whose symbols have Tanaka
prolongations as simple Lie algebras, and then plan to use this proposition, as a sieve, to pick up only those
topologies of planar robots that can have these values of r and n.
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We emphasize that this program is not empty. For example, the velocity distribution of a benzen snake is
almost everywhere a generic (3,6) distribution. This means that it enjoys a parabolic geometry whose model
has symmetry Spin(3,4). Similarly, both snakes with (r,n) = (2,5) discussed above, have the distribution D
which almost everywhere is (2,3,5). Thus they both belong to a parabolic geometry with flat model having
symmetry G2. Whether or not there is a way of adjusting the parameters of these snakes, such as the length of
their edges, to make them Spin(3,4) or G2 symmetric is an open question worth further studies.

1.6.4. Contactifications and their generalizations. As an example of what we mean by a contactification we
take a GL(2,R) geometry in dimension four. It is a structure (M,S) on a 4-dimensional manifold M with S
being determined by an assignment of a twisted cubic curve γ(x) = (1,x,x2,x3) at the tangent space TaM of
each point a ∈ M. Alternatively, since the twisted cubic reduces the structure group of each tangent space
TaM from GL(4,R) to the GL(2,R) sitting maximally in GL(4,R) (or, what is the same in this case, acting
irreducibly in R4 ∼= TaM), the GL(2,R) geometry in dimension 4 can be defined as a geometry on a 4-manifold
M with a reduction S of the structure group of the tangent bundle from GL(4,R) to the irreducible GL(2,R).

This geometry was studied by Robert Bryant in [5], but also, with more details devoted to the analysis of
the curvature, by the PI of this proposal in [49, 24]. In particular, Bryant in [5] has shown that this geometry
can be also defined in terms of a certain symmetric 4th rank tensor on M, characterized by the requirement that
its stabilizer in GL(4,R) is the irreducible GL(2,R). It was also Bryant, who has shown that this geometry is
in a one-to-one correspondence with classes of 4th order ODEs considered modulo contact transformations of
variables, restricted by a certain contact invariant conditions, called Wünschmann conditions.

To be more specific, consider a 4th order ODE y′′′′= 0. This ODE, considered modulo contact transformation
of variables, defines the following coframe

(1) ω
0 =−3(dy− y′dx), ω

1 = dy′− y′′dx, ω
2 =−1

2(dy′′− y′′′dx), ω
3 = dy′′′, ω

4 = dx

on the 5-dimensional space J 3 of 3rd jets of functions y = f (x) of one variable x. This space is foliated by
integral curves of the total differential vector field X = d

dx . The leaf space, whose points are these curves, is
the 4-dimensional space M of solutions of the ODE y′′′′ = 0. A convenient parametrization of M is obtained by
passing from coordinates (x,y,y′,y′′,y′′′) of J 3 to coordinates (x,a0,a1,a2,a3) related to the general solution
y = a0 + 3a1x+ 3a2x2 + a3x3 of y′′′′ = 0. Indeed, the transformation (x,y,y′,y′′,y′′′)→ (x,a0,a1,a2,a3) given
by

x→ x, y→ a0 +3a1x+3a2x2 +a3x3, y′→ 3a1 +6a2x+3a3x2, y′′→ 6(a2 +a3x), y′′′→ 6a2

is a diffeomorphism of J 3. It brings the coframe (1) into the form

ω
0 =−3(da0 +3xda1 +3x2da2 + x3da3), ω

1 = 3(da1 +2xda2 + x2da3), ω
2 =−3

2(da2 + xda3),

ω
3 = 3

2 da3, ω
4 = dx.

Now the Bryant observation that the 2-form

ω = ω
0∧ω

3−3ω
1∧ω

2

and the fourth rank symmetric tensor

(2) ϒ =−3(ω1)2(ω2)2 +4ω
0(ω2)3 +4(ω1)3

ω
3 +(ω0)2(ω3)2−6ω

0
ω

1
ω

2
ω

3,

although transforming badly by the contact transformations of variables in J 3 , projects to the well defined
line of a 2-form and a line of a 4th rank tensor on the solution space M is expressed by the fact that in the new
coordinates (x,a0,a1,a2,a3) on J 3 we have

ω =−9(da0∧da3−3da1∧da2) and ϒ = 81(−3da2
1da2

2 +4da0da3
2 +4da3

1da3 +da2
0da2

3−6da0da1da2da3).

These two objects ω and ϒ are clearly defined up to a scale on the space of solutions M parametrized by
a = (a0,a1,a2,a3). Their common stabilizer in GL(TaM) at every point a of the solution space M of the ODE
y′′′′ = 0, is irreducible GL(2,R), equipping M with a GL(2,R) structure.

What we mean by a contactification in this case, is to associate to M a 5-dimensional bundle T(M), with a
(local) typical fiber being an open set U ⊂R, U →T(M)

π→M, such that T(M) is a contact manifold equipped
with a contact distribution D having at every point p ∈ T(M) the same GL(2,R) structure in Dp as M has at
the tangent space Tπ(p)M.

In our case the natural bundle is T(M) = J 3, with the fibers being tangent to the total differential X = d
dx .

One then defines the desired contactified structure by looking for D in terms of a suitable contact 1-form λ on
J 3. This should satisfy the condition that the contact structure is compatible with the symplectic form ω , i.e.:(

dλ −b(ω0∧ω
3−3ω

1∧ω
2)
)
∧λ = 0, with some function b onJ 3,
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and that λ is preserved along the fibers spanned by the total differential X = d
dx : (LX λ )∧λ = 0.

The simplest λ realizing this is λ = d(x+ a3
2

a3
)− 3a1da2 + a0da3, but other choices are also possible. The

GL(2,R) contact structure is then obtained on T(M) = J 3 by distinguishing a contact distribution D = λ⊥ =
{Y ∈ TJ 3 |λ (Y ) = 0}, and by defining a line of a 4th rank symmetric tensor ϒ in D by the formula (2).

It follows that the so defined structure (J 3,D ,ϒ) on the third jet space J 3 is a flat model for the G2 contact
geometry in dimension 5. Via the described process of contactification it relates the flat Cartan geometry of
fourth order ODE y′′′′ = 0 considered modulo contact transformations of variables, to the parabolic contact
geometry with G2 symmetry. It is interesting to perform this construction for the nonflat Wünschmann case, with
the general ODE y′′′′ = F(x,y,y′,y′′,y′′′). A natural question immediately arises of curvature characterization
of those G2 contact geometries that can be constructed via the contactification of the geometry of ODEs y′′′′ =
F(x,y,y′,y′′,y′′′). One can generalize the contactification procedure described here in various directions.

Again, this ODE picture has a counter-part in PDEs. Namely, it turns our that integrable dispersionless
hierarchies of PDEs canonically determine a GL(2,R) structure on their solutions [20]. For instance, consider
the first three equations of the dKP hierarchy

(3)
uxt −uxuxx−uyy = 0,

uxz−uyt −uxuxy−uyuxx = 0, uyz−utt +u2
xuxx−uyuxy = 0.

Here u(x,y, t,z) is a function on a 4-dimensional manifold M, which we identify with its graph Mu in J ∞. The
characteristic variety of this system is the intersection of three quadrics,

px pt − p2
y−ux p2

x = 0, px pz− py pt −ux px py−uy p2
x = 0, py pz− p2

t +u2
x p2

x−uy px py = 0,

specifing a rational normal curve (twisted cubic) in PT ∗Mu: [px : py : pt : pz] = [1 : λ : λ 2+ux : λ 3+2uxλ +uy].
The corresponding α-planes on TMu are annihilated by

ω(λ ) = dx+λdy+(λ 2 +ux)dt +(λ 3 +2uxλ +uy)dz.

This supplies Mu 'M with a GL(2,R) geometry, depending on the solution u. Equations (3) are equivalent to
the commutativity conditions of the following vector fields, constituting a dispersionless Lax representation

∂y−λ∂x +uxx∂λ , ∂t − (λ 2 +ux)∂x +(λuxx +uxy)∂λ ,
∂z− (λ 3 +2uxλ +uy)∂x +(λ 2uxx +λuxy +uxt +uxuxx)∂λ .

Projecting integral manifolds of this holonomic distribution from TMu to Mu we obtain a two-parameter family
of α-manifolds of the corresponding GL(2,R) structure, thus establishing its involutivity.

Higher-dimensional generalisations of this construction exists, and it works for all dispersionless hierarchies.
Un-expectedly, there is a relation with parabolic geometries. Actually, [39] parametrizes GL(2,R) structures
via ODEs satisfying the Wünschmann conditions and these correspond to equations of Cartan’s C-class [10]
that can be treated by normalizations generalizing the parabolic technique.

2. OBJECTIVES

We shall review the objectives of the present proposal, following the above ideas and preliminary results.
We note that the problems we consider are frequently controlled by representation theory (in a much deeper
way than it happens in e.g. Riemannian geometry), and thus are largely algebraized. This allows for an explicit
analysis by means of computer algebra, a significant point of the proposed methodology. Each subsection
consists of a minimal introduction, and a number of precise objectives.

2.1. Geometric robots. In Sections 1.6.1, 1.6.2, and 1.6.3, we introduced mechanical systems that lead to
interesting geometries, and preliminary results about them. Using the collective term ‘geometric robots’ for all
these systems we have the following objectives:

� Objective 1. Find geometric robots whose configuration spaces support given geometric
structures. Compute local invariants of such structures, in particular their symmetry groups
(or infinitesimal symmetry algebras). Identify geometric robots whose configuration spaces
admit a transitive (local) action of a semisimple Lie group.

� Objective 2. Consider the inverse problem: find mechanical realisations of certain pre-
scribed geometric structures. Derive invariant obstructions for the fixed realization type.

� Objective 3. Develop a theory of planar robots as defined in Section 1.6.3, starting with the
relation between the number of faces F , edges E, vertices V , and wheels W of such a robot
on the one hand, and the dimension of the configuration space of this mechanical system and
the rank of the velocity distribution, on the other hand. Compute possible growth vectors of
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these distributions depending on configuration parameters of the robot (lengths, position of
wheels).

� Objective 4. Apply the theory developed in Objective 3 to studies of the 3-edge snake
introduced in Section 1.6.3. In this case the dimension of the configuration space M is
five, and the velocity distribution D of a snake, apart from singular points, is a (2,3,5)
distribution. Adjust the parameters defining the snake, such as the length of their edges, so
that the velocity distribution of the snake has maximal symmetry.

� Objective 5. Describe all planar robots whose velocity distribution has a simple Lie algebra
as its Lie algebra of symmetries. Give a full list of planar robots corresponding to flat models
of parabolic geometries.

� Objective 6. Given a cost of motion (e.g. sub-Riemannian metric, a Finsler norm on the
symmetry algebra of homogeneous models, distance induced by an embedding of the set of
vertices into a Euclidean space, etc) for configurations of robots, determine optimal trajecto-
ries. Specify to low-complexity models, and also perform numerical simulations.

2.2. Homogeneous models, curvature reduction, subgeometries. The search for homogeneous models is an
established theme in the research on geometric structures, in particular maximally non-holonomic distributions.
An early example is Cartan’s 1910 classification [12] of all (2,3,5)-distributions with a multiply transitive local
symmetry group. Cartan’s equivalence and reduction methods, briefly discussed in Section 1.2.3, have since
then been applied successfully to a variety of geometric structures.

There are alternative methods for classifying homogeneous models. A recent approach has been developed
by I. Anderson and J. Gutt: they apply the deformation theory of filtered Lie algebras to state a computationally
feasible algorithm for a classification of homogeneous models of distributions with a given symbol.

� Objective 7. Refine the Cartan’s equivalence method (via curvature reduction) and Gutt’s
recent algorithm (via graded Lie algebra deformations) for classifying homogeneous struc-
tures. While Cartan’s equivalence method has been known for over 100 years and in princi-
ple gives a complete classification, it takes substantial effort to set up. The Anderson–Gutt
algorithm is much quicker to set up, but suffers from completeness issues since: (i) cur-
vature is not used beyond harmonic curvature for the initial steps, and (ii) the embedding
into the Cartan bundle is not incorporated into the algorithm. Since harmonic curvature is
the component of curvature in lowest homogeneity, we would like to aim for an iterative
algebraic method proceeding homogeneity-by-homogeneity that classifies candidate homo-
geneous models, their full curvature, and their corresponding realizations as Cartan geome-
tries.

� Objective 8. Classifications of homogeneous models are well-known for some parabolic
geometries in low dimensions, e.g. 2nd and 3rd order ODEs, (2,3,5) distributions, etc.
However, their realizations as Cartan geometries are completely obscured (or not provided
at all). Using Cartan’s equivalence method (or its refinement aimed for in Objective 7),
calculate these descriptions (via extension functors) and use them to calculate the holonomy
of these models.

� Objective 9. Find homogeneous models for chosen Cartan geometries considered in this
proposal. For example, classify homogenous models for the geometries in Objectives 20 and
21, and the homogeneous models for the G2 contact geometry in dimension five.

We also propose to study geometries unifying a number of well known low dimensional Cartan geometries.
As a specific example consider the contact geometry of a pair of compatible second order PDEs

uxx = F(x,y,u,ux,uy,uxy), uyy = G(x,y,u,ux,uy,uxy).

Such systems can be of two kinds: involutive or finite type. The first have infinite-dimensional solution space
due to the existence of a Cauchy characteristic, the quotient by which reduces them to a 5-manifold equipped
with a (2,3,5)-distribution. This transforms contact equivalence to internal equivalence. The second type
systems have four-dimensional solution space, with the compatibility given by vanishing of the Mayer bracket
{F,G}, see [34].

These finite type systems, even when incompatible, correspond to a parabolic geometry modelled on (SL(4),B),
where B is the Borel subgroup of (upper) triangular determinant one matrices. Via Čap’s theory of correspon-
dence / twistor spaces [9], this geometry contains a plethora of sub-geometries: 3-dim projective, 4-dim confor-
mal, 5-dim CR and Legendrian contact, and 5-dimensional path geometry (pairs of 2nd order ODE) [22, 28].
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Nevertheless, tools from modern parabolic geometry have not been applied to the study of this geometry in any
detail.

� Objective 10. (i) Given any one of these sub-geometries, concretely demonstrate how it can
be reformulated as a pair of PDE, (ii) What is a Weyl structure for this ”master” geometry?
(iii) Express the harmonic curvatures of this geometry in terms of a given Weyl structure,
(iv) Write some of the simplest BGG equations for this geometry (again in terms of a Weyl
structure), (v) Identify the w13-part of the harmonic curvature with the Mayer bracket {F,G}.

2.3. Parabolic geometries endowed with additional structure. The goal here is to investigate classes of
geometric structures obtained by enhancing a parabolic geometry by additional geometric data. Examples of
geometric structures of this type include:

(1) (2,3,5) distributions D endowed with a line field. There are two distinct cases of interest:
(i) `⊂D ,

(ii) `⊂ [D ,D ] but transversal to D .
(2) G2 contact geometries endowed with a line field contained in the twisted cubic cone.
(3) Conformal structures of signature (p,q) endowed with a null k-plane field where k ≤ min(p,q).
(4) (2,3,5) distributions D endowed with a (para-)complex structure.

� Objective 11. In examples 1., 2.(i), and 3. the additional geometric data corresponds to a
specific reduction of the reductive part G0 of the structure group P of the given parabolic
geometry of type (G,P). Namely, to a Lie subgroup A0 ⊂ G0 whose Lie algebra is of the
form

a0 = z(g0)⊕q,

where q is a parabolic subalgebra of the semisimple part of g0. Solve the equivalence prob-
lem for these types of structures. Does a canonical Cartan connection exist?

Some progress on these question has already been made. Example 3. was investigated by the PI in collaboration
with Gianni Manno and Katja Sagerschnig in [43]. Dennis The, motivated by the study of certain scalar PDE
in the plane related to example 2.(i), showed that in the complex case the Lie algebra a obtained as the Tanaka
prolongation of the data (g−,a0) is always a parabolic subalgebra such that a+p= g. Hence a∩p is a seaweed
or biparabolic Lie algebra. This class of Lie algebras was introduced by Dergachev and Kirilov [13] in 2000
and has since then been intensively studied. Our proposed class of geometric structures could therefore be
called seaweed geometries or biparabolic geometries.

Example 2.(ii) is of a different nature. It is interesting, for at least two reasons. First, it naturally arises
from the twistor construction of rolling bodies discussed in Section 1.6.1, and second, it is an example of a
refinement of a parabolic geometry that itself can be understood as a subclass of a parabolic geometry (of a
different type) with the property that a certain harmonic curvature component is nonvanishing. In that sense the
study of these structures is also related to the problems discussed in Section 2.2.

� Objective 12. Develop a suitable calculus, with invariants in terms of the curvature of a suit-
able Cartan connection, for a structure (M,D , `), consisting of a generic rank 2 distribution
D on a 5-manifold M, with a tranversal to D line field ` in the derived rank 3-distribution
D−2 = [D ,D ] = `⊕D .

� Objective 13. Establish curvature conditions for the structure (M,D , `) from problem the
Objective 12, which are necessary and sufficient for D to be the twistor distribution DT on
the circle twistor bundle S1→ T(N)→ N over a certain conformal split-signature structure
(N, [g]) on a four-manifold N.

� Objective 14. In the special case, when the distribution D of the structure (M,D , `) from the
Objective 12 is locally equivalent to the (2,3,5) distribution having the simple exceptional
Lie group G2 as a symmetry, determine all possible line fields `, such that the curvature con-
ditions from the Objective 13 for the structure (M,D , `) are satisfied. Find the corresponding
conformal classes (N, [g]) and answer the question which conformal split signature geome-
tries (N, [g]) have twistor distributions with local symmetry G2.

A study of these structures is ongoing work of Dennis The with Michael Eastwood and Katja Sagerschnig as
well as of the PI and Katja Sagerschnig.

We already saw that irreducible GL(2,R) structures appear in the theory of integrable hierarchies. It is also
true that other GL(2,R) structures lead to integrable geometries. (An instance related to quaternionic structures
is an un-published work of D.Calderbank presented at the 2019 Abel Symposium.) The G2 contact structure
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is an example of GL(2,R) structure on the contact distribution, i.e. a reducible structure on the tangent space
T M ' S3R2⊕R (real version). This is a parabolic geometry.

Reduction of the structure group on general distributions lead to more complicated geometries. These appear
in the theory of integrable systems. In fact, by the result of David Calderbank and Boris Kruglikov, with an
input by Eugene Ferapontov, a second order PDE admitting a nontrivial dispersionless Lax pair on a manifold of
dimension d > 4 is necessarily degenerate. Thus every solution u of this PDE possesses a canonical degenerate
conformal structure on T ∗Mu. This yields a distribution and a sub-conformal structure on it.

� Objective 15. Setup the equivalence problem for such non-holonomic tensorial structures.
Derive maximal symmetry models and sub-maximal symmetry bounds. Find fundamental
invariants responsible for the equivalence to models and to the symmetry breaking.

� Objective 16. Compute invariants of these non-holonomic tensorial structures that are re-
sponsible for integrability. Define involutive structures in the spirit of [20] and parametrize
all involutive structures by an involutive PDE system. Investigate its integrability.

2.4. Differential invariants of parabolic and subordinated structures. The two approaches to differential
invariants, i.e. the method of Lie-Tresse and the method of Cartan, co-existed independently in the literature.
The practitioners seldom compared the outputs. For example, one of the most classical problems in geometry
of differential equations is that of point equivalence for the second order ODEs.

The problem was first solved via Lie’s approach in scalar differential invariants by A.Tresse. He computed all
relative invariants, from which it is not difficult to derive all absolute differential invariants, see [32]. E. Cartan
solved the same problem by constructing the Cartan bundle B→ G →M with M = J1(R,R) and B⊂G= SL(3)
the Borel subgroup. The Cartan connection gives all absolute invariants as structure functions of the absolute
parallelism on the total space G , yet to push the invariants down to M one has to take a subalgebra of those that
are B-invariant. Since B is a solvable group, the quotient problem is non-trivial.

� Objective 17. Detail this construction for second order ODEs mod point transformation.
Derive all differential invariants as Cartan invariants, and derive invariant derivations and
syzygies. Deduce the count of differential invariants in the jet-formalism from that of the
Cartan method.

� Objective 18. Apply the same for a different real version: 3-dimensional CR structures.
This is also a classical subject, with the invariants described by the two methods of Chern
and Moser. Find an explicit relation between the different approaches. As a consequence,
obtain the asymptotics of the Bergman kernel via absolute differential invariants.

� Objective 19. Generalize this to other parabolic geometries. Make a count of relative and ab-
solute differential invariants, and compute functional dimensions of the local moduli spaces.

We plan to attack this by the approach of Kruglikov-Lychagin via rational differential invariants and invari-
ant derivations on the Zariski open sets in the space of jets. We expect a fruitful interplay of the symbolic
computations with the representation theory of parabolic subgroup P ⊂ G acting on the space of invariants in
the Cartan bundle G .

This idea can be also applied to geometric structures subordinated to parabolic geometries. For instance,
we can consider a conformal structure with a differential invariant condition. The Einstein-Weyl condition is a
typical example. The conformally Einstein condition is yet another example.

Next we plan to study the class of parabolic geometries equipped with additional structures, like complex
or para-complex structures on the distribution. Such structures arise in various contexts, e.g. for 3-edge snakes
from Section 1.6.3. It turns out that the geometric behaviour of such a snake is easier to analyze if one observes
that the (2,3,5) distribution of the snake’s velocity space has an additional structure.

� Objective 20. Find the set of all local differential invariants of generic rank 2 distributions
in dimension 5 split into a direct sum of two rank 1 subdistributions, i.e. develop a theory of
para-CR structures of type (3,1,1).

� Objective 21. Find the set of all local differential invariants of generic rank 2 distributions
in dimension 5 equipped with a complex structure, i.e. develop a theory of a class of CR
manifolds of CR-dimension 1 and CR-codimension 3.

2.5. Parabolic contact geometries, contactifications, and generalizations. As we have already noticed, con-
tact distributions do not possess local invariants. That is, they are all locally equivalent. Geometric structures
with local invariants may be obtained by endowing the contact distribution with additional structure. The sim-
plest example is of course an inner product, i.e. a sub-Riemannian structure. (Note that the contact distribution
D is already equipped with a pseudo-symplectic structure, i.e. a section of Λ2D∗⊗T M/D induced by the Lie
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bracket.) Another familiar case is a CR-structure, i.e. an almost complex structure on D satisfying a suitable
integrability condition.

Parabolic contact geometries are parabolic geometries whose homogeneous models correspond infinitesi-
mally to a contact grading on a simple Lie algebra:

g= g−2⊕g−1⊕g0⊕g1⊕g2

with dim(g−2) = 1, g−1 being even-dimensional, and the Lie bracket map [·, ·] : g−1×g−1→ g−2 being nonde-
generate.

Contact gradings exist and on most noncompact real forms (and all split forms) of simple Lie algebras, and
if they exist they are unique. In particular, we may refer to a parabolic contact geometry of type (G,P) as a
(parabolic) G-contact geometry. A unified approach to exceptional parabolic contact geometries, that is for
exceptional simple Lie algebras g, was proposed by the PI in his lectures in Canberra in October 2013. In
recent work [55], Dennis The, has studied parabolic contact structures in connection with PDEs, generalizing
the Cartan-Engel models in the G2 case.

� Objective 22. Observing that all the exceptional parabolic contact geometries are defined
by tensors of the same kind, give a unifying description in terms of an explicit differential
system. Compare to other parabolic contact geometries in different dimensions (in particular
Lie contact structures [44]).

� Objective 23. In [41] the PI together with Thomas Leistner and Katja Sagerschnig produced
interesting SO(3,4) Lie contact structures in dimension 7 with Cartan holonomy reduced
from SO(3,4) to G2. These are associated with (2,3,5) distributions D ⊂ T M, and are
defined on the affine plane bundle P[D ,D ] \PD . Find a ‘completion’ of this structure that
would exhibit the five-dimensional ‘boundary’ carrying a G2 contact structure.

� Objective 24. Develop a spinorial calculus for the 4-dimensional geometry with exotic
GL(2,R) holonomy [5, 49] as an analog of the spinorial calculus for the 4-dimensional
(pseudo) Riemannian geometry.

� Objective 25. Investigate relations between GL(2,R) geometry in dimension four and par-
abolic G2 contact geometry in dimension five. Is there a way of contactifying a nonflat
4-dimensional GL(2,R) geometry to a G2 contact geometry in dimension five in a fashion
similar to the flat model as explained in Section 1.6.4? If yes, develop a theory of such a
contactifications, and characterize those G2 contact geometries in dimension five that come
from the contactifications of 4-dimensional GL(2,R) geometries in terms of the curvature
invariants of the G2 contact geometry. See 1.6.4 for more details.

� Objective 26. Using results of Objectives 19 and 20, develop a tensorial and spinorial cal-
culus for the G2 contact geometry in dimension five, where G2 is the split real form of the
simple exceptional Lie group G2. Find a tensorial/spinorial expression for the septic defining
the harmonic curvature of this geometry.

2.6. Applications in Cosmology. This section concerns applications of methods and ideas of this proposal to
recent ideas of Roger Penrose [54], called Conformal Cyclic Cosmology (CCC).

In CCC, the metric ǧ of the Universe is conformally flat at the surface t = 0 of the initial singularity. Consider
a conformal class [ǧ] of metrics conformal to ǧ. Assume that the conformal class ǧ is regular in a strip t ∈
]−ε,ε[. In particular, this means that there exists a Lorentzian metric g in the class [ǧ] that is regular for all t ∈
]−ε,ε[. Penrose calls g the intermediate metric and relates it to two physical metrics: (i) the metric ǧ describing
the Universe close to the singularity, when t ∈]0,ε[, and (ii) the metric ĝ, which is interpreted as the physical
metric of the previous Universe (previous eon), when t ∈]− ε,0[. Formally, having chosen the intermediate
metric g, one gets three metrics: ĝ, g, and ǧ in the entire ‘wounded’ region of the Universe described by
t ∈]− ε,ε[. This is called bandage region of the Universe. If one only considers spatially homogeneous
Universes, the three metrics are related via ĝ = 1

Ω2 g and ǧ = Ω2g, where Ω = Ω(t) is chosen in such a way
that ǧ coincides with the metric ǧ of the current Universe (current eon), when t ∈ [0,ε[, and ĝ coincides with
the physical metric ĝ of the previous eon, when t ∈]− ε,0]. In Penrose’s proposal for the CCC, it is the
conformal geometry [g] of the metric g that is relevant for the cosmology of the Universe in the bandage region
t ∈]− ε,ε[. According to the paradigm of CCC, around the end of an old eon (t → 0−) and the beginning of
the new eon (t → 0+), the Universe loses a part of the information about its (pseudo-)Riemannian physical
metrics (ĝ in ]− ε,0[ and ǧ in ]0,ε[). The physical remnant of these (pseudo)-Riemannian geometries around
the hypersurface t = 0 is the conformal geometry [g] of g. The question of what kind of dynamics this conformal
geometry obeys is not stated by the CCC. One can for example require that the physical metrics ĝ and ǧ satisfy
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Einstein equations in their domains, and try to deduce what kind of energy momentum tensors, on the both sides
of the wound of the Universe, allow for a conformal transitions from ĝ to ǧ.

The energy momentum tensor of General Relativity is a certain rank two (T µ
ν ) symmetric (gµαT α

ν =
gναT α

µ ) tensor T on a 4-dimensional manifold M (spacetime) with a Lorentzian metric gµν , which carries
information about the matter/energy content of the spacetime. At every point x of M, T is an endomorphism of
the Minkowski vector space and as such it can be considered modulo the action of the local Lorentz group. The
equivalence classes, obtained as the orbits of this action, provide the Churchill-Plebański classification of the
energy momentum tensors at a point x of M. In the following we will assume that in the considered spacetimes
M the Churchill-Plebański class of their energy momentum tensor is constant along M.

Via the Einstein field equations, E = T , the energy momentum tensor T of a spacetime M coincides with its
Einstein tensor E. This in turn, is purely defined by means of the Lorentzian geometry (M,g) of the spacetime:
it is a certain trace-corrected version of the classical Ricci tensor, E = Ricci− 1

2 Sg, where S is the trace of Ricci.
These preparations are enough to state the next few Objectives of this proposal.

� Objective 27. Given a conformal structure (M, [g]), describe the space of conformal scales
giving rise to metrics whose Einstein tensor lies in a fixed Churchill-Plebański class. Find
obstructions to the existence of such scales.

� Objective 28. Study the singularities of such Einstein-tensor-algebraically-special scales.
Describe the space of pairs of Einstein-tensor-algebraically-special scales on M̂ and M̌, con-
sidered as consecutive eons in the bandage region of CCC, with the prescribed singular be-
haviour along the wound hypersurface Σ, and interpret the corresponding energy-momentum
tensors on M̂ and M̌ in terms of suitable matter models.

The simplest case is of course that of Einstein metrics, i.e. Ricci tensor in the class proportional to the
metric [26]. The methods of parabolic geometry give a powerful description of Einstein scales in a given
conformal class: these correspond to the kernel of a particular curved BGG operator, one of a sequence of
natural differential operators on certain natural bundles associated with every type of parabolic geometry [11, 8].

� Objective 29. Find a description of the Churchill-Plebański class of the Einstein tensor
of a conformal scale in terms of the BGG machinery of parabolic geometry. Characterise
obstructions.

� Objective 30. Use the above to give a tractor/parabolic description of the data inducing the
pair (ĝ, ǧ) on a conformal manifold M = M̂∪Σ∪ M̌.

A part of Objective 27 has been carried out in the paper [40] in collaboration with Thomas Leistner.

3. WORK PROGRAMME INCLUDING PROPOSED RESEARCH METHODS, ROLE OF THE PARTICIPATING
RESEARCH TEAM MEMBERS, THE ADDED VALUE OF INTERNATIONAL COOPERATION

3.1. Work Programme including proposed research methods.

3.1.1. Project implementation plan. The research programme is divided into six sub-projects related to the
objectives grouped in six Subsections 2.1 – 2.6 of Section 2. In the table below, the expected time span for
carrying out each of the objectives is depicted with the color assigned to the sub-problem to which it belongs.

YEAR QUARTER
OBJECTIVES

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

2020 3

4

2021 1

2
3

4
2022 1

2
3

4
2023 1

2
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The time allocation for the meetings, conferences, workshops and outreach activities is presented, with an
accuracy of 3 months, in the table below.

Year 2020 2021 2022 2023

Quarter of the year 3 4 1 2 3 4 1 2 3 4 1 2

Conferences
Conference in Norway

Conference in Poland
Orientation Conference with experts in Poland

Workshops
Internal miniworkshops

Teams meeting in Norway
Teams meeting in Poland

Outreach activities
Science Festival

3.2. Role of the participating research team members. In the below table we show the allocation of tasks of
the project, described in the Objectives 1-30, of Sections 2.1 – 2.6, to team members. Note that every scientist
team member has allocated Objectives, and that all Objectives have their executors. The table also shows that
the members of both teams, i.e. the Polish and the Norwegian ones, will significantly collaborate to realize the
Objectives.

OBJECTIVES

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

PI, Paweł Nurowski

Co-Investigator in Polish team

Post-doc in Polish team

Post-doc in Polish team

Student in Polish team

Student in Polish team

Partner PI, Boris Kruglikov

Co-Investigator in Norwegian team

Post-doc in Norwegian team
Post-doc in Norwegian team

Note that both Students will always have a Senior member from either team (PI, PI Partner, Coinvestigator, or
a Post-doc) who will supervise them within a given task.
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