Contact geometry of hyperbolic equations of generic type

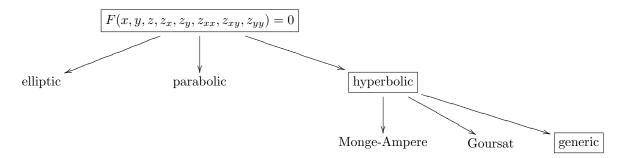
Dennis The

(dthe@math.tamu.edu)

Jan. 5, 2009

These are notes for my talk given at the conference "Geometry of ODE and Vector Distributions" (Stefan Banach International Mathematical Centre, Warsaw University, Jan. 5, 2009)

Contact-invariant classification of 2nd order scalar PDE in the plane:



WARNING: For this lecture, drop whatever preconceived notion you have of "hyperbolic Goursat" or "hyperbolic generic": there is unfortunately an abuse of terminology in the literature. Refer to page 3 for defn here.

1 Contact equivalence

We'll work locally and in C^{∞} category. Consider

$$F(x, y, z, z_x, z_y, z_{xx}, z_{xy}, z_{yy}) = 0$$

Work in $J^{2}(\mathbb{R}^{2},\mathbb{R}): (x, y, z, p, q, r, s, t)$ with $\mathcal{C}^{(2)} = \{\theta^{1}, \theta^{2}, \theta^{3}\}.$

$$\theta^1 = dz - pdx - qdy, \quad \theta^2 = dp - rdx - sdy, \quad \theta^3 = dq - sdx - tdy.$$

Parametrization of F = 0: $i_F : \Sigma^7 \to J^2(\mathbb{R}^2, \mathbb{R})$. Assume: i_F is maximal rank & $(F_r, F_s, F_t) \neq 0 \Rightarrow$ can loc. solve F = 0 for one of r, s, t. Define:

$$I_F = i_F^*(\mathcal{C}^{(2)}) = \{\omega^1, \omega^2, \omega^3\}.$$

Fact: There is a 1-1 correspondence between local solutions of F = 0 and local integral manifolds of I_F (satisfying an independence condition).

Definition 1.1. F = 0 and $\overline{F} = 0$ (with $i_{\overline{F}} : \overline{\Sigma} \to J^2(\mathbb{R}^2, \mathbb{R})$) are contact-equivalent if \exists local diffeo. $\phi : \Sigma \to \overline{\Sigma}$ such that $\phi^* I_{\overline{F}} = I_F$. A contact symmetry is a self-equivalence.

Remark 1.2. More precisely, this is internal contact-equivalence. External contact-equivalence refers to $\rho \in \text{Diff}_{loc.}(J^2(\mathbb{R}^2,\mathbb{R}))$ preserving $\mathcal{C}^{(2)}$ which restricts to a local diffeomorphism $\tilde{\rho} : i_F(\Sigma) \to i_{\bar{F}}(\bar{\Sigma})$. Under our assumptions on i_F , $i_{\bar{F}}$, these notions are in fact equivalent. [Anderson, Kamran, Olver]

Define a symmetric $C^{\infty}(\Sigma)$ -bilinear form $\langle \cdot, \cdot \rangle$ (Gardner tensor) on I_F , namely

$$\langle \varphi, \psi \rangle Vol_{\Sigma} := d\varphi \wedge d\psi \wedge \omega^1 \wedge \omega^2 \wedge \omega^3, \qquad \forall \varphi, \psi \in I_F.$$

Since $ker(i_F^*) = \{dF\}$, this definition is equivalent to

$$\langle \varphi, \psi \rangle_p (Vol_{J^2})_{i_F(p)} := (d\tilde{\varphi} \wedge d\tilde{\psi} \wedge \theta^1 \wedge \theta^2 \wedge \theta^3 \wedge dF)_{i_F(p)}$$

where $\tilde{\varphi}$ and $\tilde{\psi}$ are any forms such that $\varphi = i_F^* \tilde{\varphi}$ and $\psi = i_F^* \tilde{\psi}$.

e.g. For $\langle \omega^2, \omega^2 \rangle$, note $d\theta^2 = dx \wedge dr + dy \wedge ds$, and

$$d\theta^2 \wedge d\theta^2 \wedge \theta^1 \wedge \theta^2 \wedge \theta^3 \wedge dF = 2dx \wedge dr \wedge dy \wedge ds \wedge dz \wedge dp \wedge dq \wedge F_t dt = F_t Vol_J z + f_$$

Wrt some Vol_{J^2} , we have

$$(\langle \omega^{\alpha}, \omega^{\beta} \rangle)_{p} = \begin{pmatrix} 0 & 0 & 0\\ 0 & F_{t} & -\frac{1}{2}F_{s}\\ 0 & -\frac{1}{2}F_{s} & F_{r} \end{pmatrix}_{i_{F}(p)}$$

Since $(F_r, F_s, F_t) \neq 0$, $\langle \cdot, \cdot \rangle$ has either rank 1 or 2. Defining

$$\Delta = i_F^* \left(F_r F_t - \frac{1}{4} F_s^2 \right),$$

we have the following (pointwise) mutually exclusive cases:

elliptic	parabolic	hyperbolic
$\Delta(p) > 0$	$\Delta(p) = 0$	$\Delta(p) < 0$

Since d and pullbacks commute, this classification is *contact-invariant*.

2 Hyperbolic eqns: Monge–Ampère, Goursat, generic

Hyperbolic case: \exists pair of rank 2 maximally isotropic subsystems

$$M_1 = \{\omega^1, \omega^2\}, \quad M_2 = \{\omega^1, \omega^3\} \text{ of } I_F = \{\omega^1, \omega^2, \omega^3\}$$

By a choice of volume form,

$$(\langle \omega^{\alpha}, \omega^{\beta} \rangle)_{p} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix},$$

which is equivalent to

$$\begin{aligned} d\omega^1 &\equiv 0 \\ d\omega^2 &\equiv \omega^4 \wedge \omega^5 \mod I_F, \quad \text{with} \quad \omega^1 \wedge \dots \wedge \omega^7 \neq 0 \\ d\omega^3 &\equiv \omega^6 \wedge \omega^7 \end{aligned}$$

Theorem 2.1 (Hyperbolic structure equations). Given any hyperbolic equation F = 0, there is an associated coframe $\omega = \{\omega^i\}_{i=1}^7$ on Σ such that

1.
$$I_F = \{\omega^1, \omega^2, \omega^3\}, \quad M_1 = \{\omega^1, \omega^2\}, \quad M_2 = \{\omega^1, \omega^3\}$$

2. We have the structure equations

$$\begin{aligned} d\omega^1 &\equiv \omega^3 \wedge \omega^6 + \omega^2 \wedge \omega^4 \mod \{\omega^1\} \\ d\omega^2 &\equiv \omega^4 \wedge \omega^5 + U_1 \omega^3 \wedge \omega^7 \mod \{\omega^1, \omega^2\} \\ d\omega^3 &\equiv \omega^6 \wedge \omega^7 + U_2 \omega^2 \wedge \omega^5 \mod \{\omega^1, \omega^3\} \end{aligned}$$

Let's examine Cauchy characteristics of M_1 and M_2 . Let $\{e_i\}$ be dual to $\{\omega^i\}$. Then

$$C(M_1) = \{ X \in \mathfrak{X}(\Sigma) : X \in M_1^{\perp}, \ X \lrcorner dM_1 \subset M_1 \}^{\perp} \supset \{e_7\}^{\perp}, \qquad C(M_2) \supset \{e_5\}^{\perp}.$$

Define $class(M_i) = rank(C(M_i)).$

Lemma 2.2. For any hyperbolic eqn, $class(M_i) = 6$ or 7; moreover, $class(M_i) = 6$ iff $U_i = 0$.

Name	$\{class(M_1), class(M_2)\}$
MA	{ 6 }
Goursat	$\{ 6, 7 \}$
generic	$\{7\}$

Table 1: Contact-invariant subclassification of hyperbolic eqns

In the generic case, neither M_1 nor M_2 have Cauchy characteristics!

Example 2.3.

- all MA: a(rt s²) + br + cs + dt + e = 0 where a, b, c, d, e are functions of x, y, z, p, q. (Includes wave, Liouville, Klein-Gordon eqns.)
- Goursat: r = f(s) where $f'' \neq 0$ (admits $g(y)\frac{\partial}{\partial z}$, so an infinite-dimensional symmetry group)
- generic: $s = \frac{1}{2}\sin(r)\cos(t)$, $3rt^3 + 1 = 0$.

Vranceanu (1940): relative invariants for hyperbolic eqns of the form r = f(x, y, z, p, q, s, t). Juras (1997): relative invariants for general hyperbolic eqns F = 0.

Theorem 2.4. (T. 2008) Suppose F = 0 is a hyp. eqn with $F_s \ge 0$ (at a point σ on F = 0). Let

$$I_{1} = i_{F}^{*}det \begin{pmatrix} F_{r} & F_{s} & F_{t} \\ \lambda_{+} & F_{t} & 0 \\ \left(\frac{F_{t}}{\lambda_{+}}\right)_{r} \left(\frac{F_{t}}{\lambda_{+}}\right)_{s} \left(\frac{F_{t}}{\lambda_{+}}\right)_{t} \end{pmatrix}, \quad I_{2} = i_{F}^{*}det \begin{pmatrix} 0 & F_{r} & \lambda_{+} \\ F_{r} & F_{s} & F_{t} \\ \left(\frac{F_{r}}{\lambda_{+}}\right)_{r} \left(\frac{F_{r}}{\lambda_{+}}\right)_{s} \left(\frac{F_{r}}{\lambda_{+}}\right)_{t} \end{pmatrix}.$$

where $\lambda_+ > 0$ satisfies $\lambda^2 - F_s \lambda + F_r F_t = 0$. Then we have the following classification of F = 0 (at σ):

Type	Contact-invariant classification
Monge-Ampère	$I_1 = I_2 = 0$
Goursat	exactly one of I_1 or I_2 is zero
generic	$I_1 I_2 \neq 0$

(Remark: I_i only depend on the locus.)

More General Examples:

- F(x, y, z, p, q, r, t) = 0: 6-6 or 7-7
- G(x, y, z, p, q, r, s) = 0: 6-6 or 6-7
- rt = f(x, y, z, p, q, s): 6-6 or 7-7 (iff $f_{ss} \neq 2$)

Definition 2.5. For hyperbolic equations: Wrt M_i , define

$$C(I_F, dM_i) = \{ X \in \mathfrak{X}(\Sigma) : X \in I_F^{\perp}, \ X \lrcorner dM_i \subset I_F \}^{\perp}.$$

We can use these contact-invariants to distinguish equivalence classes.

e.g. (Complete) derived flag of $C(I_F, dM_1)$ (and $C(I_F, dM_2)$) for:

- wave eqn $z_{xy} = 0$: 5, 4, 3
- Liouville eqn $z_{xy} = e^z$: 5, 4, 3, 1
- Klein-Gordon eqn $z_{xy} = z$: 5, 4, 3, 2, 1

Hence, these 3 equations are inequivalent.

3 Hyperbolic equations of generic type

Vranceanu (1937): initiated the study of this class of eqns

Lemma 3.1. Given a generic hyp. eqn F = 0, \exists coframe $\boldsymbol{\omega} = \{\omega^i\}_{i=1}^7$ on Σ s.t.

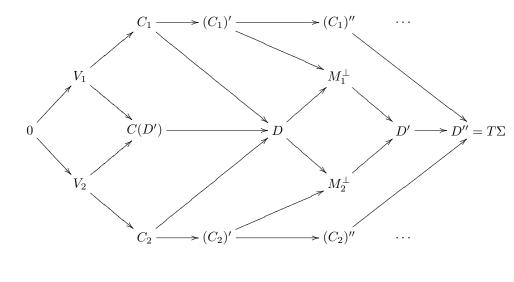
$$\begin{aligned} d\omega^1 &\equiv \omega^3 \wedge \omega^6 + \omega^2 \wedge \omega^4 & \mod \{\omega^1\} \\ d\omega^2 &\equiv \omega^4 \wedge \omega^5 + \omega^3 \wedge \omega^7 & \mod \{\omega^1, \omega^2\} \\ d\omega^3 &\equiv \omega^6 \wedge \omega^7 + \epsilon \omega^2 \wedge \omega^5 & \mod \{\omega^1, \omega^3\} \\ d\omega^4 &\equiv \epsilon \omega^5 \wedge \omega^6 & \mod \{\omega^1, \omega^2, \omega^4\} \\ d\omega^5 &\equiv 0 & \mod \{\omega^1, \omega^2, \omega^4, \omega^5\} \\ d\omega^6 &\equiv -\omega^4 \wedge \omega^7 & \mod \{\omega^1, \omega^3, \omega^6\} \\ d\omega^7 &\equiv 0 & \mod \{\omega^1, \omega^3, \omega^6, \omega^7\} \end{aligned}$$

where $\epsilon = sgn(I_1I_2) = \pm 1$ is a contact-invariant, and

$$I_F = \{\omega^1, \omega^2, \omega^3\}, \quad I_F^{(1)} = \{\omega^1\}, \quad M_1 = \{\omega^1, \omega^2\}, \quad M_2 = \{\omega^1, \omega^3\}, \\ C(I_F, dM_1) = \{\omega^1, \omega^2, \omega^3, \omega^4, \omega^5\}, \quad C(I_F, dM_2) = \{\omega^1, \omega^2, \omega^3, \omega^6, \omega^7\}, \\ C(I_F, dM_1)^{(1)} = \{\omega^1, \omega^2, \omega^4, \omega^5\}, \quad C(I_F, dM_2)^{(1)} = \{\omega^1, \omega^3, \omega^6, \omega^7\}, \\ C(I_F, dM_1)^{(2)} = \{\omega^4, \omega^5\}, \quad C(I_F, dM_2)^{(2)} = \{\omega^6, \omega^7\}$$

Remark 3.2. $C(I_F, dM_i)^{(2)}$ may or may not be Frobenius.

We have the following picture for the vector distributions. A (path of) directed arrow(s) indicates inclusion. Write $C_i = \{X \in D : [X, D] \subset M_i^{\perp}\}$.



$$rk:$$
 0 1 2 3 4 5 6 7

Cartan equivalence problem: $\phi \in Contact(\Sigma, \overline{\Sigma})$ iff $\phi^* \overline{\omega} = g \omega$ for some $g : \Sigma \to G$.

• Structure group: $G = G^0 \rtimes D_8$, where

$$G^{0} = \begin{cases} \begin{pmatrix} a_{1}^{2} & 0 & 0 & & & \\ a_{1}a_{2} & a_{1} & 0 & & & \\ \epsilon a_{1}a_{3} & 0 & a_{1} & & & \\ & & & a_{1} & 0 & & \\ & & & & a_{3} & 1 & & \\ & & & & & a_{1} & 0 \\ & & & & & a_{2} & 1 \end{pmatrix} : a_{1} > 0; a_{2}, a_{3} \in \mathbb{R}$$

where S = diag(-1, 1, -1, -1, -1, 1, -1) and $D_8 = \langle R, S : R^4 = S^2 = SRSR = 1 \rangle$

- Can always reduce the structure group dimension by at least one.
- Either we arrive at an $\{e\}$ -structure on Σ or (since $\mathfrak{g}^{(1)} = 0$) we arrive at an $\{e\}$ -structure on $\Sigma \times G_{\Gamma}$, where $dim(G_{\Gamma}) \leq 2$.
- Since $dim(Aut(\Theta)) = dim(M) rank(\Theta) \ge 0$, the maximally symmetric model has ≤ 9 -dim. symmetry.

Theorem 3.3. The (contact) sym. grp of any generic hyp. eqn has dim. ≤ 9 .

FACT: Upper bound is realized, but not uniquely.

OPEN QUESTION: For these max. sym. models, it turns out that $C(I_F, dM_i)^{(2)}$ are both Frobenius (hence, the eqns are Darboux integrable). However, this is NOT sufficient to characterize these equations! (I have examples of generic hyperbolic structures with 7 and 8-dim. symmetry with the same property.) What conditions suffice?

4 Maximally symmetric models

All torsion coefficients must be *constant*. This leads to (inequivalent) structures which depend on parameters $(\epsilon, m) \in \{\pm 1\} \times (0, 1]$. These structure eqns can be integrated and this leads to a parametrization of the surfaces: $\Sigma : (x, y, z, p, q, v, w) \mapsto J^2$.

$$r = -\frac{1}{3}(\epsilon m w^3 + v^3), \qquad s = -\frac{1}{2}(\epsilon m^2 w^2 - v^2), \qquad t = -(\epsilon m^3 w + v).$$

Write $\alpha = 1 - \epsilon a$, where $a = m^4$.

Theorem 4.1. Normal forms for contact-equiv. classes of max. sym. generic hyperbolic PDE are:

$$\begin{aligned} \alpha &= 0: & rt - s^2 - \frac{t^4}{12} = 0. & (contact \ equivalent \ to \ 3rt^3 + 1 = 0) \\ \alpha &\in (0, 1) \cup (1, 2]: & (2 - \alpha)^2 (2s - t^2)^3 + (1 - \alpha)(3r - 6st + 2t^3)^2 = 0 \end{aligned}$$

Example 4.2. Any equation of the form F(r, s, t) = 0 admits the symmetries

$$X_1 = \frac{\partial}{\partial x}, \qquad X_2 = \frac{\partial}{\partial y}, \qquad X_3 = \frac{\partial}{\partial z}, \qquad X_4 = x\frac{\partial}{\partial z} \qquad X_5 = y\frac{\partial}{\partial z}, \qquad X_6 = x\frac{\partial}{\partial x} + y\frac{\partial}{\partial y} + 2z\frac{\partial}{\partial z}$$

The equation $3rt^3 + 1 = 0$ admits

$$X_7 = xy\frac{\partial}{\partial z}, \qquad X_8 = 2y\frac{\partial}{\partial y} + 3z\frac{\partial}{\partial z}, \qquad X_9 = x^2\frac{\partial}{\partial x} + xz\frac{\partial}{\partial z},$$

For $\alpha \neq 0$, we have the symmetries

$$X_7 = y\frac{\partial}{\partial y} + 3z\frac{\partial}{\partial z}, \qquad X_8 = x\frac{\partial}{\partial y} - \frac{1}{2}y^2\frac{\partial}{\partial z}, \qquad X_9 = x^2\frac{\partial}{\partial x} + xy\frac{\partial}{\partial y} + \left(xz - \frac{1}{6}y^3\right)\frac{\partial}{\partial z}$$

NOTE: Independent of α !

Theorem 4.3. There are exactly two (isomorphism classes of) contact symmetry algebras for maximally symmetric generic hyperbolic equations. These are both contact-equivalent to projectable point symmetry algebras. Abstractly,

$$\mathfrak{h}_{\delta} \cong \mathfrak{gl}(2,\mathbb{R}) \ltimes \mathfrak{n}_{\delta}, \quad \delta = 0,1$$

where the brackets on the nilradical \mathfrak{n}_{δ} are:

		e_1	e_2	e_3	e_4	e_5
\mathfrak{n}_δ :	e_1	•	•	•	e_2	δe_4
	e_2		•	•	•	•
	e_3			•	•	•
	e_4				•	e_3
	e_5					

5 Degenerations

The 9-dim. symmetry algebra \mathfrak{h}_1 is in fact a maximal parabolic subalgebra of (the non-compact real form) \mathfrak{g}_2 . (Delete the long root in the Dynkin diagram.) \mathfrak{h}_0 is *not* the other parabolic.

Recall the symmetry algebra in the cases $\alpha \neq 0$ are independent of α . Hence, equation degenerations automatically inherit \mathfrak{h}_1 as a symmetry subalgebra. (The symmetry vector fields do not degenerate.)

- $\alpha \to 0$: Get $F = 4(2s t^2)^3 + (3r 6st + 2t^3)^2 = 9r^2 + 12t^2(rt s^2) + 32s^3 36rst = 0$. (*) This is a *parabolic* equation and has G_2 symmetry. [Yamaguchi; also alluded to in Cartan's 5-variables paper] The additional 5 symmetries appear to be genuine contact symmetries.
- $\alpha \to 2$: $F = 3r 6st + 2t^3 = 0$. Here, $\Delta = F_r F_t \frac{1}{4}F_s^2 = -9(2s t^2)$ on the equation F = 0. It is elliptic / hyperbolic / parabolic if the sign of $2s t^2$ is -/ + /0 respectively. In the elliptic / hyperbolic cases (i.e. when $2s t^2 \neq 0$), the symmetry algebra stays 9-dimensional. In the parabolic case, this yields the system

$$r = \frac{t^3}{3}, \quad s = \frac{t^2}{2}$$

which has G_2 symmetry (5-variables paper). This is a proper invariant submanifold of (*) under the G_2 -action.

• $\alpha \to 1$: get $s = \frac{t^2}{2}$, which is hyperbolic 6-7; the symmetry algebra is now infinite-dimensional since it possesses the symmetry $f(x)\partial_z$.

QUESTIONS:

- 1. Is the subalgebra \mathfrak{h}_0 distinguished in any natural way? (Is it a subalgebra of \mathfrak{g}_2 ? Is it the parabolic of some other semisimple Lie algebra?)
- 2. Is there a simple, direct proof that the above degenerations have G_2 symmetry? Deeper reason for why this is happening?

For further details, see:

The, D., Contact geometry of hyperbolic equations of generic type. SIGMA 4 (2008), 058, 52 pp. http://arxiv.org/abs/0804.1559