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What is Conformal Cyclic Cosmology?

The Conformal Cyclic Cosmology, or CCC, is a certain
mathematical frame for cosmology. As Roger Penrose
once told me, it emerged because he wanted to have some
answer to a question which he was asked many times.
This annoying question was: ‘What was before the Big
Bang?’.
Perhaps by an accident, CCC perfectly fits this
Conference, whose title is ‘Conformal Geometry,
Analysis and Physics’. And CCC strongly uses concepts
from Conformal Geometry, to speculate about Physics,
in terms of mathematical models, which require quite a
nontrivial Mathematical Analysis.
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What is CCC?

In the 2015 article

‘The equations of Conformal Cyclic Cosmology’

Paul Tod summarized the main mathematical ingredients of
Penrose’s CCC as follows:
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Penrose’s Conformal Cyclic Cosmology

The Universe consists of eons, each being a time oriented
spacetime, i.e. a 4-dimensional Lorentzian manifold, whose
conformal compactifications have spacelike I s. The Weyl
tensor of the 4-metric on each I is zero.

Eons are ordered, and the conformal compactifications of
consecutive eons, say the past one and the present one, are
glued together along I + of the past eon, and I − of the
present eon.
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Penrose’s Conformal Cyclic Cosmology

The matching surface of the past and the present eons is
called the wound of the Universe, and the vicinity of the
wound is called the bandage region for the two eons. The
whole bandage region is equipped with the following three
metrics, which are conformally flat at the wound:

a Lorentzian metric g which is regular everywhere,
a Lorentzian metric ǧ, which represents the physical metric
of the present eon, and which is singular at the wound,
a Lorentzian metric ĝ, which represents the physical metric
of the past eon, and which infinitely expands at the
wound.
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a Lorentzian metric ĝ, which represents the physical metric
of the past eon, and which infinitely expands at the
wound.

5/24



Penrose’s Conformal Cyclic Cosmology

The matching surface of the past and the present eons is
called the wound of the Universe, and the vicinity of the
wound is called the bandage region for the two eons. The
whole bandage region is equipped with the following three
metrics, which are conformally flat at the wound:

a Lorentzian metric g which is regular everywhere,
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Penrose’s Conformal Cyclic Cosmology

In the bandage region, the three metrics g, ǧ and ĝ, are
conformally related.
How to make this relation specific is debatable, but
Penrose proposes that

ǧ = Ω2g, and ĝ = 1
Ω2 g, with Ω→ 0 on the wound.

The metric ǧ in the present eon is a physical metric
there. Likewise, the metric ĝ in the past eon is a physical
metric there.
Of course, the metric ǧ in the present eon, and the metric
ĝ in the past eon, as physical spacetime metrics,
should satisfy Einstein’s equations in their spacetimes,
respectively.
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The metric ǧ in the present eon is a physical metric
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Of course, the metric ǧ in the present eon, and the metric
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Of course, the metric ǧ in the present eon, and the metric
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Penrose’s Conformal Cyclic Cosmology
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Modelling Penrose’s CCC scenario

Question: How to make a model of Penrose’s bandage
region of two eons?
One needs a function Ω, vanishing on some spacelike
hypersurface, and a regular Lorentzian 4-metric g
conformally flat at this hypersurface, such that if
ĝ = 1

Ω2 g satisfies Einstein equations with some
physically reasonable energy momentum tensor, then
ǧ = Ω2g also satisfies Einstein equations with possibly
different, but still physically reasonable energy momentum
tensor.
The requirement that a given conformal class [g] admitts
two Einstein scales is very restrictive, as it is well know
from the works of H. W. Brinkmann from 1920s.
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Not too many Einstein scales in a given conformal class
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Modelling Penrose’s CCC scenario

In particular, in dimension four in Lorentzian signature,
Brinkman found all conformal classes which contain at least
two different Ricci flat metrics.

In bandage regions of CCC the problem is similar to this of
Brinkmann. Here, the same function Ω should provide two
scales: Ω and − 1

Ω , for the ‘healing’ metric g, which make the
corresponding conformally related metrics ǧ = Ω2g and
ĝ = Ω−2g into two solutions of the Einstein equations. This
seems to make the problem of finding possible candidates for
bandage metrics very restrictive.

The situation would be really bad if not the fact that now, the two
solutions ĝ and ǧ of the Einstein equations may have
different energy momentum tensors: a prescribed energy
momentun tensor on the M̂ part, and a reasonable energy
momentum tensor on the M̌ part.
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ĝ = Ω−2g into two solutions of the Einstein equations. This
seems to make the problem of finding possible candidates for
bandage metrics very restrictive.

The situation would be really bad if not the fact that now, the two
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Creating a bandage region model

I will now outline how to effectively make a bandage region
model. This will be done in a number of steps.

Step one: How to create a metric ĝ of the past eon?
Step two: How to pick up the scale Ω once ĝ is
determined?
Step three: How to create the metric ǧ of the present
eon?
Step four: How to interprete the physics content of the
bandage region?
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Creating a bandage region model: preparations

I start with a conformally flat data on a spacelike
hypersurface I and evolve it back in time to the past
eon.
But I do it in a Poincare-Einstein way of

Charles Fefferman and Robin Graham!
I will briefly review the Fefferman-Graham result
specialized to the 4-dimensional Lorentzian situation,
now.
Their result shows how to uniquely associate an
Einstein Lorentzian 4-metric ĝ on M̂ with a
3-dimensional Riemannian metric h0 on the conformal
boundary ∂M̂ = I of M̂.
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Creating a bandage region model: Fefferman-Graham Theorem

Start with a conformal class of Riemannian 3-metrics
[h0] with a representative h0 on I .
Consider a symmetric rank 2 tensor h(t) on I in terms of
its power series expansion h(t) =

∑∞
i=0 hi t i , and define a

Lorentzian 4-metric

ĝ =
−dt2 + h(t)

t2

on M̂ =]− ε,0[×I with t ∈]− ε,0[.
Choose an arbitrary symmetric rank 2 tensor h on I
which is trace-free and divergence-free w.r.t. h0.
Then the conditions

Ric(ĝ) = 3ĝ

and
(

the− trace− free− part− of h3

)
= h

uniquely determine h(t), and in turn ĝ, up to infinite
order at t = 0.
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and
(

the− trace− free− part− of h3

)
= h

uniquely determine h(t), and in turn ĝ, up to infinite
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Ric(ĝ) = 3ĝ
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Step one: The past eon metric ĝ

So my proposal for constructing the past eon metric ĝ from
the conformally flat class h0 on I is very similar:

Start with a conformal class of Riemannian 3-metrics
[h0] with a representative h0 on I .
Consider a power series expansion h(t) =

∑∞
i=0 hi t i of a

symmetric rank 2 tensor h(t) on I , and define a
Lorentzian 4-metric ĝ = −dt2+h(t)

t2 on M̂ =]− ε,0[×I with
t ∈]− ε,0[.
Impose the Einstein conditions

R̂ic(ĝ)− 1
2

R̂ĝ + Λ̂ĝ = T̂
on ĝ, where T̂ is the energy momentum tensor suitable
for the past eon. If the energy momentum tensor T̂ in M̂
is not too wild, I expect the similar uniqueness result as
in the FG case.
Take ĝ as the metric in the past eon portion M̂ of the
bandage region M.
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Take ĝ as the metric in the past eon portion M̂ of the
bandage region M.

14/24



Step one: The past eon metric ĝ
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t2 on M̂ =]− ε,0[×I with
t ∈]− ε,0[.
Impose the Einstein conditions

R̂ic(ĝ)− 1
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Take ĝ as the metric in the past eon portion M̂ of the
bandage region M.

14/24



Steps two and three: The choice of Ω and Penrose’s reciprocity

When ĝ is determined according to the procedure I
described, its manifold M̂ has a natural spacelike
boundary at t = 0: i.e. at ∂M̂ = {0} ×I , where the metric
ĝ blows up.
It is therefore natural to extend M̂ to M =]− ε, ε[×I , and
to define the Penrose scale function Ω to be Ω = t ,
where t ∈]− ε, ε[.
Defining g = Ω2ĝ provides a metric regular for all
t ∈]− ε, ε[, and after its extension to positive ts defines
the healing metric g = −dt2 + h(t) in the entire bandage
region M =]− ε, ε[×I .
The wound of the bandage region is placed at Ω = 0.
Now, the Penrose’s reciprocity hypothesis, gives the
metric ǧ in the present eon M̌ = [0, ε[×I as ǧ = Ω2g, or
what is the same as ǧ = t2

(
− dt2 + h(t)

)
.
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what is the same as ǧ = t2
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Step four: The physical content of the present eon

The described procedure defined the present eon
manifold M̌ = [0, ε[×I and its metric ǧ = t2(−dt2 + h(t) ).
Now all choices have been made, and the physical
content of M̌ should be read off from the right hand side
of the Einstein’s equations

Řic(ǧ)− 1
2

Řǧ + Λ̌ǧ = Ť .

So the physics in the new eon is determined by a
discrete flip of −1

t → t rather, than via a differential
equation for Ω.
This flip is called Penrose reciprocity hypothesis.
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Řic(ǧ)− 1
2
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Does this procedure give reasonable results?

Well...

I tested it in a
problem
motivated by
this picture of
Roger Penrose.
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Does this procedure gives reasonable results?

I assumed that in the past eon only one spherical wave
remained.
More specifically, I assumed that I have a conformally flat
metric h0 on I ;
that the metric ĝ = t−2(−dt2 + ht ) in the
Poincare-Einstein/Fefferman-Graham expansion is
(a) spherically symmetric, and
(b) satisfies Einstein’s equations R̂ic(ĝ)− 1

2 R̂ĝ + Λ̂ĝ = T̂
with energy momentumT̂ of pure radiation: i.e.
T̂ = K ⊗ K , with K being null.
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Does this procedure gives reasonable results?

Then, I obtained a unique solution up to infinite order at t = 0
for the past eon metric ĝ;

The solution is determined uniquely by the free data at order
three in t ; It means that

ĝ = t−2
(

dt2 + h0 + h3t3 +O(t4,h3)
)
,

where O(t4,h3) denotes terms of order grater than 3 in t ;
These terms are totally detemined by the choice of h3 and its
derivatives. Actually due to spherical symmetry h3 is given in
terms of only one free function of one variable corresponding
to the choice of radial modulation of the wave.

The proof that this power series converges is due to Robin
Graham.

Remarkably this is pretty much the same as in the pure
Einstein Ric(g) = 3g Fefferman-Graham case, where the
solution was also determied by the free data at order three
in t .
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Does this procedure gives reasonable results?

After obtaining the present eon metric ǧ according to the
described procedure, i.e. by ǧ = t4ĝ, I calculated the
energy momentum tensor Ť describing the matter
content in the present eon M̌;
I found that the spherical expanding wave propagating
along K in the past eon was still present and expanding
in the present eon, but it was damped;
The past eon’s spherical wave split into three
components in the present eon:
(a) the damped expanding spherical wave traveling along K ,
(b) the focusing spherical wave, which magically emerged at

the wound surface as there was a spherical mirror there,
and

(c) the scattered radiation described by the energy
momentum tensor of radiative perfect fluid with presure
equal to 1/3 of its energy density.
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described procedure, i.e. by ǧ = t4ĝ, I calculated the
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Conclusion?

This model of not conformally flat bandage region shows that
Penrose’s reciprocity hypothesis, together with the
Poincare-Einstein approach applied to the construction of the
past eons’ spacetime metrics, are apt to provide physically
reasonable descriptions of transitions from past eons to new
ones.

As mentioned at the beginning I believe that Penrose’s CCC is a
perfect new subject that could (should?) interest people at this
conference. Studies on CCC need a broader team of
conformal geometers, specialists on
Poincare-Einstein/Fefferman-Graham expansions, analysts
who could prove converegence of various models, etc.

Robin very quickly provided me an elegant proof of
convergence of my computer-generated spherical wave power
series solution. I think that many other mathematical problems
that appear in CCC can be quickly and elegantly solved by
mathematicians. I would be most happy if my lecture would
inspire somebody at this audience to look closer at
mathematics and/or physics of CCC.
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