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CONFORMAL STRUCTURES WITH EXPLICIT AMBIENTMETRICS AND CONFORMAL G2 HOLONOMYPAWE� NUROWSKIAbstra
t. Given a generi
 2-plane �eld on a 5-dimensional manifold we 
on-sider its (3; 2)-signature 
onformal metri
 [g℄ as de�ned in [7℄. Every 
onformal
lass [g℄ obtained in this way has very spe
ial 
onformal holonomy: it mustbe 
ontained in the split-real-form of the ex
eptional group G2. In this notewe show that for spe
ial 2-plane �elds on 5-manifolds the 
onformal 
lasses [g℄have the Fe�erman-Graham ambient metri
s whi
h, 
ontrary to the generalFe�erman-Graham metri
s given as a formal power series [2℄, 
an be writtenin an expli
it form. We propose to study the relations between the 
onformalG2-holonomy of metri
s [g℄ and the possible pseudo-Riemannian G2-holonomyof the 
orresponding ambient metri
s.1. The (3; 2)-signature 
onformal metri
sConsider an equation(1.1) z0 = F (x; y; y0; y00; z) with Fy00y00 6= 0;for two real fun
tions y = y(x), z = z(x) of one real variable x. To simplify notationintrodu
e new symbols p = y0 and q = y00. Equation (1.1) is totally en
oded in thesystem of three 1-forms: !1 = dz � F (x; y; p; q; z)dx!2 = dy � pdx(1.2) !3 = dp� qdx;living on a 5-dimensional manifold J parametrized by (x; y; p; q; z). In parti
ular,every solution to (1.1) is a 
urve 
(t) = (x(t); y(t); p(t); q(t); z(t)) � J on whi
h allthe forms !1; !2; !3 identi
ally vanish.We introdu
e an equivalen
e relation between equations (1.1) whi
h identi�es theequations having the same set of solutions. This leads to the following de�nition:De�nition 1.1. Two equations z0 = F (x; y; y0; y00; z) and �z0 = �F (�x; �y; �y0; �y00; �z),de�ned on spa
es J and �J parametrized, respe
tively, by (x; y; p = y0; q = y00; z)and (�x; �y; �p = �y0; �q = �y00; �z), are said to be (lo
ally) equivalent, i� there exists a(lo
al) di�eomorphism � : J ! �J transforming the 
orresponding forms!1 = dz � F (x; y; p; q; z)dx �!1 = d�z � �F (�x; �y; �p; �q; �z)d�x!2 = dy � pdx and �!2 = d�y � �pd�x!3 = dp� qdx �!3 = d�p� �qd�xDate: January 31, 2007.This work was supported in part by the Polish Ministerstwo Nauki i Informatyza
ji grant nr:1 P03B 07529 and the US Institute for Mathemati
s and Its Appli
ations in Minneapolis.1
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2 PAWE� NUROWSKIvia:��(�!1) = �!1 + �!2 + 
!3��(�!2) = Æ!1 + �!2 + �!3,��(�!3) = �!1 + �!2 + �!3 with fun
tions �; �; 
; Æ; �; �; �; � on J su
h thatdet0�� � 
Æ � �� � �1A 6= 0:It follows that equation (1.1) 
onsidered modulo equivalen
e relation of De�nition1.1 uniquely de�nes a 
onformal 
lass of (3; 2)-signature metri
s [gF ℄ on the spa
eJ . In 
oordinates (x; y; p; q; z) this 
lass may be des
ribed as follows. LetD = �x + p�y + q�p + F�zbe a total di�erential asso
iated with equation (1.1) on J . Then a representativegF of the 
onformal 
lass [gF ℄ may be written asgF = [ DF 2qqF 2qq + 6DFqDFqqqF 2qq � 6DFqqqFpF 2qq �3DDFqqF 3qq + 9DFqpF 3qq � 9FppF 3qq +9DFqzFqF 3qq � 18FpzFqF 3qq + 3DFzF 4qq �6DFqF 2qqFqqp + 6FpF 2qqFqqp � 8DFqDFqqFqqFqqq +8DFqqFpFqqFqqq + 3DDFqF 2qqFqqq � 3DFpF 2qqFqqq �3DFzFqF 2qqFqqq + 4(DFq)2F 2qqq � 8DFqFpF 2qqq �3(DFq)2FqqFqqqq + 4F 2pF 2qqq + 6DFqFpFqqFqqqq �3F 2pFqqFqqqq � 6DFqFqF 2qqFqqz + 6FpFqF 2qqFqqz �3DFqF 3qqFqz + 12FpF 3qqFqz + 3F 2qqFqqqFy �6DFqqqFqF 2qqFz + 4DFqqF 3qqFz + 6FqF 2qqFqqpFz +8DFqqFqFqqFqqqFz � 4DFqF 2qqFqqqFz �(1.3) 9FqpF 3qqFz + FpF 2qqFqqqFz � 8DFqFqF 2qqqFz +8FpFqF 2qqqFz + 6DFqFqFqqFqqqqFz � 6FpFqFqqFqqqqFz +18F 3qqFqy + 6F 2q F 2qqFqqzFz + 3FqF 3qqFqzFz �2F 4qqF 2z + FqF 2qqFqqqF 2z + 4F 2q F 2qqqF 2z �3F 2q FqqFqqqqF 2z � 9F 2q F 3qqFzz ℄ (~!1)2 +[ 6DFqqqF 2qq � 6F 2qqFqqp � 8DFqqFqqFqqq +8DFqF 2qqq � 8FpF 2qqq � 6DFqFqqFqqqq +6FpFqqFqqqq � 6FqF 2qqFqqz + 6F 3qqFqz +2F 2qqFqqqFz � 8FqF 2qqqFz + 6FqFqqFqqqqFz ℄ ~!1~!2 +[ 10DFqqF 3qq � 10DFqF 2qqFqqq + 10FpF 2qqFqqq �10F 4qqFz + 10FqF 2qqFqqqFz ℄ ~!1~!3 +



CONFORMAL STRUCTURES WITH EXPLICIT AMBIENT METRICS AND CONFORMAL G2 HOLONOMY330F 4qq ~!1~!4 + [ 30DFqF 3qq � 30FpF 3qq � 30FqF 3qqFz ℄ ~!1~!5 +[ 4F 2qqq � 3FqqFqqqq ℄ (~!2)2 � 10F 2qqFqqq ~!2~!3 + 30F 3qq ~!2~!5 � 20F 4qq (~!3)2where1 ~!1 = dy � pdx~!2 = dz � Fdx� Fq(dp� qdx)~!3 = dp� qdx(1.4) ~!4 = dq~!5 = dx:It follows from the 
onstru
tion des
ribed in Ref. [7℄ that when the equation (1.1)undergoes a di�eomorphism � of De�nition 1.1, the above metri
 gF transforms
onformally.The 
onformal 
lass of metri
s [gF ℄ is very spe
ial among all the (3; 2)-signature
onformal metri
s in dimension 5: the Cartan normal 
onformal 
onne
tion for this
lass, instead of having values in full so(4; 3) Lie algebra, has values in its 
ertain14-dimensional subalgebra. This subalgebra turns out to be isomorphi
 to the splitreal form of the ex
eptional Lie algebra g2 � so(4; 3). Thus, 
onformal metri
s[gF ℄ provide an abundan
e of examples of metri
s with an ex
eptional 
onformalholonomy. This holonomy is always a subgroup of the non
ompa
t form of theex
eptional Lie group G2. We strongly believe that randomly 
hosen fun
tion F ,su
h that Fqq 6= 0, give rise to 
onformal metri
s [gF ℄ with 
onformal holonomyequal to G2.It is interesting to study the 
onformal 
lasses [gF ℄ from the point of view ofthe Fe�erman-Graham ambient metri
 
onstru
tion [2℄. Sin
e for ea
h F de�ningequation (1.1) we have a 
onformal 
lass of metri
s [gF ℄ in dimension �ve, then sin
e�ve is odd, Fe�erman-Graham guarantees [2℄ that there is a unique formal powerseries of a Ri

i-�at metri
 of signature (4; 3) 
orresponding to [gF ℄. Moreover,sin
e given F the metri
 gF is expli
itely determined by formula (1.3), we see thatstarting with real analyti
 F , the metri
 gF is real analyti
. Thus, every analyti
F of (1.1) leads to analyti
 gF and then, in turn, via Fe�erman-Graham, leadsto a unique real analyti
 ambient metri
 ~gF of signature (4; 3). Sin
e both theLevi-Civita 
onne
tion for ~gF and the Cartan normal 
onformal 
onne
tion for the
orresponding 5-dimensional metri
 gF have values in (possibly subalgebras of) thesame Lie algebra so(4; 3), it is interesting to ask about the relations between them.We dis
uss these relations on examples.2. The strategy for 
onstru
ting expli
it examples of ambientmetri
sWe start with the Fe�erman-Graham result [2℄ adapted to the 5-dimensionalsituation of 
onformal metri
s [gF ℄.Let gF be a representative of the 
onformal 
lass [gF ℄ de�ned on J by (1.3).Consider a manifold J � R+ � R. Introdu
e 
oordinates (0 < t; u) on R+ � R in1Note that formula for gF di�ers from the one given in Ref. [7℄ by tilde signs over the allomegas. In Ref. [7℄, when 
opying the 
al
ulated metri
 gF , by mistake, we forgot to put thesetilde signs over the omegas. Hen
e, in Ref. [7℄, formula for gF is true, provided that one puts thetilde signs over the omegas and supplements it by the de�nitions (1.4) of the tilded omegas.



4 PAWE� NUROWSKIJ � R+ � R. We have a natural proje
tion � : J � R+ � R ! J , whi
h enablesus to pullba
k forms from J to J � R+ � R. Ommiting the pulba
k sign in theexpressions like ��(gF ) we de�ne a formal power series(2.1) �gF = �2dtdu+ t2gF � ut�+ u2� + u3t�1
 + 1Xk=4 ukt2�k�k:Here �; �; 
; �k, k = 4; 5; 6; ::::, are pullba
ks of symmetri
 bilinear forms �; �; 
; �kfrom J to J�R+�R. Thus �gF is a formal bilinear form on J�R+�R. This formalbilinear form has signature (4; 3) in some neighbourhood of u = 0. The followingtheorem is due to Fe�erman and Graham [2℄.Theorem 2.1. Among all the bilinear forms �gF whi
h, via (2.1), are asso
iatedwith metri
 gF of (1.3) there is pre
isely one, say ~gF , satisfying the Ri

i �atness
ondition Ri
(~gF ) = 0:Given gF , all the bilinear forms �; �; 
; �k in ~gF are totally determined. Anotherissue is to 
al
ulate them expli
itely. For example, it is quite di�
ult to �nd the gen-eral formulas for the higher order forms �k. Nevertherless the expli
it expressionsfor the forms �; �; 
 are known [4, 5℄. We write them below in the form obtainedby C R Graham. We de�ne the 
oe�
ients �ij , �ij and 
ij by � = �ijdxidxj ,� = �ijdxidxj , 
 = 
ijdxidxj , where (xi) = (x; y; p; q; z) are 
oordinates on J .Then Graham's expressions for �ij , �ij and 
ij are [4℄:�ij = 2Pij ;�ij = �Bij + P ki Pjk ;3
ij = B kij;k � 2WkijlBkl + 4Pk(iB kj) � 4P kk Bij + 4PklC(ij)k;l �(2.2) 2CkilCljk + C kli Cjkl + 2Pkk;lC l(ij) � 2WkijlPkmPml;where Pij = 13 (Rij � 18RgFij);is the S
houten tensor for the metri
 gF = gFijdxidxj ,Wijkl = Rijkl � 2(Pi[kgFl℄j � Pj[kgFl℄i)is its Weyl tensor, Cijk = Pij;k � Pik;jis the Cotton tensor, and Bij = C kijk; � PklWkijlis the Ba
h tensor.Of 
ourse all the above quantities 
an be expli
itely 
al
ulated on
e F , and inturn the metri
 gF , is 
hosen.In the rest of the paper we will 
hose parti
ular fun
tions F = F (x; y; p; q; z), andwe will 
al
ulate the 
orresponding forms �; �; 
 for them. We will give examplesof F 's for whi
h the bilinear form 
 is identi
ally vanishing,(2.3) 
 � 0:Given su
h F 's we will 
onsider�gF = �2dtdu+ t2gF � ut�+ u2�:



CONFORMAL STRUCTURES WITH EXPLICIT AMBIENT METRICS AND CONFORMAL G2 HOLONOMY5Note that �gF 
oin
ides with the ambient metri
 ~gF up to the terms quadrati
 inthe ambient 
oordinates t; u. If by 
han
e the bilinear form �gF satis�es the Ri

i�atness 
ondition Ri
(�gF ) � 0;then by the uniqueness of the ambient metri
 ~gF stated in Theorem 2.1, it will
oi
ide with the ambient metri
 ~gF : �gF � ~gF :The uniqueness result of Theorem 2.1, together with the Ri

i �atness of �gF , ispowerfull enough to guarantee that not only the 
oe�
ient 
 in the ambient metri
~gF identi
ally vanishes, but that all the 
oe�
ients �k, k = 4; 5; 6; ::::; vanish too!Thus the strategy of �nding expli
it ambient metri
s ~gF for gF is as follows:� �nd F = F (x; y; p; q; z) for whi
h the 
orresponding metri
 gF has identi-
ally vanishing form 
 of (2.2);� 
al
ulate the approximate ambient metri
 �gF for su
h F ;� 
he
k if the Ri

i tensor Ri
(�gF ) of �gF is identi
ally vanishing;� if you have F with the above properties then the approximate metri
 �gF isthe ambient metri
 ~gF for gF .3. Conformally Einstein exampleAs the �rst example, following Ref. [7℄, we 
al
ulate gF and its approximateambient metri
 �gF for a very simple equation:z0 = F (y00); with Fy00y00 6= 0:It was shown in Ref. [7℄ that the 
onformal 
lass [gF ℄ may be represented by2�15(F 00)10=3gF =30(F 00)4 [ dqdy � pdqdx ℄ + [ 4F (3)2 � 3F 00F (4) ℄ dz2 +2 [�5(F 00)2F (3) � 4F 0F (3)2 + 3F 0F 00F (4) ℄ dpdz +2 [15(F 00)3 + 5q(F 00)2F (3) � 4FF (3)2 + 4qF 0F (3)2 + 3FF 00F (4) �3qF 0F 00F (4) ℄ dxdz +[�20(F 00)4 + 10F 0(F 00)2F (3) + 4(F 0)2F (3)2 � 3(F 0)2F 00F (4) ℄ dp2 +(3.1) 2 [�15F 0(F 00)3 + 20q(F 00)4 + 5F (F 00)2F (3) � 10qF 0(F 00)2F (3) +4FF 0F (3)2 � 4q(F 0)2F (3)2 � 3FF 0F 00F (4) + 3q(F 0)2F 00F (4) ℄ dpdx+[�30F (F 00)3 + 30qF 0(F 00)3 � 20q2(F 00)4 �10qF (F 00)2F (3) + 10q2F 0(F 00)2F (3) + 4F 2F (3)2 �8qFF 0F (3)2 + 4q2(F 0)2F (3)2 � 3F 2F 00F (4) +6qFF 0F 00F (4) � 3q2(F 0)2F 00F (4) ℄ dx2:As noted in Ref. [7℄ this metri
 is 
onformal to a Ri

i �at metri
 ĝF = e2�(q)gFwith a 
onformal s
ale � = �(q) satisfying se
ond order ODE:90F 002(�00 ��02)� 60F 00F (3)�0 + 3F 00F (4) � 4F (3)2 = 0:2The metri
 presented here di�ers from this of [7℄ by a 
onvenient 
onformal fa
tor equal to�15(F 00)10=3.



6 PAWE� NUROWSKIThus, sin
e for ea
h F = F (q) the 
onformal 
lass [gF ℄ 
ontains a Ri

i �at metri
,its 
onformal holonomy must be a proper subgroup of the non
ompa
t form of G2.An interesting feature of this 
onformal 
lass is that it is very spe
ial among all the
onformal 
lasses asso
iated with equation (1.1). Not only has gF very spe
ial 
on-formal holonomy, making it very similar to the Lorentzian 4-dimensional Brinkmanmetri
s; moreover, sin
e its Weyl tensor has essentially only one nonvanishing 
om-ponent (see Ref. [7℄ for details) it is not weakly generi
 (see Ref. [3℄ for de�nition).This makes [gF ℄ analogous to the Lorentzian type N metri
s in 4-dimensions, su
has for example, Fe�erman metri
s.Having gF of (3.1) we used the symboli
 
omputer 
al
ulation program Math-emati
a to 
al
ulate its asso
iated form 
 of (2.2). We 
he
ked that this formidenti
ally vanishes. We further used Mathemati
a to 
al
ulate the 
orrespondingapproximate ambient metri
 �gF . On doing that we obsereved that, surprisingly,the bilinear form � is also identi
ally vanishing. The expli
it formula for the ap-proximate ambient metri
 is given below:(3.2) �gF = t2gF � 2 dtdu � 2tuF 004=3Pdq2;with P = 4F (3)2 � 3F 00F (4)90(F 00)10=3 ;and gF given by (3.1). The metri
 �gF is de�ned lo
ally on J � R+ � R with
oordiantes (x; y; p; q; z; t; u). It obviously has signature (4; 3). We also 
he
ked,again using Mathemati
a, that Ri
(�gF ) � 0. Thus, we ful�led the strategy outlinedin Se
tion 2. This enables us to 
on
lude that �gF of (3.2) 
oin
ides with the ambientmetri
 ~gF for gF . To give expressions for the Cartan normal 
onformal 
onne
tionfor gF and the Levi-Civita 
onne
tion for ~gF = �gF we �rst introdu
e a nonholonomi

oframe (�1; �2; �3; �4; �5) on J given by�1 = dy � pdx�2 = dz � Fdx� F 0(dp� qdx)�3 = � 2p3 (F 00)1=3(dp� qdx)30(F 00)10=3�4 = �3F 0F 00F (4) � 4F 0F (3)2 � 10(F 00)2F (3)��dp� qdx�+�4F (3)2 � 3F 00F (4)��dz � Fdx�+ 30(F 00)3dx�5 = �(F 00)2=3dq:In this 
oframe the metri
 gF is simply:gF = 2�1�5 � 2�2�4 + (�3)2:By means of the 
anoni
al proje
tion�(x; y; p; q; z; t; u) = (x; y; p; q; z)the 
oframe (�1; �2; �3; �4; �5) 
an be pulba
ked to �ve linearly independent forms(�1; �2; �3; �4; �5) on J � R+ � R. They 
an be suplemented by�0 = dt and �6 = duto form a 
oframe (�0; �1; �2; �3; �4; �5; �6) on the ambient spa
e J � R+ � R.



CONFORMAL STRUCTURES WITH EXPLICIT AMBIENT METRICS AND CONFORMAL G2 HOLONOMY7The Cartan normal 
onformal 
onne
tion, when written on J in the 
oframe(�1; �2; �3; �4; �5) reads:
!G2 =

0BBBBBBBBBBBBBBBBBBBBB�
0 0 0 0 0 �P�5 0�1 0 Q�2 + 92p3P�3 1p3�4 � 12p3�3 0 �P�5�2 0 0 1p3�5 0 � 12p3�3 0�3 0 �2p3P�5 0 1p3�5 � 1p3�4 0�4 0 0 �2p3P�5 0 Q�2 + 92p3P�3 0�5 0 0 0 0 0 00 �5 ��4 �3 ��2 �1 0

1CCCCCCCCCCCCCCCCCCCCCA
:

Here: Q = 40F (3)3 � 45F 00F (3)F (4) + 9F 002F (5)90F 005 :Now we use 
oframe (�0; �1; �2; �3; �4; �5; �6) to write down the Levi-Civita 
onne
-tion for ~gF . We have ~gF = gij�i�j ;with the indi
es range: i; j = 0; 1; 2; :::6, and the matrix gij given bygij = 0BBBBBBBB� 0 0 0 0 0 0 �10 0 0 0 0 t2 00 0 0 0 �t2 0 00 0 0 t2 0 0 00 0 �t2 0 0 0 00 t2 0 0 0 �2tuP 0�1 0 0 0 0 0 0
1CCCCCCCCA :The Levi-Civita 
onne
tion for ~gF on J � R+ � R, when written in the 
oframe(�0; �1; �2; �3; �4; �5; �6) reads:

!LC =
0BBBBBBBBBBBBBBBBBBBBB�

0 0 0 0 0 �tP�5 01t �1 + ut2P�5 1t �0 Q�2 + 92p3P�3 1p3�4 � 12p3�3 ut2P�0 � u3tQ�5 � 1tP�6 � 1tP�51t �2 0 1t �0 1p3�5 0 � 12p3�3 01t �3 0 �2p3P�5 1t �0 1p3�5 � 1p3�4 01t �4 0 0 �2p3P�5 1t �0 Q�2 + 92p3P�3 01t �5 0 0 0 0 1t �0 00 t�5 �t�4 t�3 �t�2 t�1 � uP�5 0

1CCCCCCCCCCCCCCCCCCCCCA
:



8 PAWE� NUROWSKINote that on � = f(x; y; p; q; z; t; u) : u = 0; t = 1g we trivially have �0 � 0 � �6.Thus, restri
ting the formula for !LC to �, we see that !G2 � !LCj�. O� this set thetwo 
onne
tions: !LC and the pullba
ked-by-�-
onne
tion !G2 , di�er signi�
antly.To see this it is enough to observe that 
ontrary to !LC , the 
onne
tion ��(!G2)has torsion. Indeed writing the �rst Cartan stru
ture equations for the ��(!G2) inthe 
oframe (�0; �1; �2; �3; �4; �5; �6) we �nd that the torsion is:d�i + ��(!G2)ij ^ �j = 0BBBBBBBB� 0��0 ^ �1 � P�5 ^ �6��0 ^ �2��0 ^ �3��0 ^ �4��0 ^ �50
1CCCCCCCCA :The vanishing of this torsion on the initial hypersurfa
e � 
on�rms our earlierstatemant that the two 
onne
tions !G2 and !LC 
oin
ide there.It is interesting to note that the 
urvature d!LC + !LC ^ !LC does not dependon t, u and is anihilated by �t and �u. Thus it 
an be 
onsidered to be a 2-form on�. As su
h it is pre
isely equal to the 
urvature d!G2 +!G2^!G2 of the 
onne
tion!G2 :d!G2 + !G2 ^ !G2 = d!LC + !LC ^ !LC = 0BBBBBBBB�0 0 0 0 0 0 00 0 A5 0 0 0 00 0 0 0 0 0 00 0 0 0 0 0 00 0 0 0 0 A5 00 0 0 0 0 0 00 0 0 0 0 0 0

1CCCCCCCCA �2 ^ �5;where3A5 = �224F (3)4 + 336F 00F (3)2F (4) � 51F 002F (4)2 � 80F 002F (3)F (5) + 10F 003F (6)100F 0020=3 :4. Non-
onformally Einstein exampleTo get quite di�erent example of [gF ℄ we 
onsider equation (1.1) in the form:z0 = y002 + a6y06 + a5y05 + a4y04 + a3y03 + a2y02 + a1y0 + a0 + bz;where ai; i = 0; 1; :::; 6; and b are real 
onstants. This equation has the de�ningfun
tion F = q2 + a6p6 + a5p5 + a4p4 + a3p3 + a2p2 + a1p+ a0 + bzand, via (1.3), leads to a 
onformal 
lass [gF ℄ represented by a metri
15(2)�2=3gF = [9a2 + 2b2 + 27a3p+ 54a4p2 + 90a5p3 + 135a6p4℄dy2 +[15a0 + 2(b2 � 3a2)p2 � 3a3p3 + 9a4p4 + 30a5p5 + 60a6p6 �20bpq + 5q2 + 15bz℄dx2 +(4.1) [15a1 + 4(3a2 � b2)p� 9a3p2 � 48a4p3 � 105a5p4 � 180a6p5 +3We use the letter A5 to denote the nonvanishing 
omponent of the 
urvature to be in a

or-dan
e with [7℄ and Cartan's paper [1℄. Note however that in order to avoid 
ollision of notationsbetween the present and the next se
tions we use 
apital A5 instead of a5 of paper [7℄.



CONFORMAL STRUCTURES WITH EXPLICIT AMBIENT METRICS AND CONFORMAL G2 HOLONOMY920bq℄dxdy + 20dp2 �10(bp+ q)dpdx+ 10bdpdy � 30dqdy � 15dxdz + 30pdqdx:This metri
 is not 
onformal to an Einstein metri
. The qui
kest way to 
he
kthis is the 
al
ulation of the Cotton, Cijk , and the Weyl, Wijkl , tensors for gF .On
e these tensors are 
al
ulated, it is easy to observe that they do not admit ave
tor �eld Ki su
h that Cijk +KlWlijk = 0. As a 
onsequen
e the metri
 is nota 
onformal C-spa
e metri
. This proves our statement sin
e every 
onformallyEinstein metri
 is ne

essarily a 
onformal C-spa
e metri
 (see e.g. Ref. [3℄).Re
all that gF of (4.1), as a member of the family of metri
s (1.3), de�nes a
onformal 
lass [gF ℄ with 
onformal holonomy H redu
ed to the non
ompa
t groupG2 or to one of its subgroups. But sin
e the metri
 (4.1) is not 
onformal to anEinstein metri
, we do not have an immediate reason to 
on
lude that H 6= G2.We 
onje
ture that H = G2 here and try to prove it in a subsequent paper [6℄.It is remarkable that the ambient metri
 ~gF for gF of (4.1) assumes a very
ompa
t form:~gF = t2gF � 2 dtdu �2 tu [ 120 (�2a2 + 4b2 + 3a3p+ 6a4p2 � 20a5p3 � 120a6p4)dx2 �920 (a3 � 10a5p2 � 40a6p3)dxdy � 910 (a4 + 5a5p+ 15a6p2)dy2 ℄ +u2 [ 320(2)2=3 (a4 � 10a5p+ 60a6p2)dx2 + 94(2)2=3 (a5 � 12a6p)dxdy + 814(2)2=3 a6dy2 ℄:This is 
he
ked by applying our strategy des
ribed in Se
tion 2 to the metri
 (4.1).As in the previous example, using Mathemati
a, we 
al
ulated the bilinear form
 for (4.1). It turned out to be equal to zero, 
 � 0. Then we 
al
ulated �gF ,and 
he
ked that it is Ri

i �at. Thus we 
on
luded that �gF 
oin
ides with theambient metri
 for ~gF . The above given formula for ~gF is therefore just �gF , whi
hwe 
al
ulated using (2.2).We �nd this example as a sort of mira
le. Apriori there is no reason for gFto have the ambient metri
 trun
ated at the se
ond order in terms of the ambientparameters t and u. We are intrigued by this fa
t.Now, following the general pro
edure outlined in [7℄, we introdu
e a spe
ial
oframe for gF given by:�1 = dy � pdx�2 = dz � Fdx� 2q(dp� qdx)�3 = � 24=3p3 (dp� qdx)�4 = 2�1=3dx15(2)1=3�5 = (9a2 + 2b2 + 27a3p+ 54a4p2 + 90a5p3 + 135a6p4)(dy � pdx) +10b(dp� qdx)� 30dq +15(a1 + 2a2p+ 3a3p2 + 4a4p3 + 5a5p4 + 6a6p5 + 2bq)dx:In this 
oframe the metri
 gF is:gF = 2�1�5 � 2�2�4 + (�3)2:As in the previous se
tion, we use the 
anoni
al proje
tion�(x; y; p; q; z; t; u) = (x; y; p; q; z)
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k the 
oframe (�1; �2; �3; �4; �5) to �ve linearly independent forms (�1; �2; �3; �4; �5)on J � R+ � R, whi
h are further suplemented by�0 = dt and �6 = duto form a 
oframe (�0; �1; �2; �3; �4; �5; �6) on the ambient spa
e J � R+ � R.It turns out that if b = 0 the 
oframes on J and J � R+ � R de�ned in thisway are suitable to analyze the relations between the Cartan normal 
onformal
onne
tion !G2 for [gF ℄ and the Levi-Civita 
onne
tion !LC for ~gF . If b 6= 0the 
one
tion !G2 in the 
oframe (�1; �2; �3; �4; �5) and the 
onne
tion !LC in the
oframe (�0; �1; �2; �3; �4; �5; �6) do not 
oin
ide on t = 1, u = 0. We will notanalyze this 
ase here.Restri
ting to the b = 0
ase we �nd the following:� the 
onne
tions !G2 in the 
oframe (�1; �2; �3; �4; �5) and the 
onne
tion!LC in the 
oframe (�0; �1; �2; �3; �4; �5; �6) 
oin
ide on t = 1, u = 0.� the torsion of ��(!G2) in the 
oframe (�0; �1; �2; �3; �4; �5; �6) is nonvanish-ing o� the set t = 1, u = 0� unlike the example of the previous se
tion the 
urvature d!LC+!LC ^!LCsigini�
antly depends on t and u.� even on t = 1, u = 0, the 
urvature d!G2 + !G2 ^ !G2 and the restri
tionof d!LC + !LC ^ !LC do not 
oin
ide.5. A
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