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Contact–invariant classification of 2nd order scalar PDE in the plane:

F (x, y, z, zx, zy, zxx, zxy, zyy) = 0
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elliptic parabolic hyperbolic
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Monge-Ampere Goursat generic

WARNING: For this lecture, drop whatever preconceived notion you have of “hyperbolic Goursat” or “hyperbolic
generic”: there is unfortunately an abuse of terminology in the literature. Refer to page 3 for defn here.

1 Contact equivalence

We’ll work locally and in C∞ category. Consider

F (x, y, z, zx, zy, zxx, zxy, zyy) = 0

Work in J2(R2,R) : (x, y, z, p, q, r, s, t) with C(2) = {θ1, θ2, θ3}.

θ1 = dz − pdx− qdy, θ2 = dp− rdx− sdy, θ3 = dq − sdx− tdy.

Parametrization of F = 0: iF : Σ7 → J2(R2,R). Assume: iF is maximal rank & (Fr, Fs, Ft) 6= 0⇒ can loc. solve
F = 0 for one of r, s, t. Define:

IF = i∗F (C(2)) = {ω1, ω2, ω3}.

Fact: There is a 1-1 correspondence between local solutions of F = 0 and local integral manifolds of IF (satisfying
an independence condition).

Definition 1.1. F = 0 and F̄ = 0 (with iF̄ : Σ̄ → J2(R2,R)) are contact-equivalent if ∃ local diffeo. φ : Σ → Σ̄
such that φ∗IF̄ = IF . A contact symmetry is a self-equivalence.

Remark 1.2. More precisely, this is internal contact-equivalence. External contact-equivalence refers to ρ ∈
Diff loc.(J2(R2,R)) preserving C(2) which restricts to a local diffeomorphism ρ̃ : iF (Σ) → iF̄ (Σ̄). Under our as-
sumptions on iF , iF̄ , these notions are in fact equivalent. [Anderson, Kamran, Olver]
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Define a symmetric C∞(Σ)-bilinear form 〈·, ·〉 (Gardner tensor) on IF , namely

〈ϕ,ψ〉V olΣ := dϕ ∧ dψ ∧ ω1 ∧ ω2 ∧ ω3, ∀ϕ,ψ ∈ IF .

Since ker(i∗F ) = {dF}, this definition is equivalent to

〈ϕ,ψ〉p(V olJ2)iF (p) := (dϕ̃ ∧ dψ̃ ∧ θ1 ∧ θ2 ∧ θ3 ∧ dF )iF (p)

where ϕ̃ and ψ̃ are any forms such that ϕ = i∗F ϕ̃ and ψ = i∗F ψ̃.

e.g. For 〈ω2, ω2〉, note dθ2 = dx ∧ dr + dy ∧ ds, and

dθ2 ∧ dθ2 ∧ θ1 ∧ θ2 ∧ θ3 ∧ dF = 2dx ∧ dr ∧ dy ∧ ds ∧ dz ∧ dp ∧ dq ∧ Ftdt = FtV olJ2

Wrt some V olJ2 , we have

(〈ωα, ωβ〉)p =

 0 0 0
0 Ft − 1

2Fs
0 − 1

2Fs Fr


iF (p)

.

Since (Fr, Fs, Ft) 6= 0, 〈·, ·〉 has either rank 1 or 2. Defining

∆ = i∗F

„
FrFt −

1

4
Fs

2

«
,

we have the following (pointwise) mutually exclusive cases:

elliptic parabolic hyperbolic
∆(p) > 0 ∆(p) = 0 ∆(p) < 0

Since d and pullbacks commute, this classification is contact-invariant.

2 Hyperbolic eqns: Monge–Ampère, Goursat, generic

Hyperbolic case: ∃ pair of rank 2 maximally isotropic subsystems

M1 = {ω1, ω2}, M2 = {ω1, ω3} of IF = {ω1, ω2, ω3}

By a choice of volume form,

(〈ωα, ωβ〉)p =

 0 0 0
0 0 1
0 1 0

 ,

which is equivalent to

dω1 ≡ 0
dω2 ≡ ω4 ∧ ω5

dω3 ≡ ω6 ∧ ω7
mod IF , with ω1 ∧ ... ∧ ω7 6= 0

Theorem 2.1 (Hyperbolic structure equations). Given any hyperbolic equation F = 0, there is an associated coframe
ω = {ωi}7i=1 on Σ such that

1. IF = {ω1, ω2, ω3}, M1 = {ω1, ω2}, M2 = {ω1, ω3}

2. We have the structure equations

dω1 ≡ ω3 ∧ ω6 + ω2 ∧ ω4 mod {ω1}
dω2 ≡ ω4 ∧ ω5 + U1ω

3 ∧ ω7 mod {ω1, ω2}
dω3 ≡ ω6 ∧ ω7 + U2ω

2 ∧ ω5 mod {ω1, ω3}
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Let’s examine Cauchy characteristics of M1 and M2. Let {ei} be dual to {ωi}. Then

C(M1) = {X ∈ X(Σ) : X ∈M⊥1 , XydM1 ⊂M1}⊥ ⊃ {e7}⊥, C(M2) ⊃ {e5}⊥.

Define class(Mi) = rank(C(Mi)).

Lemma 2.2. For any hyperbolic eqn, class(Mi) = 6 or 7; moreover, class(Mi) = 6 iff Ui = 0.

Name {class(M1), class(M2)}
MA { 6 }

Goursat { 6, 7 }
generic {7 }

Table 1: Contact-invariant subclassification of hyperbolic eqns

In the generic case, neither M1 nor M2 have Cauchy characteristics!

Example 2.3.

• all MA: a(rt− s2) + br+ cs+dt+ e = 0 where a, b, c, d, e are functions of x, y, z, p, q. (Includes wave, Liouville,
Klein–Gordon eqns.)

• Goursat: r = f(s) where f ′′ 6= 0 (admits g(y) ∂∂z , so an infinite-dimensional symmetry group)

• generic: s = 1
2 sin(r) cos(t), 3rt3 + 1 = 0.

Vranceanu (1940): relative invariants for hyperbolic eqns of the form r = f(x, y, z, p, q, s, t).
Juras (1997): relative invariants for general hyperbolic eqns F = 0.

Theorem 2.4. (T. 2008) Suppose F = 0 is a hyp. eqn with Fs ≥ 0 (at a point σ on F = 0). Let

I1 = i∗F det

 Fr Fs Ft
λ+ Ft 0(
Ft

λ+

)
r

(
Ft

λ+

)
s

(
Ft

λ+

)
t

 , I2 = i∗F det

 0 Fr λ+

Fr Fs Ft(
Fr

λ+

)
r

(
Fr

λ+

)
s

(
Fr

λ+

)
t

 .

where λ+ > 0 satisfies λ2 − Fsλ+ FrFt = 0. Then we have the following classification of F = 0 (at σ):

Type Contact-invariant classification
Monge–Ampère I1 = I2 = 0

Goursat exactly one of I1 or I2 is zero
generic I1I2 6= 0

(Remark: Ii only depend on the locus.)

More General Examples:

• F (x, y, z, p, q, r, t) = 0: 6-6 or 7-7

• G(x, y, z, p, q, r, s) = 0: 6-6 or 6-7

• rt = f(x, y, z, p, q, s): 6-6 or 7-7 (iff fss 6= 2)

Definition 2.5. For hyperbolic equations: Wrt Mi, define

C(IF , dMi) = {X ∈ X(Σ) : X ∈ I⊥F , XydMi ⊂ IF }⊥.

We can use these contact-invariants to distinguish equivalence classes.

e.g. (Complete) derived flag of C(IF , dM1) (and C(IF , dM2)) for:

• wave eqn zxy = 0: 5, 4, 3

• Liouville eqn zxy = ez: 5, 4, 3, 1

• Klein–Gordon eqn zxy = z: 5, 4, 3, 2, 1

Hence, these 3 equations are inequivalent.
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3 Hyperbolic equations of generic type

Vranceanu (1937): initiated the study of this class of eqns

Lemma 3.1. Given a generic hyp. eqn F = 0, ∃ coframe ω = {ωi}7i=1 on Σ s.t.

dω1 ≡ ω3 ∧ ω6 + ω2 ∧ ω4 mod {ω1}
dω2 ≡ ω4 ∧ ω5 + ω3 ∧ ω7 mod {ω1, ω2}
dω3 ≡ ω6 ∧ ω7 + εω2 ∧ ω5 mod {ω1, ω3}
dω4 ≡ εω5 ∧ ω6 mod {ω1, ω2, ω4}
dω5 ≡ 0 mod {ω1, ω2, ω4, ω5}
dω6 ≡ −ω4 ∧ ω7 mod {ω1, ω3, ω6}
dω7 ≡ 0 mod {ω1, ω3, ω6, ω7}

where ε = sgn(I1I2) = ±1 is a contact-invariant, and

IF = {ω1, ω2, ω3}, I
(1)
F = {ω1}, M1 = {ω1, ω2}, M2 = {ω1, ω3},

C(IF , dM1) = {ω1, ω2, ω3, ω4, ω5} C(IF , dM2) = {ω1, ω2, ω3, ω6, ω7}
C(IF , dM1)(1) = {ω1, ω2, ω4, ω5} C(IF , dM2)(1) = {ω1, ω3, ω6, ω7}
C(IF , dM1)(2) = {ω4, ω5} C(IF , dM2)(2) = {ω6, ω7}

Remark 3.2. C(IF , dMi)(2) may or may not be Frobenius.

We have the following picture for the vector distributions. A (path of) directed arrow(s) indicates inclusion.
Write Ci = {X ∈ D : [X,D] ⊂M⊥i }.

C1
//

""EEEEEEEEEEEEEEEEEEEEEE (C1)′ //

((QQQQQQQQQQQQQQQ (C1)′′

##FFFFFFFFFFFFFFFFFFFFFF
· · ·

V1

<<zzzzzzzzz

""DDDDDDDDD M⊥1

""DDDDDDDD

0

@@��������

��======== C(D′) // D

=={{{{{{{{

!!CCCCCCCC D′ // D′′ = TΣ

V2

""DDDDDDDDD

<<zzzzzzzzz
M⊥2

<<zzzzzzzz

C2
//

<<yyyyyyyyyyyyyyyyyyyyyy
(C2)′ //

66mmmmmmmmmmmmmmm
(C2)′′

;;xxxxxxxxxxxxxxxxxxxxxx
· · ·

rk : 0 1 2 3 4 5 6 7

Cartan equivalence problem: φ ∈ Contact(Σ, Σ̄) iff φ∗ω̄ = gω for some g : Σ→ G.

• Structure group: G = G0 oD8, where

G0 =





a1
2 0 0

a1a2 a1 0
εa1a3 0 a1

a1 0
a3 1

a1 0
a2 1


: a1 > 0; a2, a3 ∈ R


where S = diag(−1, 1,−1,−1,−1, 1,−1) and D8 = 〈R,S : R4 = S2 = SRSR = 1〉
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• Can always reduce the structure group dimension by at least one.

• Either we arrive at an {e}-structure on Σ or (since g(1) = 0) we arrive at an {e}-structure on Σ × GΓ, where
dim(GΓ) ≤ 2.

• Since dim(Aut(Θ)) = dim(M)− rank(Θ) ≥ 0, the maximally symmetric model has ≤ 9-dim. symmetry.

Theorem 3.3. The (contact) sym. grp of any generic hyp. eqn has dim. ≤ 9.

FACT: Upper bound is realized, but not uniquely.

OPEN QUESTION: For these max. sym. models, it turns out that C(IF , dMi)(2) are both Frobenius (hence, the
eqns are Darboux integrable). However, this is NOT sufficient to characterize these equations! (I have examples of
generic hyperbolic structures with 7 and 8-dim. symmetry with the same property.) What conditions suffice?

4 Maximally symmetric models

All torsion coefficients must be constant. This leads to (inequivalent) structures which depend on parameters (ε,m) ∈
{±1} × (0, 1]. These structure eqns can be integrated and this leads to a parametrization of the surfaces: Σ :
(x, y, z, p, q, v, w) 7→ J2.

r = −1
3

(εmw3 + v3), s = −1
2

(εm2w2 − v2), t = −(εm3w + v).

Write α = 1− εa, where a = m4.

Theorem 4.1. Normal forms for contact-equiv. classes of max. sym. generic hyperbolic PDE are:

α = 0 : rt− s2 − t4

12
= 0. (contact equivalent to 3rt3 + 1 = 0)

α ∈ (0, 1) ∪ (1, 2] : (2− α)2(2s− t2)3 + (1− α)(3r − 6st+ 2t3)2 = 0

Example 4.2. Any equation of the form F (r, s, t) = 0 admits the symmetries

X1 =
∂

∂x
, X2 =

∂

∂y
, X3 =

∂

∂z
, X4 = x

∂

∂z
X5 = y

∂

∂z
, X6 = x

∂

∂x
+ y

∂

∂y
+ 2z

∂

∂z
.

The equation 3rt3 + 1 = 0 admits

X7 = xy
∂

∂z
, X8 = 2y

∂

∂y
+ 3z

∂

∂z
, X9 = x2 ∂

∂x
+ xz

∂

∂z
,

For α 6= 0, we have the symmetries

X7 = y
∂

∂y
+ 3z

∂

∂z
, X8 = x

∂

∂y
− 1

2
y2 ∂

∂z
, X9 = x2 ∂

∂x
+ xy

∂

∂y
+
(
xz − 1

6
y3

)
∂

∂z
.

NOTE: Independent of α!

Theorem 4.3. There are exactly two (isomorphism classes of) contact symmetry algebras for maximally symmetric
generic hyperbolic equations. These are both contact-equivalent to projectable point symmetry algebras. Abstractly,

hδ ∼= gl(2,R) n nδ, δ = 0, 1

where the brackets on the nilradical nδ are:

nδ :

e1 e2 e3 e4 e5

e1 · · · e2 δe4

e2 · · · ·
e3 · · ·
e4 · e3

e5 ·
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5 Degenerations

The 9-dim. symmetry algebra h1 is in fact a maximal parabolic subalgebra of (the non-compact real form) g2. (Delete
the long root in the Dynkin diagram.) h0 is not the other parabolic.

Recall the symmetry algebra in the cases α 6= 0 are independent of α. Hence, equation degenerations automatically
inherit h1 as a symmetry subalgebra. (The symmetry vector fields do not degenerate.)

• α→ 0: Get F = 4(2s− t2)3 + (3r− 6st+ 2t3)2 = 9r2 + 12t2(rt− s2) + 32s3− 36rst = 0. (*) This is a parabolic
equation and has G2 symmetry. [Yamaguchi; also alluded to in Cartan’s 5-variables paper] The additional 5
symmetries appear to be genuine contact symmetries.

• α → 2: F = 3r − 6st + 2t3 = 0. Here, ∆ = FrFt − 1
4F

2
s = −9(2s − t2) on the equation F = 0. It is elliptic /

hyperbolic / parabolic if the sign of 2s− t2 is −/+ /0 respectively. In the elliptic / hyperbolic cases (i.e. when
2s− t2 6= 0), the symmetry algebra stays 9-dimensional. In the parabolic case, this yields the system

r =
t3

3
, s =

t2

2

which has G2 symmetry (5-variables paper). This is a proper invariant submanifold of (*) under the G2-action.

• α→ 1: get s = t2

2 , which is hyperbolic 6-7; the symmetry algebra is now infinite-dimensional since it possesses
the symmetry f(x)∂z.

QUESTIONS:

1. Is the subalgebra h0 distinguished in any natural way? (Is it a subalgebra of g2? Is it the parabolic of some
other semisimple Lie algebra?)

2. Is there a simple, direct proof that the above degenerations have G2 symmetry? Deeper reason for why this is
happening?

For further details, see:

The, D., Contact geometry of hyperbolic equations of generic type. SIGMA 4 (2008), 058, 52 pp.
http://arxiv.org/abs/0804.1559

6


