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1.2

Historial Notes

Many aspects of the geometry of pde originate with the classical
problem of solving, in “closed form”, the scalar 2nd order equation

F (x , y , u, ux , uy , uxx , uxy , uyy ) = 0.

1. Method of Laplace: uxy −
4u

(x + y)2
= 0

Laplace Transform: Differential sub. lead to wxy +
4wx

(x + y)2
= 0.

GeneralSolution : Demo1

2. Method of Ampere: uxy = uux

Intermediate Integral: uy −
u2

2
= f (y)

General Solution: u =
Y ′′

Y ′ −
2Y ′

X + Y

3. Method of Darboux: 3uxxu
3
yy + 1 = 0

Compatible Equations : f±(uxy ±
1

uyy
) = x(uxy ±

1

uyy
)− q

General Solution : x = A(α) . . . , y = B(β) . . . , u =
∫

(A′′)2 . . .
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1.3

Goals

• To give a precise definition of Darboux integrablity (in the
language of differential systems), one which goes far
beyond the classical case of scalar PDE in the plane.

• To generalize Vessiot’s fundamental discovery, that there is a
purely group theoretical way to construct Darboux integrable
systems using the concepts of joint differential invariants
and reduction of differential systems.

• To show how the Vessiot approach leads to the fundamental
invariants for any DI system.

• To illustrate these results with a variety of examples.

• To explain the relationship between the classical case of DI
PDE in the plane and Monge systems.

V ′ = F (x ,V ,U,U ′,U ′′)

• To give some new applications of this group theoretical
approach.

• To outline current research efforts in the area of DI.
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1.4

Intermediate Integrals

F (x , y , u, p, q, r , s, t) = 0

µ2Fr + µνFs + +ν2Ft = 0

X = µDx + νDy

A function f = f (x , y , u, p, q, dots) on jet space is an internediate
integral if

X (f ) = 0 mod F = 0

An equation is DI if each characteristic vector field has 2
intermediate integrals.

Warning
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1.5

Main Results [IA, Mark Fels, Peter Vassiliou]

Theorem A. Let W1 and W2 be Pfaffian systems on M1 and M2

and G a common symmetry group for W2 and W2.

• Form the sum W1 +W2 on M1 ×M2.

• Let G act on M1 ×M2 diagonally.

• Calculate the quotient EDS I on M = (M1 ×M2)/G ,
I = {ω |π∗G (ω) ∈ W1 ×W2}.

• Granted . . . , I will be Darboux integrable.

and conversely ....

Theorem B ] Let I be a Darboux integrable Pfaffian system.

• Let W1 be the pullback of I to a level set of I1, I2, . . .

• Let W2 be the pullback of I to a level set of J1, J2, . . .

Then there is a (algorithmically computed) group action G on M
such that

I = (W1 +W2)/G .
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1.6

Example 1

We shall begin by giving the group theoretic derivation of the
Liouville’s equation

uxy = exp(u)

The Dx and Dy intermediate integrals for this equation are

I1 = x I2 = r − 1

2
p2 J1 = y J2 = t − 1

2
q2.

Step 1. Introduce two copies of the jet space J3(R,R):

J × J = (x ,X ,X ′,X ′′,X ′′′)× (y ,Y ,Y ′,Y ′′,Y ′′′)

and the canonical contact system

{ dX − X ′dx , dX ′ − X ′′dx , dX ′′ − X ′′′dx ,

dY − Y ′dy , dY ′ − Y ′′dy , dY ′′ − Y ′′′dy}

(In other examples we might begin the product of some other
differential systems.)
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1.7

Consider the simultaneous or diagonal action of SL2 by fractional
linear transformations on the dependent variables:

X̃ =
aX + b

cX + d
Ỹ =

aY + b

cY + d

(In other examples, we might consider different actions of SL2 or
different groups altogether.)

Step 3. Calculate the fundamental joint differential invariant for
this action. We know that there there will be an invariant involving
the 1-jets X ,X ′,Y ′,Y ′.

U =
X ′Y ′

(X − Y )2

Step 4. Calculate the derivatives {U,Ux ,Uy ,Uxx ,Uxy ,Uyy}. These
are all SL2 invariants. Do a little counting – there are 6 invariants
for a free 3-dimensional group action in eight variables.

X ,X ′,X ′′,X ′′′,Y ,Y ′,Y ′′,Y ′′′

There must be a syzygy between the invariants. We find it to be

Uxy −
UxUy

U
+ 2U2 = 0.

(We shall need a more geometric formulation of this step.)
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1.8

Step 5. We now have a recognition or normal form problem.
Can we simplify the equation we have just obtained by a change of
variables.

Theorem[Goursat]. The quadratic term pq in the equation

s + α(x , y , u)pq + β(x , y , u)p + γ(x , y , u)q + delta(x , y , u)

can be eliminated with change of variables ũ =
∫

alphadu.

This leads to the ”better” choice of invariant

U = log(
X ′Y ′

(X − Y )2
)

and the equation
Uxy = exp(U)
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1.9

Calculate the SL2 differential invariants in just the variables
X ,X ′,X ′′,X ′′′ and Y ,Y ′Y ””,Y ′′′. These are well-known:

I =
2X ′X ′′′ − 3(X ′′)2

(X ′)4
and J =

2Y ′Y ′′′ − 3(Y ′′)2

(Y ′)4

Because these are SL2 invariants we can express then in terms of
U,Ux ,Uy ,Uxx ,Uyy .

I = I2 = Uxx −
1

2
U2

x J = J2 = Uyy −
1

2
U2

y

Differential Invariants ⇐⇒ Intermediate Integrals

This is an important observation. It already suggests that DI is
really a group theoretic phenomena.
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1.10

Summary.

J3 × J3

qSL2

y
M

C3 × C3

qSL2

y
L

M1 ×M2

qG

y
M

W1 ×W2

qG

y
I

Step 1. Form the sum of 2 differential systems.

Step 2. Definite a diagonal symmetry group.

Step 3. Calculate the reduction of the sum by the diagonal action.

Steps 4-5. Try to recognize the reduction as a PDE system. Put
into a good form (Optional).

Step 6. Calculate the intermediate integrals for the PDE and hence
establish that it DI (Optional).
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1.11

Example 2

In this example, we address the inverse problem. Given the Liouville
equation, how would we discover that it is the quotient of jets
spaces by an action of SL2.

More generally, let I be any DI exterior differential system. How
will we represent it as the quotient of W1 +W2 by the diagonal act
of a group G?

The differential systems W1 and W2 are easy to define. They are
always given by the restriction of the original system I to a fixed
level set of the immediate integrals.

For the classical case of a PDE in the plane, the systems W1 and
W2 are rank s Pfaffian systems on manifolds of dimension
s + 2,that is, rank 2 distributions.

What is not always so easy to do is to put these differential systems
into a good normal form.
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1.12

The Liouville equation is encoded on a 7-manifold, with coordinates
(x , y , u, p, q, r , t) as a rank 3 Pfaffian system

I =

{ θ1 = du − p dx − q dy , θ2 = dp − r dx − eu dy , θ3 = dq − eu dx − t dy }

The restriction to x = 0, r = 1
2p2 gives

W = {ω1 = du − q dy , ω2 = dp − eu dy , ω3 = dq − t dy}

We calculate:

dim W = 3 dim W ′ = 2, dim W ′′ = 1, dim W ′′′ = 0,

dim C (W ′) = 1 dim C (W ′′) = 2.

We can conclude that W is the canonical contact system on J3.
The explicit diffeomorphism is

y = y ,Y = p,Y1 = eu,Y2 = euq,Y3 = eu(t + q2).
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1.13

Example 3

Now consider the fully non-linear equation 3rt3 + 1 = 0. The
corresponding Pfaffian systems is

I = { θ1, θ2, θ3 }

{ du − p dx − q dy , dp +
1

3t3
dx − s dy , dq − s dx − t dy }

The intermediate integrals are

I1 = s +
1

t
, I2 = xI1 − q, J1 = s − 1

t
, J2 = xJ1 − q

The restriction of I to s =
1

t
, q = 0 gives

W =

{ω1 = du − p dx , ω2 = dp +
1

3t3
dx − 1

t
dy , ω3 = −1

t
dx − t dy}.

This time we find that

dim W = 3 dim W ′ = 2, dim W ′′ = 0,

so that W is of generic type.
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1.14

We use Maple to analyze this system further. For generic rank 3
Pfaffian systems in 5 variables, the the fundamental invariant is the
Cartan tensor.

For this system the Cartan tensor vanishes and therefore W is
diffeomorphic to the Pfaffian system for the Hilbert-Cartan equation
V ′ = (U ′′)2.

Alternatively, it suffices to calculate the infinitesimal symmetry
algebra of W . We find that that this is a 14 dimensional, simple Lie
algebra which also implies that W is diffeomorphic to the Pfaffian
system for the Hilbert-Cartan equation V ′ = (U ′′)2.

An explicit diffeomorphism is

x =
2x

U2
, y = −U1 +

xU2

2
, u = 2U − 2xU1 +

1

3
x2U2 +

xV

U2
,

p =
1

2
V − 1

6
xU2

2 , t = − 2

U2
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We use Maple to analyze this system further. For generic rank 3
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Example 4

An interesting class of equations, studied in 2 papers by Goursat, is
provided by

s = A(x , y)
√

pq. (1)

With A =
2n

x + y
, this equation becomes Darboux integrable with

intermediate integrals of order n + 1.
Here are the intermediate integrals In for small values of n(where
p = sqrt(ux)) :

I2 =
2p

(x + y)2
+

4px

(x + y)
+ pxx

I3 =
6p

(x + y)3
+

18px

(x + y)2
+

9pxx

(x + y)
+ pxxx

I4 =
24p

(x + y)4
+

96px

(x + y)3
+

72pxx

(x + y)2
+

16pxxx

(x + y)
+ pxxxx

I5 =
120p

(x + y)5
+

600px

(x + y)4
+

600pxx

(x + y)3
+

200pxxx

(x + y)2
+

25pxxxx

x + y
+ pxxxxx
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1.16

We set this equation up as a rank 2n + 1 Pfaffian I system on a
manifold M of dimension 2n + 5. Let W be the restriction of I to
the level set x = 0, In = 0. This a rank 2n + 1 Pfaffian system on
an manifold Q of dimension 2n + 3.

We find that we can deprolong these systems n times to arrive at
rank n + 1 Pfaffian systems W− on manifolds Q− of dimension
n + 3 – that is, rank 2 distributions. Here are some basis invariants:
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1.17

n W− W− Derived Flag Sym Levi

rk dm Growth dim ss · rad

2 3 5 [2,1,2] 14 g2

3 4 6 [2,1,2 1] 11 sl2 · [8, 7, 1, 0]

4 5 7 [2,1,2 1, 1] 13 sl2 · [10, 9, 1, 0]

5 6 8 [2,1,2 1, 1, 1] 15 sl2 · [12, 11, 1, 0]

A result of Dubrov and Zelenko and state that only the Pfaffian
systems W− with this data are

u′ = (v (n))2

This are flat models in the Tanaka sense. Perhaps then

uxy =
2n

x + y

√
pq ⇐⇒ Flat DI ???
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1.18

For example, for n = 3, the Pfaffian system for the Goursat
equation is

θ1 = du − p2 dx − q2 dy , θ2 = dp − px dx − 3q

x + y
dy ,

θ3 = dq − 3p

x + y
dx − qy dy ,

θ4 = dpx − pxx dx − 3(−q + 3p)

x2 + 2xy + y2
dy ,

θ5 = dqy +
3(p − 3q)

x2 + 2xy + y2
dx − qyy dy ,

θ6 = dpxx − pxxx dx +
3(−3pxx + 9p − 2q − 3pxy)

x3 + 3x2y + 3xy2 + y3
dy ,

θ7 = dqyy −
3(3qyx − 9q + 3qyy + 2p)

x3 + 3x2y + 3xy2 + y3
dx − qyyy dy .
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1.19

The restricted system W is

θ1 = du − q2 dy , θ2 = dp − 3q

y
dy , θ3 = dq − qy dy ,

θ4 = dpx −
3(−q + 3p)

y2
dy , θ5 = dqy − qyy dy

θ6 = dpxx +
3(9p − 2q − 3pxy)

y3
dy , θ7 = dqyy − qyyy dy

This de-prolongations to {θ1, θ2, θ3, θ6} which is mapped by the
transformation

y = −2/x , u =
V

9
, p =

√
2U2

2
, q = −

√
2

6
xU3,

px =

√
2

4
(xU2 + 8U1), pxx =

√
2

4
(20U + 16xU1 + x2U2)

to the canonical Pfaffian system for V ′ = (U ′′′)2.
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1.20

Summary

If I is a DI differential system, then the restriction W of I to the
level sets of the intermediate integrals are very important invariants
of the DI system.

In many cases W defines a codimension 2 Pfaffian system. We have
seen that for

• s = eu; W = C 3 on J3(R,R).

• 3rt3 + 1 = 0; W is the canonical Pfaffian system for
V ′ = (U ′′)2.

• s =
2n

x + y

√
pq; W is the prolongation of the canonical

Pfaffian system for V ′ = (U(n))2.
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1.21

Exercises

Formulate each of the following PDE as a Pfaffian system I . Check
that the given functions are intermediate integrals. Describe the
restrictions W of I to the level sets of the intermediate integrals.

1. s =
pq

u − x
, with I1 = x , I2 =

p

u − x
, I3 =

r

u − x
+

p

(u − x)2
,

J1 = y , J2 = t
q − y .

2. s = pu, with I1 = x , I2 =
uxxx

p
− 3

2
r2

p2 , J1 = y , J2 = q − 1

2
u2.

3. r = 1
2 s2, with I1 = y , I2 = t + s, J1 = y − xs, J2 = s.

4. Consider here the Pfaffian system I =

{ du−p dx−q dy , dp+(tan τ−τ) dx−s dy , dq−s dx−(τ+cot τ) dy }

Find the associated PDE. The invariants are I1 = s + τ , J1 = s − τ ,
I2 = −(x + y)I1 + q + p, , J2 = −(x − y)J1 + q − p.
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Overview

• I.Introduction

• II. Symmetry Reduction of Exterior Differential Systems.

• III. The Method of Darboux

• VI. Conclusions
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C. R. Acad. Sc, 134 (1902), 1415-1418 and 1564-1566.
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Mathématique de France 25 (1897), 36 – 48.
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