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Motivation

Numerous examples of relations between di�erential

equations and onformal geometry:

� Most reent and intriguing (in partiular in General

Relativity theory) see:

Fritelli S, Kozameh C, Newman E T,

(2001) \Di�erential geometry from di�erential

equations" Comm. Math. Phys. 223 383-408
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Further referenes:

- Cartan E (1941) \La geometria de las euaiones

difereniales de terer orden" Rev. Mat. Hispano-

Amer. 4 1-31

- Cartan E (1910) \Les systemes de Pfa� a inq

variables et les equations aux derivees partielles

du seond ordre" Ann. S. Norm. Sup. 27

109-192

- Chern S S (1940) \The geometry of the di�erential

equations y

000

= F (x; y; y

0

; y

00

)" Si. Rep. Nat.

Tsing Hua Univ. 4 97-111

- Hilbert D (1912) \Ueber den Begri� der Klasse

von Di�erentialgleihungen" Mathem. Annalen

Bd. 73, 95-108

- Nurowski P, Sparling G A J (2003) \Three

dimensional Cauhy-Riemann strutures and

seond order ordinary di�erential equations"

Class. Q. Grav. 20, 4995-5016

- Wuenshmann K, (1905) \Ueber Beruhrungsbedin-

gungen bei Di�erentialgleihungen", Dissertation,

Greifswald
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� For a review inluding

{ FKN's system of two PDEs orresponding to

4-dimensional onformal Lorentzian geometries

{ K Wuenshmann's relations between 3rd

order ODEs onsidered modulo onatt

transformations and 3-dimensional Lorentzian

geometries

{ E Cartan's relations between 3rd order ODEs

onsidered modulo point transformations and

3-dimensional Einstein-Weyl geometries

{ relations between 2nd order ODEs onsidered

modulo point transformations and 4-

dimensional Fe�ermann-like geometries of

signature (++{ {)

relations between equations z

0

= F (x; y; y

0

; y

00

; z)

and 5-dimensional onformal geometry of signa-

ture (+++{ {)

see: Nurowski P, (2004) \Di�erential equations and

onformal strutues" math.DG/0406400
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Equations with integral-free solutions

Equation z

0

= F (x; y; y

0

; y

00

; z) is a speial ase of

an equation

G(x; y; y

0

; :::; y

(m)

; z; z

0

; :::; z

(k)

) = 0 (H)

for two real funtions y = y(x) and z = z(x) of one

variable x.

De�nition

Equation (H) has integral-free solutions i� its general

solution an be written as

x = x(t; w(t); w

0

(t); :::; w

(r)

(t))

y = y(t; w(t); w

0

(t); :::; w

(r)

(t))

z = z(t; w(t); w

0

(t); :::; w

(r)

(t))

where w = w(t) is an arbitrary suÆiently smooth

funtion of one variable.

Example

y � z

0

= 0 =) x = t; y = w

0

(t); z = w(t):
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Equations (H) of the �rst order

z

0

= F (x; y; y

0

; z) (M)

Cartan's treatment:

Let p = y

0

. Then on the spae J parametrized by

(x; y; p; z) onsider two 1-forms

!

1

= dz � F (x; y; p; z)dx

!

2

= dy � pdx.

Clearly, every solution of (M) is a urve

(t) = (x(t); y(t); p(t); z(t))

in J on whih !

1

and !

2

vanish.



6

Suppose that there exists a (loal) di�eomorphism

� : (x; y; p; z)! (�x; �y; �p; �z) suh that

d�y � �pd�x = �!

1

+ �!

2

d�p� �zd�x = !

1

+ Æ!

2

with �, �, , Æ funtions on J satisfying � =

�Æ � � 6= 0. In suh ase

!

1

= �

�1

[ Æ(d�y � �pd�x)� �(d�p� �zd�x) ℄

!

2

= �

�1

[�(d�y � �pd�x) + �(d�p� �zd�x) ℄,

Thus, taking

�x = t; �y = w(t); �p = w

0

(t); �z = w

00

(t)

we onstrut a urve in J on whih the forms !

1

and

!

2

identially vanish. Now, the inverse of � whih

gives x = x(�x; �y; �p; �z), et., provides

x = x(t; w(t); w

0

(t); w

00

(t))

y = y(t; w(t); w

0

(t); w

00

(t))

z = z(t; w(t); w

0

(t); w

00

(t)),

whih is an integral-free solution of equation (M).
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Consider equation

z

0

= (y

0

)

2

Its orrgesponding forms are

!

1

= dz � p

2

dx

!

2

= dy � pdx

The hange of variables

x =

1

2

�z,

y =

1

2

(�z�x� �p),

z =

1

2

�z�x

2

� �p�x+ �y,

p = �x

brings them to the form

!

1

= d�y � �pd�x� �x(d�p� �zd�x),

!

2

= �

1

2

(d�p� �zd�x).

The integral-free solution:

x =

1

2

w

00

(t)

y =

1

2

tw

00

(t)�

1

2

w

0

(t)

z =

1

2

t

2

w

00

(t)� tw

0

(t) + w(t)
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Equivalene of equations (M)

De�nition

Two equations

z

0

= F (x; y; y

0

; z) and �z

0

=

�

F (�x; �y; �y

0

; �z)

represented by the respetive forms

!

1

= dz � F (x; y; p; z)dx

!

2

= dy � pdx.

�!

1

= d�z �

�

F (�x; �y; �p; �z)d�x

�!

2

= d�y � �pd�x.

are (loally) equivalent i� there exists a (loal)

di�eomorphism � : (x; y; p; z) ! (�x; �y; �p; �z) suh

that

�

�

�!

1

= �!

1

+ �!

2

�

�

�!

2

= !

1

+ Æ!

2

.
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Theorem (Monge)

All equations z

0

= F (x; y; y

0

; z) split onto two

nonequivalent lasses. All the equations within eah

of the two lasses are loally equivalent. In the �rst

lass their forms !

1

and !

2

an be always brought

to the form

�!

1

= d�z;

�

!

2

= d�y � �pd�x

in the seond lass one an always ahieve

�!

1

= d�y � �pd�x;

�

!

2

= d�p� �zd�x .

Corollary (Monge)

All equations z

0

= F (x; y; y

0

; z) have integral-free

solutions.

In the �rst ase take:

�z =onst, �x = t, �y = w(t), �p = w

0

(t).

This brings the general solution to the form

x = x(t; w;w

0

), y = y(t; w; w

0

), z = z(t; w; w

0

).

In the seond ase the solution depends also on w

00

.
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Hilbert equation

In 1912 Hilbert obsereved that equation

z

0

= (y

00

)

2

is not in the lass of equations (H) whih have

integral-free solutions. A bit earlier Cartan in

his famous `5-variables' paper impliitely solved the

equivalene problem for more general equations

z

0

= F (x; y; y

0

; y

00

; z) (2M)

Eah equation (2M) may be represented by forms

!

1

= dz � F (x; y; p; q; z)dx

!

2

= dy � pdx

!

3

= dp� qdx

on a 5-dimensional manifold parametrized by

(x; y; p = y

0

; q = y

00

; z).
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Equivalene of equations (2M)

De�nition

Two equations

z

0

= F (x; y; y

0

; y

00

; z) and �z

0

=

�

F (�x; �y; �y

0

; �y

00

; �z)

represented by the respetive forms

!

1

= dz � F (x; y; p; q; z)dx

!

2

= dy � pdx

!

3

= dp� qdx

�!

1

= d�z �

�

F (�x; �y; �p; �q; �z)d�x

�!

2

= d�y � �pd�x

�!

3

= d�p� �qd�x

are (loally) equivalent i� there exists a (loal)

di�eomorphism � : (x; y; p; q; z)! (�x; �y; �p; �q; �z) suh

that

�

�

0

�

�!

1

�!

2

�!

2

1

A

=

0

�

� � 

Æ � �

� � �

1

A

0

�

!

1

!

2

!

3

1

A
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Solution for equivalene problem for

eqs. z

0

= F (x; y; y

0

; y

00

; z)

Theorem (Cartan)

� There are two main branhes of nonequivalent

equations z

0

= F (x; y; y

0

; y

00

; z). They are

distinguished by vanishing or not of the relative

invariant F

qq

, q = y

00

.

� If F

qq

� 0 then suh equations have integral-free

solutions.

� There are nonequivalent equations among the

equations having F

qq

6= 0. All these equations

are beyond the lass of equations with integral-

free solutions.
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Equations z

0

= F (x; y; y

0

; y

00

; z) with

F

y

00

y

00

6= 0

Theorem (Cartan)

An equivalene lass of equations z

0

=

F (x; y; y

0

; y

00

; z) with F

y

00

y

00

6= 0 uniquely de�nes

a 14-dimensional manifold P and a preferred oframe

(�

1

; �

2

; �

3

; �

4

; �

5

;


1

;


2

;


3

;


4

;


5

;


6

;


7

;


8

;


9

) on

it suh that

d�

1

= �

1

^ (2


1

+


4

) + �

2

^ 


2

+ �

3

^ �

4

d�

2

= �

1

^ 


3

+ �

2

^ (


1

+ 2


4

) + �

3

^ �

5

d�

3

= �

1

^ 


5

+ �

2

^ 


6

+ �

3

^ (


1

+


4

) + �

4

^ �

5

d�

4

= �

1

^ 


7

+

4

3

�

3

^ 


6

+ �

4

^ 


1

+ �

5

^ 


2

d�

5

= �

2

^ 


7

�

4

3

�

3

^ 


5

+ �

4

^ 


3

+ �

5

^ 


4

:

The system provides all the loal invariants for the

equivalene lass of equations satisfying F

qq

6= 0.
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Note that the above theorem implies formulae for the

di�erentials of the forms 


�

, � = 1; 2; :::; 9.

For example, we have

d


1

= 


3

^ 


2

+

1

3

�

3

^ 


7

�

2

3

�

4

^ 


5

+

1

3

�

5

^ 


6

+ �

1

^ 


8

+

3

8



2

�

1

^ �

2

+

b

2

�

1

^ �

3

+ b

3

�

2

^ �

3

+

a

2

�

1

^ �

4

+ a

3

�

1

^ �

5

+ a

3

�

2

^ �

4

+ a

4

�

2

^ �

5

.

where a

2

, a

3

, a

4

, b

2

, b

3

, 

2

are funtions on P

uniquely de�ned by the equivalene lass of equations

(2M). The other di�erentials, when deomposed on

the basis �

i

, 


�

, de�ne more funtions, whih Cartan

denoted by a

1

, a

2

, a

3

, a

4

, a

5

, b

1

, b

2

, b

3

, b

4

, 

1

, 

2

,



3

, Æ

1

, Æ

2

, e, h

1

, h

2

, h

3

, h

4

, h

5

, h

6

, k

1

, k

2

, k

3

.
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If one is given two equations z

0

= F (x; y; y

0

; y

00

; z)

and �z

0

=

�

F (�x; �y; �y

0

; �y

00

; �z) then there exists a loal

di�eomorphism � : (x; y; p; q; z) ! (�x; �y; �p; �q; �z)

realizing

�

�

(�!

1

) = �!

1

+ �!

2

+ !

3

�

�

(�!

2

) = Æ!

1

+ �!

2

+ �!

3

�

�

(�!

3

) = �!

1

+ �!

2

+ �!

3

i� there exists a di�eomorphism � : P !

�

P between

the assoiated 14-dimensional manifolds P and

�

P

suh that

�

�

(

�

�

i

) = �

i

; �

�

(

�




�

) = 


�

for all i = 1; 2; 3; 4; 5 and � = 1; 2; 3; :::; 9. This,

in partiular means that to realize the equivalene

between the equationss, the di�eomorphism � must

also satisfy

�

�

(�a

1

) = a

1

; �

�

(

�

b

1

) = b

1

; �

�

(�

1

) = 

1

; et:

This gives severe algebrai (i.e. non-di�erential)

onstraints on � and, in generi ases, quikly leads

to the answer if the two equations are equivalent.
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We ask for those equivalene lasses of equations

z

0

= F (x; y; y

0

; y

00

; z) whih orrespond to systems

with all the salar invariants a

1

, a

2

, a

3

, a

4

, a

5

, b

1

,

b

2

, b

3

, b

4

, 

1

, 

2

, 

3

, Æ

1

, Æ

2

, e, h

1

, h

2

, h

3

, h

4

, h

5

, h

6

,

k

1

, k

2

, k

3

being onstants .

It follows that it is possible if and only if all of them

are identially equal to zero.

In this well de�ned ase the system of the Theorem

an be understood as a system onsisting of right

invariants forms (�

i

;


�

) on a 14-dimensional Lie

group. This group is simple and has inde�nite Killing

form.

This identi�es this group as a nonompat real form

~

G

2

of the exeptional group G

2

.

It follows that there is only one equivalene lass of

equations orresponding to the system with all the

salar invariants vanishing. It an be de�ned by the

funtion F = q

2

assoiated with the Hilbert equation

z

0

= (y

00

)

2

:
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The system de�nes a urvature of a ertain Cartan

~

g

2

-valued onnetion.

P is a prinipal �bre bundle over J with the 9-

dimensional paraboli subgroup H of

~

G

2

as its

struture group.

On this �bre bundle the following matrix of 1-forms:

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

�

�


1

� 


4

�


8

�


9

�

1

p

3




7

1

3




5

1

3




6

0

�

1




1




2

1

p

3

�

4

�

1

3

�

3

0

1

3




6

�

2




3




4

1

p

3

�

5

0 �

1

3

�

3

�

1

3




5

2

p

3

�

3

2

p

3




5

2

p

3




6

0

1

p

3

�

5

�

1

p

3

�

4

�

1

p

3




7

�

4




7

0

2

p

3




6

�


4




2




9

�

5

0 


7

�

2

p

3




5




3

�


1

�


8

0 �

5

��

4

2

p

3

�

3

��

2

�

1




1

+ 


4

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

;

beomes a Cartan onnetion ! with values in the

Lie algebra of

~

G

2

.

The urvature of this onnetion R = d! + ! ^ !

`measures' how muh the equivalene lass of

equations (2M) is `distorted' from the at Hilbert

ase orresponding to F = q

2

.
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(3; 2)-signature onformal metri

Given equivalene lass of equation z

0

=

F (x; y; y

0

; y

00

; z) onsider its orresponding bundle

P with the oframe

(�

1

; �

2

; �

3

; �

4

; �

5

;


1

;


2

;


3

;


4

;


5

;


6

;


7

;


8

;


9

):

De�ne a bilinear form

~g = 2�

1

�

5

� 2�

2

�

4

+

4

3

�

3

�

3

This form is degenerate on P and has signature

(3; 2; 0; 0; 0; 0; 0; 0; 0; 0; 0).

The 9 degenerate diretions generate the vertial

spae of P .
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Theorem

� The bilinear forms ~g transforms onformally

when Lie transported along any of the vertial

diretions.

� It desends to a well de�ned onformal (3; 2)-

signature metri on the 5-dimensional spae J

on whih the equation z

0

= F (x; y; y

0

; y

00

; z) is

de�ned

� The Cartan normal onformal onnetion asso-

iated with this onformal metri yields all the

invariant information about the equivalene lass

of the equation

� This so(4; 3)-valued onnetion is reduible and,

after redution, an be identi�ed with the

~

g

2

Cartan onnetion ! on P .



20

It follows that the Hilbert equation has

~

G

2

as its

symmetry group.

Cartan knew that z

0

= F (x; y; y

0

; y

00

; z) is either

equivalent to the Hilbert equation or its group

of transitive symmetries is at most 7-dimensional.

The equations with 7-dimensional group of transitive

symmetries are among those equivalent to

z

0

= F (y

00

); with F

y

00

y

00

6= 0:

For suh F 's the (3; 2)-signature onformal metri

reads

g = 30(F

00

)

4

[ dqdy � pdqdx ℄ + [ 4F

(3)2

� 3F

00

F

(4)

℄ dz

2

+

2 [�5(F

00

)

2

F

(3)

� 4F

0

F

(3)2

+ 3F

0

F

00

F

(4)

℄ dpdz+

2 [15(F

00

)

3

+ 5q(F

00

)

2

F

(3)

� 4FF

(3)2

+ 4qF

0

F

(3)2

+

3FF

00

F

(4)

� 3qF

0

F

00

F

(4)

℄ dxdz+

[�20(F

00

)

4

+ 10F

0

(F

00

)

2

F

(3)

+ 4(F

0

)

2

F

(3)2

� 3(F

0

)

2

F

00

F

(4)

℄ dp

2

+

2 [�15F

0

(F

00

)

3

+ 20q(F

00

)

4

+ 5F (F

00

)

2

F

(3)

� 10qF

0

(F

00

)

2

F

(3)

+

4FF

0

F

(3)2

� 4q(F

0

)

2

F

(3)2

� 3FF

0

F

00

F

(4)

+ 3q(F

0

)

2

F

00

F

(4)

℄ dpdx+

[�30F (F

00

)

3

+ 30qF

0

(F

00

)

3

� 20q

2

(F

00

)

4

� 10qF (F

00

)

2

F

(3)

+

10q

2

F

0

(F

00

)

2

F

(3)

+ 4F

2

F

(3)2

� 8qFF

0

F

(3)2

+ 4q

2

(F

0

)

2

F

(3)2

�

3F

2

F

00

F

(4)

+ 6qFF

0

F

00

F

(4)

� 3q

2

(F

0

)

2

F

00

F

(4)

℄ dx

2

:

It is always onformal to an Einstein metri ĝ = e

2�

g

with the onformal fator � = �(q) satisfying

10(F

00

)

2

[ �

00

� (�

0

)

2

℄ � 40F

00

F

(3)

�

0

+ 17F

00

F

(4)

� 56F

(3)2

= 0:
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Cartan lassi�ed various types of nonequivalent

equations (2M) aording to the roots of

	(z) = a

1

z

4

+ 4a

2

z

3

+ 6a

3

z

2

+ 4a

4

z + a

5

;

where (a

1

; a

2

; a

3

; a

4

; a

5

) are the salar invariants

of the equation. This polynomial enodes

partial information of the Weyl tensor of the

assoiated onformal metri. In partiular, the

well known invariant I

	

= 6a

2

3

� 8a

2

a

4

+ 2a

1

a

5

of this polynomial is, modulo a numerial fator,

proportional to the square of the Weyl tensor

C

2

= C

����

C

����

of the onformal metri.

Vanishing of I

	

means that 	 = 	(z) has a root with

multipliity no smaller than 3. Our example above

orresponds to the situation when this multipliity is

equal to 4. Aording to Cartan, all nonequivalent

equations for whih 	 has quarti root are overed

by this example. In this example nonequivalent

equations are distinguished by the only nonvanishing

salar invariant a

5

to whih the Weyl tensor of the

metri g is proportional. If a

5

=onst the equation

has 7-dimensional group of symmetries.


