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Motivation

Numerous examples of relations between di�erential

equations and 
onformal geometry:

� Most re
ent and intriguing (in parti
ular in General

Relativity theory) see:

Fritelli S, Kozameh C, Newman E T,

(2001) \Di�erential geometry from di�erential

equations" Comm. Math. Phys. 223 383-408
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Further referen
es:

- Cartan E (1941) \La geometria de las e
ua
iones

diferen
iales de ter
er orden" Rev. Mat. Hispano-

Amer. 4 1-31

- Cartan E (1910) \Les systemes de Pfa� a 
inq

variables et les equations aux derivees partielles

du se
ond ordre" Ann. S
. Norm. Sup. 27

109-192

- Chern S S (1940) \The geometry of the di�erential

equations y

000

= F (x; y; y

0

; y

00

)" S
i. Rep. Nat.

Tsing Hua Univ. 4 97-111

- Hilbert D (1912) \Ueber den Begri� der Klasse

von Di�erentialglei
hungen" Mathem. Annalen

Bd. 73, 95-108

- Nurowski P, Sparling G A J (2003) \Three

dimensional Cau
hy-Riemann stru
tures and

se
ond order ordinary di�erential equations"

Class. Q. Grav. 20, 4995-5016

- Wuens
hmann K, (1905) \Ueber Beruhrungsbedin-

gungen bei Di�erentialglei
hungen", Dissertation,

Greifswald



3

� For a review in
luding

{ FKN's system of two PDEs 
orresponding to

4-dimensional 
onformal Lorentzian geometries

{ K Wuens
hmann's relations between 3rd

order ODEs 
onsidered modulo 
onat
t

transformations and 3-dimensional Lorentzian

geometries

{ E Cartan's relations between 3rd order ODEs


onsidered modulo point transformations and

3-dimensional Einstein-Weyl geometries

{ relations between 2nd order ODEs 
onsidered

modulo point transformations and 4-

dimensional Fe�ermann-like geometries of

signature (++{ {)

relations between equations z

0

= F (x; y; y

0

; y

00

; z)

and 5-dimensional 
onformal geometry of signa-

ture (+++{ {)

see: Nurowski P, (2004) \Di�erential equations and


onformal stru
tues" math.DG/0406400
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Equations with integral-free solutions

Equation z

0

= F (x; y; y

0

; y

00

; z) is a spe
ial 
ase of

an equation

G(x; y; y

0

; :::; y

(m)

; z; z

0

; :::; z

(k)

) = 0 (H)

for two real fun
tions y = y(x) and z = z(x) of one

variable x.

De�nition

Equation (H) has integral-free solutions i� its general

solution 
an be written as

x = x(t; w(t); w

0

(t); :::; w

(r)

(t))

y = y(t; w(t); w

0

(t); :::; w

(r)

(t))

z = z(t; w(t); w

0

(t); :::; w

(r)

(t))

where w = w(t) is an arbitrary suÆ
iently smooth

fun
tion of one variable.

Example

y � z

0

= 0 =) x = t; y = w

0

(t); z = w(t):
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Equations (H) of the �rst order

z

0

= F (x; y; y

0

; z) (M)

Cartan's treatment:

Let p = y

0

. Then on the spa
e J parametrized by

(x; y; p; z) 
onsider two 1-forms

!

1

= dz � F (x; y; p; z)dx

!

2

= dy � pdx.

Clearly, every solution of (M) is a 
urve


(t) = (x(t); y(t); p(t); z(t))

in J on whi
h !

1

and !

2

vanish.
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Suppose that there exists a (lo
al) di�eomorphism

� : (x; y; p; z)! (�x; �y; �p; �z) su
h that

d�y � �pd�x = �!

1

+ �!

2

d�p� �zd�x = 
!

1

+ Æ!

2

with �, �, 
, Æ fun
tions on J satisfying � =

�Æ � �
 6= 0. In su
h 
ase

!

1

= �

�1

[ Æ(d�y � �pd�x)� �(d�p� �zd�x) ℄

!

2

= �

�1

[�
(d�y � �pd�x) + �(d�p� �zd�x) ℄,

Thus, taking

�x = t; �y = w(t); �p = w

0

(t); �z = w

00

(t)

we 
onstru
t a 
urve in J on whi
h the forms !

1

and

!

2

identi
ally vanish. Now, the inverse of � whi
h

gives x = x(�x; �y; �p; �z), et
., provides

x = x(t; w(t); w

0

(t); w

00

(t))

y = y(t; w(t); w

0

(t); w

00

(t))

z = z(t; w(t); w

0

(t); w

00

(t)),

whi
h is an integral-free solution of equation (M).
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Consider equation

z

0

= (y

0

)

2

Its 
orrgesponding forms are

!

1

= dz � p

2

dx

!

2

= dy � pdx

The 
hange of variables

x =

1

2

�z,

y =

1

2

(�z�x� �p),

z =

1

2

�z�x

2

� �p�x+ �y,

p = �x

brings them to the form

!

1

= d�y � �pd�x� �x(d�p� �zd�x),

!

2

= �

1

2

(d�p� �zd�x).

The integral-free solution:

x =

1

2

w

00

(t)

y =

1

2

tw

00

(t)�

1

2

w

0

(t)

z =

1

2

t

2

w

00

(t)� tw

0

(t) + w(t)
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Equivalen
e of equations (M)

De�nition

Two equations

z

0

= F (x; y; y

0

; z) and �z

0

=

�

F (�x; �y; �y

0

; �z)

represented by the respe
tive forms

!

1

= dz � F (x; y; p; z)dx

!

2

= dy � pdx.

�!

1

= d�z �

�

F (�x; �y; �p; �z)d�x

�!

2

= d�y � �pd�x.

are (lo
ally) equivalent i� there exists a (lo
al)

di�eomorphism � : (x; y; p; z) ! (�x; �y; �p; �z) su
h

that

�

�

�!

1

= �!

1

+ �!

2

�

�

�!

2

= 
!

1

+ Æ!

2

.
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Theorem (Monge)

All equations z

0

= F (x; y; y

0

; z) split onto two

nonequivalent 
lasses. All the equations within ea
h

of the two 
lasses are lo
ally equivalent. In the �rst


lass their forms !

1

and !

2


an be always brought

to the form

�!

1

= d�z;

�

!

2

= d�y � �pd�x

in the se
ond 
lass one 
an always a
hieve

�!

1

= d�y � �pd�x;

�

!

2

= d�p� �zd�x .

Corollary (Monge)

All equations z

0

= F (x; y; y

0

; z) have integral-free

solutions.

In the �rst 
ase take:

�z =
onst, �x = t, �y = w(t), �p = w

0

(t).

This brings the general solution to the form

x = x(t; w;w

0

), y = y(t; w; w

0

), z = z(t; w; w

0

).

In the se
ond 
ase the solution depends also on w

00

.
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Hilbert equation

In 1912 Hilbert obsereved that equation

z

0

= (y

00

)

2

is not in the 
lass of equations (H) whi
h have

integral-free solutions. A bit earlier Cartan in

his famous `5-variables' paper impli
itely solved the

equivalen
e problem for more general equations

z

0

= F (x; y; y

0

; y

00

; z) (2M)

Ea
h equation (2M) may be represented by forms

!

1

= dz � F (x; y; p; q; z)dx

!

2

= dy � pdx

!

3

= dp� qdx

on a 5-dimensional manifold parametrized by

(x; y; p = y

0

; q = y

00

; z).
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Equivalen
e of equations (2M)

De�nition

Two equations

z

0

= F (x; y; y

0

; y

00

; z) and �z

0

=

�

F (�x; �y; �y

0

; �y

00

; �z)

represented by the respe
tive forms

!

1

= dz � F (x; y; p; q; z)dx

!

2

= dy � pdx

!

3

= dp� qdx

�!

1

= d�z �

�

F (�x; �y; �p; �q; �z)d�x

�!

2

= d�y � �pd�x

�!

3

= d�p� �qd�x

are (lo
ally) equivalent i� there exists a (lo
al)

di�eomorphism � : (x; y; p; q; z)! (�x; �y; �p; �q; �z) su
h

that

�

�

0

�

�!

1

�!

2

�!

2

1

A

=

0

�

� � 


Æ � �

� � �

1

A

0

�

!

1

!

2

!

3

1

A
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Solution for equivalen
e problem for

eqs. z

0

= F (x; y; y

0

; y

00

; z)

Theorem (Cartan)

� There are two main bran
hes of nonequivalent

equations z

0

= F (x; y; y

0

; y

00

; z). They are

distinguished by vanishing or not of the relative

invariant F

qq

, q = y

00

.

� If F

qq

� 0 then su
h equations have integral-free

solutions.

� There are nonequivalent equations among the

equations having F

qq

6= 0. All these equations

are beyond the 
lass of equations with integral-

free solutions.
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Equations z

0

= F (x; y; y

0

; y

00

; z) with

F

y

00

y

00

6= 0

Theorem (Cartan)

An equivalen
e 
lass of equations z

0

=

F (x; y; y

0

; y

00

; z) with F

y

00

y

00

6= 0 uniquely de�nes

a 14-dimensional manifold P and a preferred 
oframe

(�

1

; �

2

; �

3

; �

4

; �

5

;


1

;


2

;


3

;


4

;


5

;


6

;


7

;


8

;


9

) on

it su
h that

d�

1

= �

1

^ (2


1

+


4

) + �

2

^ 


2

+ �

3

^ �

4

d�

2

= �

1

^ 


3

+ �

2

^ (


1

+ 2


4

) + �

3

^ �

5

d�

3

= �

1

^ 


5

+ �

2

^ 


6

+ �

3

^ (


1

+


4

) + �

4

^ �

5

d�

4

= �

1

^ 


7

+

4

3

�

3

^ 


6

+ �

4

^ 


1

+ �

5

^ 


2

d�

5

= �

2

^ 


7

�

4

3

�

3

^ 


5

+ �

4

^ 


3

+ �

5

^ 


4

:

The system provides all the lo
al invariants for the

equivalen
e 
lass of equations satisfying F

qq

6= 0.
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Note that the above theorem implies formulae for the

di�erentials of the forms 


�

, � = 1; 2; :::; 9.

For example, we have

d


1

= 


3

^ 


2

+

1

3

�

3

^ 


7

�

2

3

�

4

^ 


5

+

1

3

�

5

^ 


6

+ �

1

^ 


8

+

3

8




2

�

1

^ �

2

+

b

2

�

1

^ �

3

+ b

3

�

2

^ �

3

+

a

2

�

1

^ �

4

+ a

3

�

1

^ �

5

+ a

3

�

2

^ �

4

+ a

4

�

2

^ �

5

.

where a

2

, a

3

, a

4

, b

2

, b

3

, 


2

are fun
tions on P

uniquely de�ned by the equivalen
e 
lass of equations

(2M). The other di�erentials, when de
omposed on

the basis �

i

, 


�

, de�ne more fun
tions, whi
h Cartan

denoted by a

1

, a

2

, a

3

, a

4

, a

5

, b

1

, b

2

, b

3

, b

4

, 


1

, 


2

,




3

, Æ

1

, Æ

2

, e, h

1

, h

2

, h

3

, h

4

, h

5

, h

6

, k

1

, k

2

, k

3

.
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If one is given two equations z

0

= F (x; y; y

0

; y

00

; z)

and �z

0

=

�

F (�x; �y; �y

0

; �y

00

; �z) then there exists a lo
al

di�eomorphism � : (x; y; p; q; z) ! (�x; �y; �p; �q; �z)

realizing

�

�

(�!

1

) = �!

1

+ �!

2

+ 
!

3

�

�

(�!

2

) = Æ!

1

+ �!

2

+ �!

3

�

�

(�!

3

) = �!

1

+ �!

2

+ �!

3

i� there exists a di�eomorphism � : P !

�

P between

the asso
iated 14-dimensional manifolds P and

�

P

su
h that

�

�

(

�

�

i

) = �

i

; �

�

(

�




�

) = 


�

for all i = 1; 2; 3; 4; 5 and � = 1; 2; 3; :::; 9. This,

in parti
ular means that to realize the equivalen
e

between the equationss, the di�eomorphism � must

also satisfy

�

�

(�a

1

) = a

1

; �

�

(

�

b

1

) = b

1

; �

�

(�


1

) = 


1

; et
:

This gives severe algebrai
 (i.e. non-di�erential)


onstraints on � and, in generi
 
ases, qui
kly leads

to the answer if the two equations are equivalent.
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We ask for those equivalen
e 
lasses of equations

z

0

= F (x; y; y

0

; y

00

; z) whi
h 
orrespond to systems

with all the s
alar invariants a

1

, a

2

, a

3

, a

4

, a

5

, b

1

,

b

2

, b

3

, b

4

, 


1

, 


2

, 


3

, Æ

1

, Æ

2

, e, h

1

, h

2

, h

3

, h

4

, h

5

, h

6

,

k

1

, k

2

, k

3

being 
onstants .

It follows that it is possible if and only if all of them

are identi
ally equal to zero.

In this well de�ned 
ase the system of the Theorem


an be understood as a system 
onsisting of right

invariants forms (�

i

;


�

) on a 14-dimensional Lie

group. This group is simple and has inde�nite Killing

form.

This identi�es this group as a non
ompa
t real form

~

G

2

of the ex
eptional group G

2

.

It follows that there is only one equivalen
e 
lass of

equations 
orresponding to the system with all the

s
alar invariants vanishing. It 
an be de�ned by the

fun
tion F = q

2

asso
iated with the Hilbert equation

z

0

= (y

00

)

2

:
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The system de�nes a 
urvature of a 
ertain Cartan

~

g

2

-valued 
onne
tion.

P is a prin
ipal �bre bundle over J with the 9-

dimensional paraboli
 subgroup H of

~

G

2

as its

stru
ture group.

On this �bre bundle the following matrix of 1-forms:

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

�

�


1

� 


4

�


8

�


9

�

1

p

3




7

1

3




5

1

3




6

0

�

1




1




2

1

p

3

�

4

�

1

3

�

3

0

1

3




6

�

2




3




4

1

p

3

�

5

0 �

1

3

�

3

�

1

3




5

2

p

3

�

3

2

p

3




5

2

p

3




6

0

1

p

3

�

5

�

1

p

3

�

4

�

1

p

3




7

�

4




7

0

2

p

3




6

�


4




2




9

�

5

0 


7

�

2

p

3




5




3

�


1

�


8

0 �

5

��

4

2

p

3

�

3

��

2

�

1




1

+ 


4

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

;

be
omes a Cartan 
onne
tion ! with values in the

Lie algebra of

~

G

2

.

The 
urvature of this 
onne
tion R = d! + ! ^ !

`measures' how mu
h the equivalen
e 
lass of

equations (2M) is `distorted' from the 
at Hilbert


ase 
orresponding to F = q

2

.
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(3; 2)-signature 
onformal metri


Given equivalen
e 
lass of equation z

0

=

F (x; y; y

0

; y

00

; z) 
onsider its 
orresponding bundle

P with the 
oframe

(�

1

; �

2

; �

3

; �

4

; �

5

;


1

;


2

;


3

;


4

;


5

;


6

;


7

;


8

;


9

):

De�ne a bilinear form

~g = 2�

1

�

5

� 2�

2

�

4

+

4

3

�

3

�

3

This form is degenerate on P and has signature

(3; 2; 0; 0; 0; 0; 0; 0; 0; 0; 0).

The 9 degenerate dire
tions generate the verti
al

spa
e of P .
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Theorem

� The bilinear forms ~g transforms 
onformally

when Lie transported along any of the verti
al

dire
tions.

� It des
ends to a well de�ned 
onformal (3; 2)-

signature metri
 on the 5-dimensional spa
e J

on whi
h the equation z

0

= F (x; y; y

0

; y

00

; z) is

de�ned

� The Cartan normal 
onformal 
onne
tion asso-


iated with this 
onformal metri
 yields all the

invariant information about the equivalen
e 
lass

of the equation

� This so(4; 3)-valued 
onne
tion is redu
ible and,

after redu
tion, 
an be identi�ed with the

~

g

2

Cartan 
onne
tion ! on P .
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It follows that the Hilbert equation has

~

G

2

as its

symmetry group.

Cartan knew that z

0

= F (x; y; y

0

; y

00

; z) is either

equivalent to the Hilbert equation or its group

of transitive symmetries is at most 7-dimensional.

The equations with 7-dimensional group of transitive

symmetries are among those equivalent to

z

0

= F (y

00

); with F

y

00

y

00

6= 0:

For su
h F 's the (3; 2)-signature 
onformal metri


reads

g = 30(F

00

)

4

[ dqdy � pdqdx ℄ + [ 4F

(3)2

� 3F

00

F

(4)

℄ dz

2

+

2 [�5(F

00

)

2

F

(3)

� 4F

0

F

(3)2

+ 3F

0

F

00

F

(4)

℄ dpdz+

2 [15(F

00

)

3

+ 5q(F

00

)

2

F

(3)

� 4FF

(3)2

+ 4qF

0

F

(3)2

+

3FF

00

F

(4)

� 3qF

0

F

00

F

(4)

℄ dxdz+

[�20(F

00

)

4

+ 10F

0

(F

00

)

2

F

(3)

+ 4(F

0

)

2

F

(3)2

� 3(F

0

)

2

F

00

F

(4)

℄ dp

2

+

2 [�15F

0

(F

00

)

3

+ 20q(F

00

)

4

+ 5F (F

00

)

2

F

(3)

� 10qF

0

(F

00

)

2

F

(3)

+

4FF

0

F

(3)2

� 4q(F

0

)

2

F

(3)2

� 3FF

0

F

00

F

(4)

+ 3q(F

0

)

2

F

00

F

(4)

℄ dpdx+

[�30F (F

00

)

3

+ 30qF

0

(F

00

)

3

� 20q

2

(F

00

)

4

� 10qF (F

00

)

2

F
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+
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2

F
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(F

00

)

2

F
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+ 4F

2

F
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� 8qFF

0

F
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2

:

It is always 
onformal to an Einstein metri
 ĝ = e

2�

g

with the 
onformal fa
tor � = �(q) satisfying

10(F

00

)

2

[ �

00

� (�

0

)

2

℄ � 40F

00

F

(3)

�

0

+ 17F

00

F

(4)

� 56F

(3)2

= 0:
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Cartan 
lassi�ed various types of nonequivalent

equations (2M) a

ording to the roots of

	(z) = a

1

z

4

+ 4a

2

z

3

+ 6a

3

z

2

+ 4a

4

z + a

5

;

where (a

1

; a

2

; a

3

; a

4

; a

5

) are the s
alar invariants

of the equation. This polynomial en
odes

partial information of the Weyl tensor of the

asso
iated 
onformal metri
. In parti
ular, the

well known invariant I

	

= 6a

2

3

� 8a

2

a

4

+ 2a

1

a

5

of this polynomial is, modulo a numeri
al fa
tor,

proportional to the square of the Weyl tensor

C

2

= C

����

C

����

of the 
onformal metri
.

Vanishing of I

	

means that 	 = 	(z) has a root with

multipli
ity no smaller than 3. Our example above


orresponds to the situation when this multipli
ity is

equal to 4. A

ording to Cartan, all nonequivalent

equations for whi
h 	 has quarti
 root are 
overed

by this example. In this example nonequivalent

equations are distinguished by the only nonvanishing

s
alar invariant a

5

to whi
h the Weyl tensor of the

metri
 g is proportional. If a

5

=
onst the equation

has 7-dimensional group of symmetries.


