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Motivation

Numerous examples of relations between differential
equations and conformal geometry:

e Most recent and intriguing (in particular in General
Relativity theory) see:

Fritelli 'S, Kozameh C, Newman E T,
(2001) “Differential geometry from differential
equations” Comm. Math. Phys. 223 383-408



Further references:

- Cartan E (1941) “La geometria de las ecuaciones
diferenciales de tercer orden” Rev. Mat. Hispano-

Amer. 4 1-31

- Cartan E (1910) “Les systemes de Pfaff a cing
variables et les equations aux derivees partielles
du second ordre” Ann. Sc. Norm. Sup. 27
109-192

- Chern S’ S (1940) “The geometry of the differential
111

equations y"" = F(x,y,y’,y"”)" Sci. Rep. Nat.
Tsing Hua Univ. 4 97-111

- Hilbert D (1912) “Ueber den Begriff der Klasse
von Differentialgleichungen” Mathem. Annalen
Bd. 73, 95-108

- Nurowski P, Sparling G A J (2003) “Three
dimensional Cauchy-Riemann structures and
second order ordinary differential equations”

Class. (). Grav. 20, 4995-5016

- Wuenschmann K, (1905) “Ueber Beruhrungsbedin-
gungen bei Differentialgleichungen’, Dissertation,
Greifswald



e For a review including

FKN’s system of two PDEs corresponding to
4-dimensional conformal Lorentzian geometries

K Wuenschmann's relations between 3rd
order ODEs considered modulo conatct
transformations and 3-dimensional Lorentzian
geometries

E Cartan's relations between 3rd order ODEs
considered modulo point transformations and
3-dimensional Einstein-Weyl geometries

relations between 2nd order ODEs considered
modulo  point transformations and 4-
dimensional Feffermann-like geometries of

signature (++— -)

relations between equations z' = F'(z,y,y’,y", 2)
and 5-dimensional conformal geometry of signa-

ture (+++--)

see: Nurowski P, (2004) “Differential equations and
conformal structues” math.DG/0406400




Equations with integral-free solutions

Equation 2’ = F(z,y,y',y", z) is a special case of
an equation

G(xayay,7"'7y(m)7zyzl,...,z(k)> =0 (H)

for two real functions y = y(x) and z = z(x) of one
variable z.

Definition

Equation (H) has integral-free solutions iff its general
solution can be written as

r = x(t, wt),w (t), .., w"(t))
y = y(t,wt),w'(t),.., w¢)
z = z(t,w(t),w (t),...,w(t))

where w = w(t) is an arbitrary sufficiently smooth
function of one variable.

Example

y—2'=0 —= xz=t, y=w'(t), z=uwt).



Equations (H) of the first order

2 = F(z,9,9,2) (M)

Cartan’s treatment:

Let p = vy’. Then on the space J parametrized by
(z,y,p,z) consider two 1-forms

w!=dz — F(z,y,p, 2)dz
w? = dy — pdz.

Clearly, every solution of (M) is a curve

in J on which w! and w? vanish.
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Suppose that there exists a (local) diffeomorphism
¢: (z,y,p,2) = (Z,7,D, Z) such that

dy — pdz = aw! + Bw?
dp — zdz = yw' + dw?

with «, 3, =, 0 functions on J satisfying A =
ad — By # 0. In such case

wt=A"1[§(dy — pdz) — B(dp — zdZ) ]
w? = A" [—y(dg — pdT) + a(dp — zdZ) |,
Thus, taking

r=t, y=w(t), p=w(t), z=uw"(t)

we construct a curve in J on which the forms w! and
w? identically vanish. Now, the inverse of ¢ which
gives © = z(Z, ¥y, p, Z), etc., provides

r=x(t,w(t),w (t),w"(t))
Yy = y(ta w(t>7 w,(t)v w”(t)>
z=z(t,w(t), w'(t), w"(t)),

which is an integral-free solution of equation (/).



Consider equation

Its corrgesponding forms are

w! = dz — p?dzx
w? = dy — pdx

The change of variables

x—%z,
y:?(zf D),
2 = 32%% — Pz
p==z

+ v,

brings them to the form

w? = —1(dp — zdz).

w! = dy — pdz — z(dp — zdz),

The integral-free solution:

z = sw'(t)

Yy = %tw”(t) — w'(¢t)

z = st?w" (t) — tw'(t) + w(t)




Equivalence of equations (/)

Definition

Two equations

2 =F(z,y,y, 2) and ' =F(z,y,y,2)

represented by the respective forms

w!=dz — F(z,y,p, 2)dz
w? = dy — pdz.

w!'=dz — F(z,y,p,z)dz
w? = dy — pdz.

are (locally) equivalent iff there exists a (local)
diffeomorphism ¢ : (x,y,p,z) — (Z,y,p,Z) such
that

P*? = yw! + dw?.




Theorem (Monge)

All equations z' = F(x,y,y’,z) split onto two
nonequivalent classes. All the equations within each
of the two classes are locally equivalent. In the first
class their forms w! and w? can be always brought
to the form

w! = dz, w? = dy — pdz

in the second class one can always achieve

w! = dy — pdz, w? = dp — zdz

Corollary (Monge)
All equations 2z’ = F(x,y,vy’,z) have integral-free
solutions.

In the first case take:

zZ =const, T =t, y = w(t), p=w'(t).

This brings the general solution to the form

r=z(t,w,w), y=yt,ww), z==z2(tw,w).

In the second case the solution depends also on w”.
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Hilbert equation

In 1912 Hilbert obsereved that equation

Z’ — (y//)2

is not in the class of equations (H) which have
integral-free solutions. A bit earlier Cartan in
his famous ‘5-variables’ paper implicitely solved the
equivalence problem for more general equations

/

? = F(z,y,y,9y", 2) (2M)

Each equation (2M/) may be represented by forms

wl!=dz — F(z,y,p,q,2)dz
w? = dy — pdz
w3 = dp — qdz

on a b-dimensional manifold parametrized by
(z,y,p=vy",q9=1y",2).
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Equivalence of equations (21/)

Definition

Two equations

=/

Z'=F(z,y,y,y", 2) and 7 = 7|

X

Y

Y

=l =l =

YL,y , <

)

represented by the respective forms

w!' =dz — F(z,y,p,q,2)dx

w? = dy — pdx
w> =dp — qdx
1:dZ—F(£E‘ gpa@a_>d
@2:d — pdT
w3 = dp — qgdz

are (locally) equivalent iff there exists a (local)

diffeomorphism ¢ : (x,y,p,q,2) —

that

¢>k

e a B v e
Pl=15 € ) W
0? K Wt UV w3
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Solution for equivalence problem for
egs. 2' = F(x,y,y,y", 2)

Theorem (Cartan)

e There are two main branches of nonequivalent
equations 2z’ = F(x,y,v,y", 2). They are
distinguished by vanishing or not of the relative
invariant F,,, ¢ = vy".

o If F,, = 0 then such equations have integral-free
solutions.

e There are nonequivalent equations among the
equations having I, # 0. All these equations
are beyond the class of equations with integral-
free solutions.
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Equations 2’ = F(z,y,y,y", z) with
F // /! # O

Theorem (Cartan)

An equivalence class of equations 2 =
F(z,y,y,y", z) with F,nn # 0 uniquely defines
a 14-dimensional mamfold P and a preferred coframe
(91, (92, 93, 94, (95, Ql, QQ, 93, 94, 95, QG, Q7, Qg, Qg) on
it such that

dot = 61 A (291 + Q) + 02 A Qo + 03 A 64
do? = 0L A Q3 + 0% A (Qq + 2Q4) + 03 A 0°

d94:91/\Q7+§93/\96+94/\Ql+95/\92
do® = 02 A Q7 —30° A Q5+ 0* A Qg+ 60° A Qy.

do° =0 ' AQs + 02 AN Qg+ 03 A (21 + Qq) +0* NG

The system provides all the local invariants for the
equivalence class of equations satisfying Fi,, # 0.
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Note that the above theorem implies formulae for the
differentials of the forms €2, p=1,2,...,9.

For example, we have

dQy = Q3 A Qo+ 36° A Qr — 204 A Qs+

£0° A Qg + 01 A Qs + 200t A 67+

boOL A 03 + b30% N 63+

a291 A\ (94 = CL391 A\ (95 = CL392 A\ 94 = CL492 AN 95.

where as, as, a4, bs, b3, co are functions on P
uniquely defined by the equivalence class of equations
(2M'). The other differentials, when decomposed on
the basis 6°, Q,,, define more functions, which Cartan
denoted by ai, a9, a3, a4, as, by, ba, b3, ba, c1, co,
C3, 51, 52, e, hl, h2, h3, h4, h5, h6, k’l, k2, k3.
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If one is given two equations 2’ = F(x,y,y’,y", 2)

and 2’ = F(z,y,y',y",Z) then there exists a local

realizing

o*(@0') = aw! + pw? + yw?
d*(0?) dwl + ew? + Aw?
*(3) = kw! + pw? + vw?

iff there exists a diffeomorphism & : P — P between
the associated 14-dimensional manifolds P and P
such that

d*(0°) = ¢, d*(Q,) = Q,
for all © = 1,2,3,4,5 and © = 1,2,3,...,9. This,
in particular means that to realize the equivalence

between the equationss, the diffeomorphism ® must
also satisfy

(I)*(C_Ll) = ai, (I)*(Bl) = bl, (I)*(El) = C1, etc.

This gives severe algebraic (i.e. non-differential)
constraints on ® and, in generic cases, quickly leads
to the answer if the two equations are equivalent.
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We ask for those equivalence classes of equations

2= F(z,y,y",9y", z) which correspond to systems

with all the scalar invariants | aq, as, as, a4, as, by,
ba, bs, b4, c1, c2, 3, 01, 02, €, h1, ho, hs, hg, hs, he,
k1, ko, k3 | being constants |.

It follows that it is possible if and only if | all of them

are identically | equal to zero.

In this well defined case the system of the Theorem
can be understood as a system consisting of right
invariants forms (0%,Q),) on a l4-dimensional Lie
group. This group is simple and has indefinite Killing
form.

This identifies this group as a noncompact real form

G4 of the | exceptional group G5 |.

It follows that there is only one equivalence class of
equations corresponding to the system with all the
scalar invariants vanishing. It can be defined by the
function F' = ¢? associated with the Hilbert equation

Z’ — (y//)2.
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The system defines a curvature of a certain Cartan
go-valued connection.

P is a principal fibre bundle over J with the 9-
dimensional parabolic subgroup H of Gy as its
structure group.

On this fibre bundle the following matrix of 1-forms:

(_Ql — Q4 —QS —99 —%97 395 %QG 0 \
o1 Qq Qg %04 —%6° 0 104
2 1 55 1,3 1
2 53 2 2 1 55 1 ,4 1
29 20 29 1 gd 1 _1lgq
V3 V3 3t 0 V3 V3 V3
64 Qr 0 %96 —Qy Q9 Qg
9> 0 0 _ 2.0 Q o) 0
7 Vel 3 1 8
. 0 6° —g4 %03 — 92 o1 01+9
becomes a Cartan connection w with values in the

Lie algebra of Gb.

The curvature of this connection

‘measures’

R=dw+wAw

how much the equivalence class of
equations (2M/) is ‘distorted’ from the flat Hilbert
case corresponding to F' = ¢°.
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(3, 2)-signature conformal metric

Given equivalence «class of equation 2/ =

F(z,y,y',y", z) consider its corresponding bundle

P with the coframe
(«91,92,«93,«94,95,91,QQ,Q3,Q4,Q5,Q6,Q7,Qg,ﬂg).

Define a bilinear form

§ = 20105 — 26026* + 10°¢°

This form is degenerate on P and has signature
(3,2,0,0,0,0,0,0,0,0,0).

The 9 degenerate directions generate the vertical
space of P.
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Theorem

e The bilinear forms ¢ | transforms conformally

when Lie transported along any of the vertical
directions.

e |t descends to a well defined | conformal (3, 2)-

signature metric | on the 5-dimensional space J

on which the equation 2’ = F(x,y,vy’,y", 2) is
defined

e The | Cartan normal conformal connection | asso-
ciated with this conformal metric yields all the
invariant information about the equivalence class
of the equation

e This so(4, 3)-valued connection is reducible and,
after reduction, can be identified with the g2
Cartan connection w on P.
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It follows that the Hilbert equation has G5 as its
symmetry group.

/

Cartan knew that 2/ = F(z,y,y',y",2) is either

equivalent to the Hilbert equation or | its group

of transitive symmetries is at most | 7-dimensional.

The equations with 7-dimensional group of transitive
symmetries are among those equivalent to

Z, = F(y”), Wlth Fy”y” 7é 0.

For such F's the (3,2)-signature conformal metric
reads

g= 30(F”)4 [ dgdy — pdgdx | + | 4F(3)2 _ 3pl'p(4) ] dz2+

2 [-5(F")2FB) _4p'F(3)2 4 3/ p'"F(4) | dpdat

2 [15(F"")3 + 5q(F")2FB3) _4pFr(3)2 44’ p(3)2

sFF'F4) _ 3¢ F'"F(4) | dedzt

[—20(F”)4 4 10F’(F”)2F(3) 4 4(F’)2F(3)2 _ 3(F/)z1,4—1//1;1(4) ] dp2+
2 [=15F" (F'")3 1 20q(F")4 + 5F(F")2F3) _ 10qF'(F")2F(3) 1
aFF' F3)2 _ 4q(F2FB3)2 _3pp'p!'F(4) 4 3q(FN2F"F(4) | dpda+
[—30F(F'")3 1 30qF" (F'")3 — 2042(F'")4 — 10qF(F')2F(3)

102 P! (F2FB3) 4 ar2p(®)2 _ gqrp p(3)2 | 42(F2p(3)2_
sF2p"p(4) L 6qrF " F(4) _ 342(F2F"F(4) | 4s2.

It is always conformal to an Einstein metric § = e?'g

with the conformal factor T = T(q) satisfying

10(F"2 [ " — (Y2 ]~ 40F"FO)y! 4 177" F(4) _ 56F(3)2 — o,
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Cartan classified various types of nonequivalent

equations (2M) according to the | roots | of

U(2) = a12* + 4a23 + 6asz? + 4aysz + as,

where (a1, as,as,a4,as) are the scalar invariants
of the equation. This polynomial encodes

partial information of the | Weyl tensor | of the

associated conformal metric. In particular, the
well known invariant Iy = 6a3 — 8azay + 2a1as
of this polynomial is, modulo a numerical factor,

proportional to the | square of the Weyl tensor

c? = (O*r9C,,,, of the conformal metric.
Vanishing of Iy means that ¥ = ¥(z) has a root with

multiplicity no smaller than 3. | Our example above

corresponds to the situation when this multiplicity is
equal to 4. According to Cartan, all nonequivalent
equations for which W has quartic root are covered
by this example. In this example nonequivalent
equations are distinguished by the only nonvanishing
scalar invariant a5 to which the Weyl tensor of the
metric g is proportional. If as =const the equation
has 7-dimensional group of symmetries.



