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Integrable pseudogroup

A pseudogroup G ⊂ Diff loc(M) acting on a manifold M consists of
a collection of local diffeomorphisms ϕ, each bearing own domain
of definition dom(ϕ) and range im(ϕ), with properties:

idM ∈ G and dom(idM ) = im(idM ) = M ,

If ϕ,ψ ∈ G, then ϕ ◦ ψ ∈ G whenever dom(ϕ) ⊂ im(ψ),

If ϕ ∈ G, then ϕ−1 ∈ G and dom(ϕ−1) = im(ϕ),

ϕ ∈ G iff for every open subset U ∈ dom(ϕ) the restriction
ϕ|U ∈ G,

The pseudogroup is of order k if this is the minimal number
such that ϕ ∈ G ⇔ ∀a ∈ dom(ϕ) : [ϕ]ka ∈ Gk.
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General pseudogroup

A more general approach is to consider G ⊂ Jk
reg(M,M), where the

latter space consists of the jets of local diffeomorphisms, such that
G satisfies the above mentioned properties, but is not required to
be integrable.
This finite-jet pseudogroup is usually considered with the action ρ
on the jets of submanifolds of codimension r

G 3 ϕk 7→ ρ(ϕk) : Jk
r (M) → Jk

r (M).

The map ρ obeys the following property:

ρ(ϕk ◦ ψ−1
k ) = ρ(ϕk) ◦ ρ(ψk)

−1,

whenever the composition on one side is defined.
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General pseudogroup

Generalization of this concerns pseudogroup actions on equations
E ⊂ Jk

r (M), which is the same kind of representation ρ, but such
that ϕk ≡ ρ(ϕk) action preserves the equation on submanifolds.

Notice that since in general both G and E are not assumed
integrable from the very beginning, prolongation-projection scheme
may change the action substantially.

In this scheme both G and E are prolonged simultaneously together
with the action.
For instance, order 1 action of G1 = SL(m) [m = dimM ] prolongs
to representation of volume-preserving diffeomorphisms, while for
G1 = O(m) the group does not change G = O(m) (in the perfect
case, when the pseudogroup structure is integrable).
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Differential invariants

A function I ∈ C∞
loc(Es) constant on the orbits of the above action

is called a differential invariant. Here for s ≥ k = ord(E) we define
Es = E(s−k) to be the prolongation of the given equation E = Ek

and Es = Js
r (M) for smaller s.

The action above is the prolonged action of the pseudogroup G,
but the concept is better defined in terms of the Lie sheaf g

corresponding to pseudogroup G, since then the defining equation
is expressed via Lie derivative as follows: LX(I) = 0.

In addition if the pseudogroup is formal (k = ∞), it can be
identified with the formal sheaf g∞, determining LX , while
integration to G is usually a more complicated problem. The
algebra of differential invariants of order k will be denoted by Ik.
The algebra of all differential invariants is I = lim

→
Ik.

Boris Kruglikov Geometry of ODEs and Vector Distributions � Warsaw-2009



Differential invariants
Classification of 2nd order ODEs: Tresse and beyond

Other finite type examples

Pseudogroup actions
Differential invariants
Finiteness

Invariant differentiations

Vector field v ∈ C∞(E∞) ⊗C∞(M) D(M) invariant under the
action of pseudogroup G is called an invariant differentiation. It
acts as follows:

v : Ik−1 → Ik.

An important case of invariant differentiations constitute Tresse
derivatives, defined as follows. Suppose we have n = m− r
differential invariants f1, . . . , fn on E of order ≤ k, which are
functionally independent on almost all finite jet-solutions of E :
df1 ∧ · · · ∧ dfn|L(ak+1) 6= 0. Then for any f ∈ Ik we get

df |L(ak+1) =

n
∑

i=1

∂̂i(f)(ak+1) dfi|L(ak+1),

which uniquely defines the function ∂̂i(f). v = ∂̂i = ∂̂/∂̂fi are
invariant differentiations, v : I → I.
Examples are Levi-Civita derivative in Riemannian geometry, Study
derivative in projective geometry etc.
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Invariant differentiations

The space of differential invariants is an algebra with respect to
linear combinations over R, operation of multiplication and the
composition I1, . . . , Is 7→ I = F (I1, . . . , Is) for F ∈ C∞

loc(R
s,R).

However even with these operations the algebra I is usually not
locally finitely generated (though the subalgebras Ik ⊂ I are
finitely generated on non-singular strata). To obtain this property
one must add invariant differentiations or Tresse derivatives.

It was established by Valentin Lychagin & B.K. that this
finite-dimensionality is equivalent to vanishing of certain
cohomology of covariants in stable range. These are certain
Spencer-like cohomology with dual graded components of
differential invariants instead of usual symbols. With this approach
the finiteness theorem for PDEs is equivalent to vanishing theorems
in algebraic geometry.
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Finiteness theorems

Sophus Lie in particular case of vertical actions and later his French
student Arthur Tresse in general suggested the following

Theorem

There is a finite set of invariant differentiations v1, . . . , vn and a
finite set of differential invariants In+1, . . . , In+s such that the
algebra of differential invariants I is generated by them.

There is another formulation:

Theorem

There is a finite set of differential invariants I1, . . . , In, . . . , In+s

such that if the first n are considered as basic, then all differential
invariants are obtained from these by (higher) Tresse derivatives of
the second part by the first and combinations.
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History

It is not known if the statement holds true without additional
assumptions. Most likely it holds if all the involved objects are
analytic (like Cartan-Kähler theorem or Malgrange’s proof of
Cartan-Kuranishi theorem).
But usually the regularity requirement is imposed.
The story of proof is shortly this:

S.Lie & A.Tresse - general idea.

L.Ovsyannikov - action of Lie groups (finite-dimensional).

A.Kumpera - action of a pseudogroup on spaces of jets.

V.Lychagin & B.K. - action of a pseudogroup on equations.
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More

Remark

In addition to finiteness of differential invariants, there is a
finiteness theorem for differential syzygy. Its meaning is that the
space I of absolute differential invariants behaves like an infinitely
prolonged differential equation: given by a limiting construction,
though with a finite number of generators and relations.

Cartan-Kuranishi theorem does not directly apply to the system
generated by differential invariants, since invariant derivations do
not commute and we don’t get the usual jet-calculus. But it still
holds due to the above vanishing theorem.
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Relative differential invariants

The point transformation LAS Dloc(J
0
R), with J0

R(x) = R
2(x, y),

equals g = {ξ0 = a∂x + b∂y : a = a(x, y), b = b(x, y)} and it
prolongs to the subalgebra

g2 = {ξ = a∂x + b∂y +A∂p +B∂u} ⊂ Dloc(J
2
R), J2

R = R
4(x, y, p, u)

A = Dx(ϕ), B = D2
x(ϕ) + u(∂y(ϕ) − 2Dx(a)),

where p = y′, u = y′′, Dx = ∂x + p ∂y,
ϕ = (dy − p dx)(a∂x + b∂y) = b− p a.

Thus the LAS h = g2 ⊂ Dloc(J
0
R

3(x, y, p)) being given we
represent a second order ODE as a surface u = f(x, y, p) in
J0

R
3(x, y, p) = R

4(x, y, p, u) and
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kth order differential invariants of this ODE are invariant functions
I ∈ C∞

loc(J
k
R

3) of the prolongation

hk = {ξ̂ = aDx + bDy +ADp +
∑

|σ|≤k

D(k)
σ (f) ∂uσ} ⊂ D(Jk

R
3),

f = B − aux − b uy −Aup : ξ̂(I) = 0.

Here D
(k)
σ = Dσ = Dl

xD
m
y Dn

p |Jk for σ = (l · 1x +m · 1y + n · 1p).

It is more convenient, following Tresse, to use the operator
Dx = ∂x + p ∂y on the base instead and to form the corresponding
total derivative D̂x = Dx + pDy. These operators will no longer
commute and we use the following notation for non-holonomic
partial derivatives: uk

lm = D̂l
xD

m
y Dk

p(u),
which equals ulmk mod (lower order terms).
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The first relative invariants calculated by Tresse have order 4:

I = u4, H = u2
20 − 4u1

11 + 6u02 + u2
20 − 4u1

11 + 6u02+

+ u(2u3
10 − 3u2

01)− u1(u2
10 − 4u1

01) + u3u10 − 3u2u01 + u · u · u4.

In this case the relative invariants are

Rr,s = {ψ ∈ C∞(J∞
R

3) : ξ̂(ψ) = (−r C0
ξ + (r − s)C1

ξ )ψ},

so that the weights form a 2D lattice with the basis

C0
ξ = ax + by = divω0

(ξ0) and C1
ξ = ∂y(ϕ) = 1

2 divΩ0
(ξ1)

for ξ0 = ξ̂|J0 = a∂x + b∂y, ξ1 = ξ̂|J1 = a∂x + b∂y +A∂p,

with ω0 = dx ∧ dy the volume on J0
R and Ω0 = −ω ∧ dω on J1

R,
ω = dy − p dx being the standard contact form of J1

R.
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There are relative invariant differentiations (differential parameters):

∆p = Dp + (r − s)
u5

5u4
: Rr,s → Rr−1,s+1

∆x = D̂x + u∆p +
(

(3r + 2s)
(

u1 +
3uu5

5u4

)

+ (2r + s)
u4

10

u4

)

: Rr,s → Rr+1,s

∆y = Dy +
u5

5u4
∆x +

(

2u1 +
u4

10 + uu5

u4

)

∆p +
(

(r + 2s)
u4

01

4u4
+

+(3r + 2s)
(u2

8
+

3

20

u5(u4
10 + uu5 + 2u1u4)

u4u4

))

: Rr,s → Rr,s+1.

Theorem

The space of relative differential invariants R is generated by the
invariant H and differentiations ∆x,∆y,∆p on the generic stratum.

Boris Kruglikov Geometry of ODEs and Vector Distributions � Warsaw-2009



Differential invariants
Classification of 2nd order ODEs: Tresse and beyond

Other finite type examples

Relative differential invariants
Absolute invariants and Equivalence problem
Singular strata

Specifications

The number of basic relative differential invariants of pure order k:

k : 0 1 2 3 4 5 6 7 8 . . . k . . .
# : 0 0 0 0 2 3 11 17 24 . . . 1

2(k2 − k − 8)

The generators are the following.
In order 4: I ∈ R−2,3 and H ∈ R2,1;
In order 5: H10 = ∆x(H) ∈ R3,1, H01 = ∆y(H) ∈ R2,2

and K = ∆p(H) ∈ R1,2;
In order 6: (H20,H11,H02) ∈ R4,1 ⊕R3,2 ⊕R2,3,

(K10,K01) ∈ R2,2 ⊕R1,3 and
Ωl

ij = ul
ij + (lower "order" terms) ∈ Ri+2−l,j+l−1,

deg Ωl
ij = i+ j + l = 6, l > 3 etc.
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Summarizing we have the table:

order k basic relative differential invariants
4 I, H
5 H10, H01, K
6 H20, H11, H02, K10, K01, Ω4

20, Ω4
11, Ω4

02, Ω5
10, Ω5

01, Ω6

Thus in ascending order k, we must add the generators I,H and
then Ω6−i−j

ij , i+ j ≤ 2 (one encounters the relations
∆x(I) = ∆y(I) = ∆p(I) = 0). Invariants of order k > 6 are
obtained via invariant derivations from the lower order.

Other generators on finer strata... differential syzygies... etc
On I 6= 0 the following is a generating set: I,H,Ω6 = u6 − 6

5
u5·u5

u4 ,
and ∆x,∆y,∆p.
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Absolute differential invariants

There are two ways of adjusting a basis on the lattice M of weights
via relative invariants. The basic invariants can be taken

J1 = I−1/8H3/8 ∈ R1,0, J2 = I1/4H1/4 ∈ R0,1.

or (to avoid branching but increasing the order)

J̃1 =
H10

H
∈ R1,0, J̃2 =

H01

H
∈ R0,1.

Then (choosing Ji or J̃i) we get the isomorphism for k > 4:

Rr,s
k /Rr,s

k−1 ' Ik/Ik−1, F 7→ F/(Jr
1J

s
2 ).

With any choice the list of basic differential invariants in order 5 is

H̄10 = H10/(J
3
1J2), H̄01 = H01/(J

2
1J

2
2 ), K̄ = K/(J1J

2
2 )
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and in pure order 6 is

H̄20 = H20/(J
4
1J2), H̄11 = H11/(J

3
1J

2
2 ), H̄02 = H02/(J

2
1J

3
2 ),

K̄10 = K10/(J
2
1J

2
2 ), K̄01 = K01/(J1J

3
2 ),

Ω̄4
20 = Ω4

20/(J
3
2 ), Ω̄4

11 = Ω4
11/(J

−1
1 J4

2 ), Ω̄4
02 = Ω4

02/(J
−2
1 J5

2 ),

Ω̄5
10 = Ω5

10/(J
−2
1 J4

2 ), Ω̄5
01 = Ω5

01/(J
−3
1 J5

2 ), Ω̄6 = Ω6/(J−4
1 J5

2 ).

Higher order differential invariants can be obtained in a similar way
from the basic relative invariants, but alternatively we can adjust
invariant derivations by letting ∇j = J

ρj

1 J
σj

2 · ∆j|r=s=0 with a
proper choice of the weights ρj, σj . Namely we let

∇p =
J1

J2
Dp, ∇x =

1

J1

(

D̂x + uDp

)

,

∇y =
1

J2

(

Dy +
u5

5u4
D̂x +

(u4
10

u4
+

6uu5

5u4
+ 2u1

)

Dp

)

.

These form a basis of invariant derivatives over I and we have
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The syzygy:

[∇p,∇x] = −1
8H̄10∇p −

3
8K̄∇x + ∇y,

[∇p,∇y] = (Ω̄5
10 −

1
8H̄01)∇p + 1

5Ω̄6∇x − 1
4K̄∇y,

[∇x,∇y] = Ω̄4
20∇p + (1

5 Ω̄5
10 + 3

8H̄01)∇x − 1
4H̄10∇y.

The derivations and coefficients can be also expressed in terms of
non-branching invariants J̃1 = 8

3∇xJ1 and J̃2 = 4∇yJ2.

Theorem

The space I of differential invariants is generated by the invariant
derivations ∇x,∇y,∇p on the generic stratum.

Indeed, we mean here that taking coefficients of the commutators,
adding their derivatives etc leads to a complete list of basic
differential invariants.
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Equivalence problem

2nd order ODEs E can be considered as sections sE of the bundle
π, whence we can restrict any differential invariant J ∈ Ik to the
equation via pull-back of the prolongation:

JE := (s
(k)
E )∗(J) ∈ C∞

loc(R
3(x, y, p)).

In this way we obtain the invariants

H̄E
10, H̄

E
01, K̄

E , H̄E
20, H̄

E
11, H̄

E
02, K̄

E
10, K̄

E
01, Ω̄6 E , Ω̄5 E

10 , Ω̄
4 E
20 .

These are functions of 3 variables, so we get the map
R

3 ' E → R
11. Its image (of dim = 3, 2, 1 or 0) is an invariant.

Theorem

Two 2nd order regular differential equations E1, E2 are point
equivalent iff the corresponding submanifolds in the space of
differential invariants R

11 coincide.
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Projective connections

On the space J3
R

3(x, y, p) the lifted action of the pseudogroup h

is transitive. But its lift to the space of 4-jets is not longer such:
There are singular strata, given by the equations I = 0,H = 0.
Moreover they have a singular substratum I = H = 0 in itself, on
which the pseudogroup action is transitive, so that any equation
from it is point equivalent to trivial ODE y′′ = 0.
We will restrict here only to the singular stratum I = 0 (the other
stratum H = 0 can be treated similarly. Indeed, though the
invariants I,H look quite unlike, they are proportional to self-dual
and anti-self-dual components of the Fefferman metric...), i.e.

y′′ = α0(x, y) + α1(x, y)p + α2(x, y)p
2 + α3(x, y)p

3, p = y′.

This class of equations is invariant under point transformations.
Moreover it has very important geometric interpretation, namely
such ODEs correspond to projective connections on 2D manifolds.
There are 3 different approaches to the equivalence problem.
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The original approach of Tresse

Following S.Lie’s method, Tresse studied lift of the action of point
transformation to the space Jk(R2,R4) and investigated the
algebra of differential invariants. The number of basic invariants of
pure order k is

k : 0 1 2 3 4 5 6 7 8 . . . k . . .
# : 0 0 0 0 6 8 10 12 14 . . . 2(k − 1)

The action of g is transitive on J1 and its lift is transitive on
J2(R2,R4) outside the singular orbit L1 = L2 = 0, where

L1 = −α2xx + 2α1xy − 3α0yy − 3α3α0x + α1α2x − 6α0α3x

+ 3α2α0y − 2α1α1y + 3α0α2y

L2 = −3α3xx + 2α2xy − α1yy − 3α3α1x + 2α2α2x − 3α1α3x

+ 6α3α0y − α2α1y + 3α0α3y
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These second order operators were found by S.Lie, who showed
that vanishing L1 = L2 = 0 characterizes trivial (=linearizable)
ODEs. R.Liouville proved that the tensor

L = (L1dx+ L2dy) ⊗ (dx ∧ dy),

responsible for this, is an absolute differential invariant.
Further on Tresse claimed that all absolute differential invariants
can be expressed via L1, L2 ... finished recently by V.Yumaguzhin.
The action of g in J3(R2,R4) is transitive outside the stratum
F3 = 0, where

F3 = (L1)
2Dy(L2) − L1L2(Dx(L2) + Dy(L1)) + (L2)

2Dx(L1)

− (L1)
3α3 + (L1)

2L2α2 − L1(L2)
2α1 + (L2)

2α0

is the Liouville relative differential invariant. The other tensor
invariants can be expressed through these.
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The invariant derivations are

∇1 =
L2

(F3)2/5
Dx −

L1

(F3)2/5
Dy, ∇2 =

Ψ2

(F3)4/5
Dx −

Ψ1

(F3)2/5
Dy,

where

Ψ1 = −L1(L1)y + 4L1(L2)x − 3L2(L1)x − (L1)
2α2 + 2L1L2α1 − 3(L2)

2α0,

Ψ2 = 3L1(L2)y − 4L2(L1)y + L2(L2)x− 3(L1)
2α3 + 2L1L2α2 − (L2)

2α1.

Now we can get two differential invariants of order 4 as the
coefficients of the commutator

[∇1,∇2] = I1∇1 + I2∇2.

Four more invariants I3, . . . , I6 of order 4, finish the story.
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The second Tresse approach

The invariants of the general theory are not defined on the stratum
I = 0. However the relative invariants I,H are on equal footing.
And in fact Tresse constructed another basis of relative invariants
with H in denominator.

Thus if we restrict this set to the stratum I = 0 minus the trivial
equation {I = H = 0}, we get differential invariants of the ODEs
cubic in p. For instance H is proportional to
L1 + L2p = L/(dx⊗ dx ∧ dy). The other invariants are rational
functions in p on the cubics. The proposed idea can be viewed as a
change of coordinates in the algebra I.

Yet, another non-local approach was sketched by Tresse: straighten
L to λdx. The pseudogroup is reduced to triangular x 7→ X(x),
y 7→ Y (x, y), and the invariants are generated by the invariant
derivatives ∆x,∆y and the invariants B,C,D of orders 1, 2, 2.
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Lie equations

Denote by sE : R
2 → R

4 the maps (x, y) 7→ (a0, a1, a2, a3)
corresponding to cubic 2nd order ODEs E . The Lie equation on the
equivalence between them is

Lie(E1, E2) = {[ϕ]2z ∈ J2(R2,R2) : ϕ̂
(

sE1
(z)

)

= sE2
(ϕ(z))},

where ϕ̂ : R
2 × R

4 → R
2 × R

4 is the lift of ϕ : R
2 → R

2. On
infinitesimal level, the lift of a vector field X = a ∂x + b ∂y is

X̂ = a ∂x + b ∂y + (bxx + α0(by − 2ax) − α1bx) ∂α0

+(2bxy−axx−3α0ay−α1ax−2α2bx)∂α1
+(byy−2axy−2α1ay−α2by

− 3α3bx)∂α2
+ (−ayy − α2ay + α3(ax − 2by))∂α3

.

For E1 = E2 infinitesimal version of the finite Lie equation Lie(E , E)
describes the equation lie(E) ⊂ J2(R2,R2) for the symmetry
algebra sym(E).
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The basic differential invariants of the pseudogroup Diff loc(R
2,R2)

action on cubic ODEs arise as the obstruction to formal
integrability of the equation lie(E). In coordinates it has the form

bxx + α0(by − 2ax) − α1bx = aα0x + b α0y

2bxy − axx − 3α0ay − α1ax − 2α2bx = aα1x + b α1y

byy − 2axy − 2α1ay − α2by − 3α3bx = aα2x + b α2y

−ayy − α2ay + α3(ax − 2by) = aα3x + b α3y

Application of prolongation-projection method and Spencer theory
gives all basic invariants.

Boris Kruglikov Geometry of ODEs and Vector Distributions � Warsaw-2009



Differential invariants
Classification of 2nd order ODEs: Tresse and beyond

Other finite type examples

Relative differential invariants
Absolute invariants and Equivalence problem
Singular strata

Remark

Other ways of getting differential invariants arise from problems
which with projectively invariant answers. For instance the
following system arose in 3 independent problems:

uy = P0[u, v,w], ux + 2vy = P1[u, v,w],

2vx +wy = P2[u, v,w], wx = P3[u, v,w],

where Pi[u, v,w] are linear in u, v,w and smooth in x, y. It is
obtained similar to lie as the existence condition for Killing tensors.

B.K. solved this system to characterize invariantly Liouville metrics,
R. Bryant, G.Manno, V.Matveev to give normal forms of metrics
with transitive group of projective transformations and
R. Bryant, M.Dunajski, M. Eastwood to decide local metrisability of
projective structures on surfaces.
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An interesting overdetermined system

When is the following system on u ∈ C
∞(Rn) solvable:

E : |∇u| = 1, ∆u = f(u).

Compatible ⇔ n = 2 & solvable.
Solvable ⇒ f ≡ 0 or f(o) = ∞, we normalize o = 0.
Solvable ⇔ uf(u) = κ ∈ Z ∩ [0, n − 1].
Sol(E) = T⊥Gr(n− 1 − κ, n) = {(v,Π) : v ⊥ Π ⊂ R

n}.

This system has symmetry group G = O(n) n R
n, but the standard

differential invariants approach does not work.
Indeed, the 2nd order invariants are precisely eigenvalues of the
Hesse matrix Hu = D2u, or equivalently Trace(Hj

u), j = 1, . . . , n.
But the Hamilton-Jacobi equation relates them since detHu = 0
on E . Thus pseudogroup G action on equation should be used
(singular orbits!).
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Criterion in differential invariants

Classical question of surface metric geometry is to recognize when
a geodesic flow has quadratic integral (Darboux problem). Then
metric is Liouville:

ds2 =
(

f(x) + g(y)
)

(dx2 + dy2).

Denote by J2 the space of quadratic integrals. dimJ2 (it is 6,4,3,2
or 1) can be expressed via differential invariants. For instance,

dimJ2 = 3 ⇔ J6a = J6b = J6c = J6d = 0,

where J6i are some differential invariants of order 6.
But the r.h.s. invariant overdetermined system is not compatible!
Applying invariant derivatives ∇1 = Lgrad K and ∇2 = LsgradK we
get new conditions J6e = 0 and J̃5 = 0.
The solution to the general problem dimJ2 = 2 has similar but
much more complicated answer.
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Linearization of webs etc

Similar problem arises in resolution of Blaschke conjecture by
V.Goldberg & V.Lychagin (there’re 1024 invariants of order 9!).

The problem is reduced to a "simple" solvability of an
overdetermined system of 2 scalar PDEs. The method is
prolongation-projection, i.e. writing successively compatibility
conditions, starting with Mayer bracket (introduced by Lychagin
and B.K.)

Another problem in webs solved in a similar way (but via a
multi-bracket) is a counting of Abelian relations. The answer is
formulated via differential invariants of webs.
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